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Director anchoring on a simple edge dislocation at the surface of induced smectic-CA films
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We present a detailed analysis of c-director anchoring measurements on simple edge dislocations at the
surface of smectic-CA films (steps). Indications show that the c-director anchoring on the dislocations originates
from a local and partial melting of the dislocation core that depends on the anchoring angle. The SmCA films
are induced on isotropic puddles of 1-(methyl)-heptyl-terephthalylidene-bis-amino cinnamate molecules by the
surface field, while the dislocations are located at the isotropic-smectic interface. The experimental setup is based
on the connection of a three-dimensional smectic film sandwiched between a one-dimensional edge dislocation
on its lower surface, and a two-dimensional surface polarization spread over the upper surface. Applying an
electric field produces a torque that balances the anchoring torque of the dislocation. The film distortion that
results is measured under a polarizing microscope. Exact calculations on these data, anchoring torque versus
director angle, yield the anchoring properties of the dislocation. A specificity of our sandwich configuration is
to improve the measurement quality by a factor of N3/2 ∼ 600, where N = 72 is the number of smectic layers
in the film. We fit a second-order Fourier series on the torque-anchoring angle data, which has the advantage
of converging uniformly over the entire anchoring angle range, i.e., over more than 70◦. The two corresponding
Fourier coefficients, kF2

a1 and kF2
a2 , are anchoring parameters that generalize the usual anchoring coefficient. When

changing the electric field E, the anchoring state evolves along paths in a torque-anchoring angle diagram.
Two cases occur depending on the angle α∞ of E relative to the unit vector S, perpendicular to the dislocation
and parallel to the film. When α∞ < 130◦, the operating point Q that represents the anchoring state in the
diagram follows reversible and “at-equilibrium” paths. Its free displacement velocity is infinitely slow, so that
we have to push it with electric torque steps smaller than the experimental error bar δ� ∼ 10−14N. On the other
hand, for α∞ > 130◦, Q describes a hysteresis loop similar to the usually encountered ones in solids. This loop
connects two states that exhibit broken and nonbroken anchorings, respectively. The paths that join them in
an out-of-equilibrium process are irreversible and dissipative. When coming back to a nonbroken anchoring
state, both the dislocation and smectic film spontaneously heal back in the very same state they were before
the anchoring broke. The process does not produce any erosion thanks to their liquid nature, including at the
microscopic scale. The energy that is dissipated on these paths is roughly estimated in terms of the c-director
rotational viscosity. Similarly, we can evaluate the maximum time of flight along the dissipative paths to be
of the order of a few seconds, which is consistent with qualitative observations. In contrast, the paths located
inside each domain of these anchoring states are reversible and can be followed in an “at equilibrium” manner
all along. This analysis should provide a basis for understanding the structure of multiple edge dislocations in
terms of parallel simple edge dislocations interacting with each other through pseudo-Casimir forces arising
from c-director thermodynamic fluctuations between them.

DOI: 10.1103/PhysRevE.107.054702

I. INTRODUCTION

Among the interesting things that can be observed in
liquid crystals with a simple polarizing microscope are the
smectic films that spontaneously grow at the free surface of
isotropic droplets or puddles of pure mesogenic compounds.
They are induced by the molecular field on the free sur-
face, at a temperature above the bulk isotropic to smectic
phase transition. With 1-(methyl)-heptyl-terephthalylidene-
bis-amino cinnamate (MHTAC), a nonchiral compound, the
film forms in an unlimited layer-by-layer process with slowly
decreasing temperature. Each new layer in the film is initiated
by an edge dislocation of Burgers vector equal to unity at
the isotropic-smectic phase interface. Being located at the
interface with a nematic layer, the edge dislocation is a surface
edge dislocation and may be called a step for short. The

epitaxial process then goes on repetitively and perfectly de-
posits parallel smectic layers one after the other [1].

Combined interferential measurements, at normal and
oblique incidences, show that a first mesophasic layer forms
uniformly over the whole surface of isotropic puddles, sev-
eral degrees above the isotropic-smectic phase transition,
TSm = 158 ◦C [2], and it gradually lightens on decreasing
temperature when observed between crossed polarizers. These
continuous properties, not preceded by any dislocation, indi-
cate that a first nematic layer is created. Its thickness may
be identified to the correlation length of the orientational
order, i.e., to the correlation length of the nematic order in the
isotropic phase. This layer thickness increases while reducing
the temperature, until reaching the value ξ ∼ 7 nm when the
first smectic layer begins to form [1]. On slowly decreasing
temperature again, smectic layers then form one by one at the
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nematic interface in contact with the air (for the first smectic
layer) or in contact with the smectic layers already formed.
They start with an edge dislocation, each one corresponding to
a different front of the first-order transition from the nematic
to smectic phase. The thickness of the smectic layers being
measured to be lSm = 3 nm, the number of simple dislocations
that pass across the observation field allows one to count the
exact number of smectic layers at this point of the film, and
consequently to determine its thickness. With faster cooling
temperature, multiple edge dislocations may form. Under a
polarized light microscope, they appear to be thicker than
simple ones and cannot be confused with them.

An electric field E applied parallel to the film by means of
electrodes evaporated on the glass substrate produces walls
in the film [1]. The compound being nonchiral, the plane
of the molecules (x, z) is a symmetry plane of the film that
contains both the c-director and the electric polarization of
the film P. The y-axis is taken along the edge dislocation
(Fig. 1). The elastic and electric energies involved in the film
are proportional to K

w2 and PE, respectively, w being the width
of the observed walls, and K the average elastic constant of the
film. At equilibrium, these energies being equal, the squared
wall width w2 is on the order of magnitude of K

PE ; cf. Sec. II A.
Moreover, the w measurements show to within 5% accuracy
that w2 is proportional to the film thickness. With the elastic
constant of the film, K, being also proportional to the film
thickness, because the elasticity of each smectic layer adds up
to the other ones, both the film thickness variations in w2 and
in K compensate for each other. We deduce that the tangential
polarization on the film surface, P, is independent of film
thickness. P is thus a surface polarization, and more exactly, P
is the addition of two surface polarizations, one on each side
of the smectic film. Therefore, according to the parity of N,
which is the number of smectic layers in the film, P is the sum
or the difference between the two polarizations on the film sur-
faces in contact with the air and in contact with the isotropic
phase, respectively. With the measured film polarization being
independent of the parity of N, within the error bars, one of
these surface polarizations is negligible compared to the other
one. We deduce that P is mainly spread over one of these
two surfaces. As moreover the direction of the polarization
is the same on both sides of the dislocation, for x > 0 and for
x < 0, we understand that the polarization is indeed located
on the opposite surface from the edge dislocations, i.e., on
the smectic layer in contact with the air. This P direction
consequently identifies with the direction of the film director,
c, which is therefore also attached to the free surface in contact
with the air [Fig. 1(a)].

As already noticed [2], the dislocation lines appear thicker
under a polarizing microscope when E is applied from an odd
N region of the film to a region with an even N than when
E is oriented in the opposite direction. In the former case,
E produces a larger distortion than when applied along the
preferred anchoring direction of c on the dislocation. This
gives a thicker appearance to the dislocation. This detail also
shows that though located on the upper air-smectic interface,
the c-director anchors on the dislocation that is indeed situated
on the internal smectic-isotropic interface, on the other side
of the film. More precisely, c anchors along the unit vector S,
parallel to the film, perpendicular to the dislocation line, and

(a)

(b) (c)

FIG. 1. (a) Cross-section of a SmCA film at the free surface of
a nonchiral MHTAC puddle, showing three smectic layers ahead of
a surface edge dislocation (step) and four smectic layers behind it.
A Burgers circuit running horizontally in the air and in the nematic
phase, and vertically closed on both sides through the broken lines
that delimit the smectic layers, could be drawn in panels (a) or (b).
Crossing four layers on one side and three on the other side, such
a circuit would show that the Burgers vector of the dislocation is
equal to one layer thickness. The dislocation is along the y-axis,
perpendicular to panel (a). Its core is marked by a red dashed circle.
The tilt of the molecules is reduced in the first SmCA layer (arrows
depict their individual electric polarization) and in the nematic layer
in contact with and above the isotropic phase (the molecules are
not shown). The projection of the molecules onto the film defines
the c-director, which is parallel to the horizontal component of the
surface polarization, P. For simplification, the electric field, E, is also
oriented along the x-axis in this figure. (b) Dislocation core when
reversing E and consequently P and c, from their orientations in (a).
Note the sharper shape of the smectic molecules organization at the
edge of the dislocation when compared to (a). (c) Top view of the
film showing the applied electric field E, in a nonspecific orientation,
the c-director at a distance x from dislocation, and the unit vector S,
parallel to the smectic film, perpendicular to the edge dislocation, and
oriented from the region containing an even number of smectic layers
to an odd one. The angles of E and c relative to S are equal to α∞
and α, respectively. In the experiment discussed here, α∞ = 116◦.

oriented from the even-N region to the odd-N one. This means
that both the orientational and positional organization of the
molecules in the vicinity of dislocation cores are determined
in a unique manner by means of short-range interactions
∼ lSm. The molecular organization around dislocation cores
thus resists deviations, and it is able to maintain the c-director
close to its preferred anchoring direction, that is, along S as
well as possible. So, the local molecular organization imposes
that c and S reverse sign relative to each other each time a new
smectic layer is added to the film according to a step-by-step
mechanism. This epitaxial process thus builds up the exact tilt
alternation of the molecules by means of interactions between
molecules in direct contact from a smectic layer to the next
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one. It is therefore useless to invoke any exotic long-range
interaction mechanism to explain the perfectly alternate tilt
structure that is observed in the SmCA phase, all the more
since such an argument should not be valid to explain that
the first smectic layer alternates relative to the nematic layer,
too. Surprisingly, taking advantage of the MHTAC ability to
grow induced films almost indefinitely, the mechanism can be
observed to extend from N = 2 to more than N = 700 without
implying any detectable error. This experiment indeed demon-
strates the stability and robustness of the alternate structure
[2].

Interestingly, the same conclusions regarding the exact
alternation of the tilt between smectic layers and the sur-
face polarization can be extended to induced films of chiral
MHTAC*. In addition, each smectic layer of the film exhibits
a chiral or ferroelectric polarization P∗ as in the SmC∗ phases.
This chiral polarization points in a direction perpendicular to
the molecules and parallel to the smectic layers. Its direction
is therefore reversed between neighboring layers since their
tilts are alternately positive and negative. The overall struc-
ture of the chiral smectic phase is thus antiferroelectric [3].
Naturally, a helical distortion of the structure superimposes
also on the results obtained with the racemate MHTAC. The
measurements of the total polarization of the film, modulus
and direction, as a function of the smectic layer number in the
films, N, are consistent again with an exact alternation of the
tilt, a rotation by 3◦ per layer, and separate volume and surface
polarizations. The good agreement between the measurements
and their calculations based on the hypothesis of a precise tilt
alternation clearly corroborates the structure accurately, and
thus provides a good confirmation that the SmO phase exactly
exhibits an alternate tilt from a smectic layer to the next one,
with a bulk period of 2lSm.

Before these measurements, a SmCA phase—for a
tilted smectic phase with antiferroelectric properties—
was published to be biaxial on the basis of conoscopic
measurements in 4-(1-methylheptyloxycarbonyl)-phenyl-4′-
octyloxybiphenyl-4-carboxylate (MHPOBC) [4]. These mea-
surements meant that the tilt of the molecules in the layers
was alternate, possibly in the average, or if periodic, different
periods than 2lSm, the SmO period, could not be excluded
directly. To verify this point, mixing tests between SmO and
SmCA were performed. Heppke et al. indeed observed that a
continuous path exists between the two phases on gradually
mixing both MHTAC and MHPOBC compounds together. In
this manner, they obtained real proof that both phases SmO
and SmCA were identical [5], and that it was no longer neces-
sary to name them differently.

II. ANCHORING ON EDGE DISLOCATIONS

Simple edge dislocations in the SmCA phase of MHTAC
have interesting physical properties. They are essentially liq-
uid and free from contacts with solids, or several millimeters
apart, when observed in induced films. Interestingly, the elas-
tic properties of the film can be used to weigh the extremely
small torques that the dislocation exerts on the c-director. In
the experiments that are analyzed here, an electric field E
is addressed parallel to a SmCA film by means of electrodes
evaporated 2 mm apart on a glass substrate on which a small

amount of MHTAC is deposited. The applied electric field E
couples with the surface polarization P and produces a torque
that at equilibrium matches the anchoring torque. From the
amplitude and direction of E, we calculate the applied torque,
but before using these smectic films as microbalances for
measuring the anchoring torques exerted by edge dislocations,
we need to revisit their calibration. Such an improvement
could provide an opportunity to estimate the interaction be-
tween edge dislocations at small distances. Before addressing
such questions where pseudo-Casimir interactions should be
involved until binding simple edge dislocations into multiple
ones, we need to come back to the anchoring strength mea-
surements of the c-director on surface edge dislocations which
previously were insufficiently well analyzed [6].

A. 2D elastic distortion

In each smectic layer, the molecules are oriented along a
unit vector n, equivalent to the nematic director. To express
its coordinates, we use a reference frame where the z-axis
is perpendicular to the film, and the x-axis is along the unit
vector S, parallel to the smectic layer, perpendicular to the
edge dislocation (or step), and oriented from the even-N re-
gion to the odd-N one. The n coordinates, for the considered

smectic layer, are thus given by |
sin � cos α

sin � sin α

cos �
, where � and α

are the average tilt and azimuthal angles of the molecules,
respectively. As the film is not chiral, nor submitted to any
stress around the z axis, we see that the film does not undergo
any twist. Its elastic energy density, i.e., per volume unit, is
then reduced to

fK = 1
2K11(� · n)2 + 1

2K33(n ∧ (� ∧ n))2, (1)

where K11 and K33 are the Frank elastic constants for splay
and bend distortions, respectively. Assuming an average value
of K ∼ 5 × 10−12 N, the measurements of the wall widths,
w, lead to the determination of the projected polarization on
the film, P = 3.1 × 10−14 C/m [1], and to the evaluation of
an anisotropy of elasticity, K11−K33

2K ∼ 2.3. This corresponds
to a ratio K33

K11
∼ 0.43, which seems small when compared to

elastic ratios obtained from nematic liquid crystals, since data
are lacking for tilted smectics. Thus, K33

K11
is found to span

from 1.3 to 1.4 depending on temperature, in 4-4′-n-pentyl-
cyanobiphenyl (5CB), or from 1.7 to 2.03 in 4- (trans-4′-n
pentylcyclohexyl) -benzonitrile (PCH-5) [7]. Numerous mea-
surements confirm that such a ratio K33

K11
is larger than 1 in

normal nematic liquid crystals [8]. However, based on molec-
ular theory and computer simulations, Osipov et al. proposed
that such small ratios K33

K11
were consistent with a large short-

range smecticlike ordering. Such a property is clearly the case
in the MHTAC SmCA phase [9]. More recently, small ratios
K33
K11

were also found in discotic nematic liquid crystal [10].
All these results, therefore, confirm that in our case, the ratio
K33
K11

is anomalously small, and that it is indeed not possible to
approximate it to unity as is currently done, e.g., in Refs. [6]
and [11].

The elastic energy density fK can be written in terms of the
smectic c-director, which is defined in a tilted smectic as the
projection of n onto the smectic plane, i.e., c = sin � × |cos α

sin α .

054702-3



YVES GALERNE PHYSICAL REVIEW E 107, 054702 (2023)

The elastic energy of a two-dimensional (2D) distortion per
film surface unit can thus be written as

fK = 1
2 Ks(� · c)2 + 1

2 Kb(c ∧ (� ∧ c))2, (2)

where {Ks = N lSm K11 sin2�

Kb = N lSm K33 sin4�
are the 2D splay and bend elastic

constants of the film, N lSm being the film thickness [11]. In
the cases of nonstressed SmCA films of MHTAC, � is roughly
a constant, � ∼ 50◦. Moreover, we only consider a unidirec-
tional distortion in the film, along the y-axis and defined by the
azimuthal angle α(x). With these restrictions, the 2D elastic
energy can simply be written as f K = 1

2 [K−δK cos 2α]( ∂α
∂x )

2
,

where we have introduced the average and difference be-

tween the two elastic constants of the film { K = 1
2 (Ks + Kb)

δK = 1
2 (Ks − Kb). With

the above figures, we have K = N × 7.5 × 10−21 J. We thus
deduce w = √

N/E × 0.5 mm. In the following, we use the
relative elastic anisotropy χ = δK

K , so that

fK = 1

2
K[1 − χ cos 2α]

(
∂α

∂x

)2

. (3)

When an electric field E is applied parallel to the smectic
film, the film contains an electric energy per surface unit:

f E = −PE cos (α∞ − α). (4)

In this expression, P is the horizontal component of the
surface polarization carried by the first smectic layer in con-
tact to the air. α and α∞ are the angles of P and E relative
to the y-axis, respectively. Incidentally, this smectic layer and
the nematic one at the smectic-isotropic interface of the film
are less tilted than in the bulk ones [2].

Minimizing the free energy of the whole film yields the
Euler-Lagrange equation:

[1 − χ cos 2α]
∂2α

∂x2
+ χ sin 2α

(
∂α

∂x

)2

− w−2 sin (α − α∞)

= 0, (5)

where w =
√

K
PE is the characteristic distance of a distortion

produced by an electric field, often called the wall width. To
within a factor K, Eq. (5) is the equation of the torques that the
c-director undergoes in a SmCA film, due to a unidirectional
distortion along the y-axis. The two first terms and the last
one stand for the elastic and the electric torques, respectively.
Indeed, these calculations generalize both the results obtained
in Refs. [6] and [11], and which were restricted to cases in
which analytic calculations were possible. In Ref. [6], the
elastic constants were considered to be equal, but with χ =
0.6 for MHTAC as found in Ref. [11], such an approximation
is no longer acceptable. In Ref. [11], however, the calculation
was limited to particular cases in which the electric field E is
applied parallel or perpendicular to the x-axis, i.e., such that
α∞ = 0 or α∞ = ∞, where again analytic calculations could
be performed.

Here, we directly consider the general case in which both
χ and α∞ take general values. We may expect that the detailed
knowledge of the anchoring properties on dislocations will
impact the director fluctuations in the interval between them,
and could therefore affect the pseudo-Casimir energy in this

region [12]. In this manner, the anchoring properties on the
dislocations could be a key for calculating the interactions
between dislocations, and they could consequently help to
elucidate the formation of higher Burgers vector dislocations.
Numerical calculations will be necessary to finish such cal-
culations. Before this last step, analytic calculations remain
possible. We can thus integrate Eq. (5) to

[1 − χ cos 2α]

(
∂α

∂x

)2

− 2w−2[1 − cos (α − α∞)] = A,

(6)
where A is an integration constant that can be shown to be
zero by observing that when x → ∞, ∂α

∂x → 0 and α → α∞.
We deduce the equation of the distortion

∂α

∂x
= 2

w

sin (α∞−α)
2√

1 − χ cos 2α
. (7)

The derivative ∂α
∂x originates from a square root. Its sign

is a priori undetermined. However, the two angles α and
α∞, when considered in the 2π space L2[–π, π ], have the
same sign before α reaches its limit value α∞. We deduce
that the difference α∞-α and the derivative ∂α

∂x have the same
sign. This property confirms that the sign chosen in Eq. (7) is
correct.

B. Anchoring energy on a simple edge dislocation

The sketch in Fig. 1(c) shows the vectors E, c (along P),
and S, namely the electric field, the director, and the unit
vector normal to the dislocation, respectively. The measure-
ments are performed with the angle [S, E] = α∞ = 116◦, and
contrary to Ref. [6], we now take into account the evidence
that in the SmCA films of MHTAC, the 2D elastic constants Ks

and Kb are much different from each other with a ratio Ks
Kb

∼ 4.
We are thus far from the one-elastic-constant hypothesis that
we have used earlier for simplification [11]. We present now
more detailed calculations.

The torque �E and the anchoring torque �a that the electric
field E and the dislocation, respectively, exert on the smectic
film produce an elastic distortion. At equilibrium, they bal-
ance each other, so that

�E + �a = 0. (8)

With this equation, we deduce the anchoring torque �a

that the dislocation exerts on the film as a function of the
electric field E and of the measured anchoring angle α0 on
the dislocation, i.e., at x = 0. Integrating over the whole film
surface, or equivalently, integrating from the dislocation at
x = 0, until +∞ and multiplying by 2, we have

�E = 2PE
∫ ∞

0
sin(α∞ − α)dx. (9)

Using Eq. (7), which describes the distortion, the electric
torque that is transmitted by the smectic film to each disloca-
tion length unit becomes

�E = 2
√

PEK
∫ α∞

α0

cos

(
α∞ − α

2

) √
1 − χ cos 2α dα.

(10)
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This integral replaces the approximate expression previ-
ously used to calculate the electric torque applied to the film
[Eq. (4) in Ref. [6]]. However, a numerical integration is
necessary to complete the electric torque calculation, �E , as
a function of the electric field E, i.e., as a function of its
amplitude E, and the angle from the x-axis, α∞; cf. Fig. 1(c).

As discussed above, the c-director orients preferentially
along S, the anchoring direction generally called the easy axis,
cf. Fig. 1(c). The anchoring energy then exhibits a minimum
on the dislocation at α0 = 0. Such a property is due to the
plane (x,z) that, being perpendicular to the dislocation, is also
a symmetry plane for the film structure (Fig. 1). Consequently,
the anchoring energy is the same for +α0 and –α0, which
means that the anchoring energy of the c-director on the
dislocation is an even function of α0. The anchoring energy
can thus be expressed in terms of cos α0. Such an experi-
mental observation of a director that orients perpendicularly
to some limiting object somehow extends the well-known
homeotropic anchoring, experienced by nematic liquid crys-
tals on 2D surfaces. However, in this case, the director n
is equivalent to –n, so that the anchoring angle α0 is also
equivalent to α0 + π . This means that the anchoring energy
is indeed a function of cos2α0, or equivalently, a function of
sin2α0 to within some constant, a remark that was formulated
a long time ago by Rapini-Papoular [13]. To obtain a better
simulation of the anchoring energy as a function of α0, Yang
et al. proposed to use higher-order expansions in power series
of sin2nα0 [14]. In fact, such an expansion may not be a real
improvement to describe the anchoring properties in the case
of weak anchorings, because the director should then experi-
ence large α0 deviations from the equilibrium angle where the
expansion is performed. In such a case, the anchoring angle
could cover a larger domain than the convergence radius of the
series, meaning that the expansion is indeed unable to fit on
the whole experimental data range. Moreover, the successive
terms of the series sin2nα0 are not orthogonal relative to one
another, which causes the coefficients of the series to be some-
what unstable when climbing to higher expansion orders. For
this reason, Barbero et al. suggested to use Fourier expansions
[15], but without practical use as far as we know.

However, the c-director of SmCA films is a true vector, so
that c is not equivalent to its opposite −c. Its anchoring prop-
erties therefore do not exhibit the symmetry α0 ↔ α0 + π ,
and, in particular, the anchoring energy can directly be ex-
pressed in terms of cos α0. Consequently, the Rapini-Papoular
rule is not valid any more for edge dislocations in SmCA films.
This is a second reason to prefer Fourier expansions.

Moreover, Fourier expansions have a more decisive ad-
vantage, since they converge uniformly towards the original
function over the entire available range, that is, [0, π ] and
indeed [0, 2π ], when applying the α0 ↔ –α0 symmetry. Weak
continuity conditions are nevertheless required to validate
Fourier expansions. Nevertheless, these conditions are com-
monly satisfied for functions that indeed arise from statistical
physics, as here the properties of the c-director that is given by
the average direction of the molecules, because they are gener-
ally expressed in terms of statistical integrals. So, the error that
is committed relative to the real anchoring energy, when using
Fourier expansions, remains somewhat independent of the
actual value α0 of the anchoring angle on the dislocation. Such

a property is markedly different from the one-point conver-
gence provided by the usual series [16]. Fourier series should
therefore be favorably preferred to the one-point convergence
series when we need a domain of large convergence radius.

The 1D anchoring energy of the c-director onto an edge
dislocation of Burgers vector unity can thus be expanded in a
Fourier series up to the second order as f F

a = ka1 cos α0 +
ka2 cos 2α0 + · · · . Let us recall that the sine terms in this
Fourier expansion cancel because of the symmetry about S,
which warrants the angles +α0 and −α0 having the same
energy.

For comparison, we try the two Fourier series reduced to
the first and second orders, respectively,

f F1
a = −kF1

a1 cos α0 (11)

and

f F2
a = −kF2

a1 cos α0 − kF2
a2 cos 2α0, (12)

where kF1
a1 , kF2

a1 , and kF2
a2 are the Fourier coefficients of the

respective expansions.
These energy densities, i.e., per unit length of dislocation,

are written in order to be minimal at α0 = 0 for positive an-
choring constants. They can be simplified again on expanding
them close to the equilibrium anchoring angle α0 = 0:

fa0(α0) = 1
2 ka0 α2

0, (13)

where α0 is expressed in radians. This simple form was used
in Ref. [6]. We try it again for comparison.

C. Torques exerted per unit length of dislocation

The derivatives of these anchoring energy densities yield
the anchoring torques per unit length of dislocation according
to their respective approximation. We can compare them to
the experimental data,

�F1
a = −kF1

a1 sin α0, (14)

�F2
a = −kF2

a1 sin α0 − 2kF2
a2 sin 2α0, (15)

in the first- and second-order Fourier series, respectively. The
first-order expansion around α0 = 0 simply yields

�a0 = −ka0 α0. (16)

Note that in this equation, the angle α0 of the c-director
relative to the dislocation normal S is converted into radians
to facilitate comparisons with the other expressions (14) and
(15). Let us also notice that the anchoring torques, being
restoring torques, are essentially negative. So, for conve-
nience, we show them in Figs. 2 and 3 by means of their
opposites.

Let us finally notice that, as Eq. (10) shows, the electric
torque �E (α0) is regulated by general laws of physics and
is therefore exactly calculable, while on the contrary, the
anchoring torque –�a (α0) directly depends on the MHTAC
molecule and on the chemical interactions that they exert with
one another. We can therefore only know it through empirical
functions of the anchoring angle α0 that we fit on experimen-
tal data; cf. Eqs. (14)–(16). This makes a marked difference
between them.
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FIG. 2. Anchoring torque per unit length of edge dislocation,
–�a, exerted by the c-director on a dislocation line of Burgers vector,
equal to the thickness of one smectic layer, lSm, vs its deviation
angle α0 on the dislocation. –�a is therefore measured in J/m, i.e.,
in N. This dislocation is observed at the interface of a SmCA film
with N = 72 smectic layers and an isotropic puddle [Fig. 1(a)]. The
experimental data are measured in the presence of an electric field
E applied at an angle α∞ = 116◦. The data are calculated exactly
(black crosses) using Eq. (10). The green, blue, and red lines show
the least-squares fits of the linear approximation, and the first- and
second-order Fourier expansions, respectively.

III. DATA ANALYSIS

A. Experimental results

We can now test the above three expressions (14)–(16)
of the anchoring torque versus the c-director angle onto the
dislocation, α0, upon fitting them to the experimental data
of Ref. [6]. They have been obtained by measuring the ori-
entation of the c-director on a dislocation as a function of
an applied electric field, E, the c orientation being deter-
mined by means of the interference fringe observed under a
crossed-polarizers microscope. These angular data allow one
to recalculate exactly the applied electric torques by means
of Eq. (10). In this manner, we avoid the linear approxi-
mations previously used for this calculation. So, the black
crosses in Fig. 2 depict measured anchoring torques against
the c-director angle on an edge dislocation, relative to the
dislocation normal, S. Let us notice, too, that to avoid con-
fusion, the cases that are dictated by the symmetry of the
film structure to anchor in α0 = 0◦ and 180◦ are omitted from
Fig. 2. These points belong to the symmetry plane parallel to
S. The anchoring energy in these places is therefore minimum
or maximum, so that they correspond to stable or unsta-
ble equilibrium, respectively. Being continuous and derivable
functions of the anchoring angle α0, their derivatives, there-
fore, yield anchoring torques of zero value. Their coordinates
are therefore (0,0) and (180◦,0), respectively.

The green line in Fig. 2 shows the best fit of Eq. (16) on
the experimental data. This is the first-order expansion of the
anchoring torque close to α0 = 0, already used in Ref. [6]. As
discussed above, its domain of validity is restricted, so that
the fit is far from being satisfactory. Clearly, it divides the
experimental data in two separate clusters, with an average

(a)

(c) (d)

(b)

FIG. 3. (a), (c), and (d) Schematic routes followed by the oper-
ating point Q along reversible paths, and by its twins, Q′ and Q′′,
along dissipative dual paths, respectively. The diagrams torque, �,
vs anchoring angle on the edge dislocation, α0, displays the electric
(green) and anchoring (red) torques that drive the operating point as
a function of α0. Milestones 0, A, B, C, D, and M mark strategic
stages along the different routes. (a) Sketch of a one-intersection
configuration between the �E (α0) and –�a(α0) lines in the case
α∞ < 130◦. (c) Three-intersection case for 130◦ < α∞. The twin
operating points, Q′ and Q′′, follow the upper green arrow, along
the dual dissipative paths, green and red, respectively (shown for
increasing α0). (d) Zoom by a factor of 3 of diagram (c) in the vicinity
of α∞. (b) Angle α of the c-director relative to S as a function of the
distance x from edge dislocation.

standard deviation of about 2 × 10−14 N. The corresponding
anchoring constant is ka0 = 9.37 × 10−14 N, or J per meter
of dislocation, about twice the value found in the simplified
analysis of Ref. [6], essentially because the calculation of the
experimental torques is now done exactly on dropping the
one-elastic-constant approximation, and on using the relative
elastic anisotropy measured in the SmCA phase of the MHTAC
compound, χ = 0.6 [11].

The best fit of Eq. (14) on these data is depicted by the blue
line (Fig. 2). This is the first-order Fourier expansion. Clearly,
the fit is better than the linear, previous one. However, it shares
again the data in two successive clusters in the figure, and
its standard deviation, though lower, reaches 1.6 × 10−14 N.
The anchoring constant that it yields is equal to the Fourier
coefficient ka1 = kF1

a1 = 11.07 × 10−14 N. Clearly, though a
little bit better, this Fourier expansion suffers by being limited
to one term. This is clearly insufficient. We have to move to a
second-order Fourier expansion.

The red line in Fig. 2 shows such a fit, Eq. (15), on the
same experimental data. With a rather small standard de-
viation δ�a = 0.9 × 10−14 N, this fit clearly gives the best
result, with the interesting property to converge uniformly
over the whole experimental domain. In turn, this form
needs two anchoring coefficients for describing the anchor-
ing properties of the edge dislocation over an unusually
large span of 180◦. These two Fourier coefficients are kF2

a1 =
5.07 × 10−14 N and kF2

a2 = 2.42 × 10−14 N or again J per
dislocation meter, respectively. They are indeed anchoring
parameters that generalize the usual anchoring coefficient. A
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relationship with it can be established in the domain of small
anchoring angles. The second-order Fourier expansion is then
approximated to a first-order expansion, only valid around
α0 = 0. The corresponding anchoring constant is equal to
ka2 = kF2

a1 + 4kF2
a2 = 14.74 × 10−14 N, a larger value, but in

the same range as in the previous first-order evaluations,
ka0 = 9.37 × 10−14 N and ka1 = 11.07 × 10−14 N. In this do-
main of relatively small anchoring angles, up to ∼1 rd, the
standard deviation determined above, δ�a = 0.9 × 10−14 N,
corresponds to an uncertainty in the angular measurements of
about δα0 ∼ 5 deg.

So, the average anchoring coefficient of the c-director on an
edge dislocation line in a SmCA film of MHTAC is found to
be worth about k1D

a ∼ 1.5 × 10−13 N, where we have dropped
the now useless subscript 2. This 1D anchoring coefficient,
when multiplied by the rotation angle of the director α0,
written in radians, yields the torque that is applied per unit
length of dislocation. To compare this value to known 2D
anchoring coefficients, we have to convert this coefficient
for two dimensions. Using the relation k2D

a = k1D
a / lSm, we

deduce the equivalent 2D anchoring coefficient: k2D
a ∼ 5 ×

10−5 J /m2, which is the anchoring constant of a virtual
2D carpet of MHTAC molecules in the exact structure as in
the edge dislocation core. Measurements of anchoring coef-
ficients of nematic liquid crystals were obtained a long time
ago on 2D solid surfaces. For homeotropic anchoring, i.e.,
with the director perpendicular to the surface, Yang et al. find
k2D

a ∼ 4.7 × 10−5 J /m2 [14], and for planar anchoring with
pentyl-cyanobiphenyl (5CB) on SiO treatment, Yokoyama
et al. obtain a similar result, k2D

a ∼ 4 × 10−5 J /m2 [17].
Both results are consistent with the anchoring coefficient that
we measure here on an edge dislocation line of a SmCA

film, though they were obtained with other molecules, in
the nematic phase, and moreover were anchored on solid
surfaces.

B. Total anchoring energy

From these results, we can calculate an order of magni-
tude of the anchoring energy required to reach the domain
of large anchoring angles, where indeed the anchoring can
potentially be broken. We estimate this order of magnitude
from the difference between the minimum and the maximum
anchoring energies for α0 = 0 and α0 = π anchoring angles,
respectively. As we see in Sec. IV B, they correspond to sta-
ble and unstable anchoring states. Their energy difference is

 f F2

a = f F2
a (α0 = π ) − f F2

a (α0 = 0) per unit length of dis-
location. From Eq. (12), we calculate that this energy amounts
about to 
 f F2

a = 2 kF2
a1 ∼ 10−13 N . To appreciate the uncer-

tainty made on this energy estimate, we start from the error
that is done when measuring the torques. This uncertainty
amounts about to δ�a = 0.9 × 10−14 N. It can then be trans-
ferred through Eqs. (15) and (12) to the anchoring coefficient
kF2

a1 and then to the anchoring energies, which leads to δ fa =
0.9 × 10−14 N. This result is indeed valid independently of the
Fourier analysis. We may thus drop the superscript F2 and
simply write an approximate energy that the c-director spends
after half a turn or a full rotation, on an edge dislocation:

 fa ∼ 10−13 ± 10−14 N, the anchoring angle then changing
from α0 = 0 to α0 = π , or to α0 = 2π , respectively.

C. Partial melting of the edge dislocation core

The anchoring torque that an edge dislocation transmits to
the smectic film is the addition of individual torques that come
from MHTAC molecules inside the dislocation core. These
torques themselves arise from energy variations of molecules
in the core as a function of the c angle on the dislocation,
α0 = [S, c]. We may thus anticipate that these torques are
associated with small and progressive changes of molecule
configurations in the edge-dislocation core when increasing
α0 from 0 to π . To simplify the discussion, we restrict our
attention to core slices of thickness equal to the average lateral
spacing between molecules, that is, about 1 nm. The core slice
volume is then worth around 7 nm3. With a molecule mass
of 648 g, and taking into account that liquid crystal phases
generally exhibit densities around 1, we estimate that the
MHTAC molecules in the film occupy an individual average
space of around 1 nm3. The core slices therefore contain about
seven molecules. While comparing both the cases where c is
oriented parallel and antiparallel to S, as shown in Figs. 1(a)
and 1(b), respectively, we may qualitatively understand the
origin of the anchoring energy. Both the molecule organi-
zations indeed differ in the step-edge region, inside the red
circles of Figs. 1(a) and 1(b). The configuration is soft when
the molecules are tilted in such a way as to soften the step
edge; cf. Fig. 1(a). In the opposite case, where the molecules
are mirrored about the yz-plane, perpendicular to the figure,
the configuration is sharp, and the smectic phase enters like
a horn inside the nematic phase; cf. Fig. 1(b). This geometric
anomaly causes the prominent molecules in the smectic step
edge to be swallowed in a nematic environment. This sug-
gests that they should be destabilized and possibly melted at
a microscopic scale. Such a mechanism of local and partial
melting indeed costs an amount of energy that numerical
modelings could help to estimate.

Nevertheless, we may evaluate the energy difference be-
tween the two, soft and sharp, configurations, based on the
hypothesis that the anchoring energy is directly relevant
to partial meltings in the dislocation core. The anchor-
ing energies that exhibit the largest difference are reached
for the two opposite c orientations relative to S, e.g., for
α0 = 0 and α0 = π , respectively. They define the total an-
choring energy that we have estimated in Sec. III B to be
worth around 
 fa ∼ 10−13 ± 10−14 J per dislocation meter,
or equivalently, 
 fa ∼ 10−22 J/nm. At this stage, we may
imagine two extreme molecule distributions in core slices of
around seven molecules. In the first scenario, all the molecules
carry about the same anchoring energy, that is, 
 f mol

a (π ) ∼
1.5 × 10−23 J, or 
 f mol

a (π ) ∼ 2.5 × 10−3 kBT per molecule
in the dislocation core, where kBT ∼ 6 × 10−21 J, kB being the
Boltzmann constant and T ∼ 430 K. In the second scenario,
the core melting evoked above is mainly concentrated on one
molecule, the most prominent one in the edge dislocation cliff,
in the red circle of Fig. 1(b). Then, the anchoring energy
carried by this molecule is about 10−22 J, or 1.5 × 10−2 kBT .
In both scenarios, the anchoring energies, supported by the
most concerned molecules, remain two or three orders of
magnitude below the thermodynamic energy per degree of
freedom, 1/2 kBT . This shows that applying a torque to force
an anchoring angle does not affect its molecular order nor its
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structure enough to destabilize the dislocation, and eventually
to melt it on macroscopic scales. Indeed, we have not observed
such a large-scale melting. Naturally, these two extreme cases
are schematic. The reality should be in between them, exhibit-
ing a statistical melting in the step edge, with both space and
time variations, i.e., with local gradients and intermittences.

To test which case could be the most realistic one, we
can compare their local excess energy to the latent heat of
a nematic–tilted smectic phase transition. A value 
H ∼
0.4 kcal/mol was reported a long time ago for a nematic–
smectic C phase transition in p-n-nonyloxy benzoic acid
(NOBA), which corresponds to 
Hmol ∼ 2.7 × 10−21 J per
molecule, i.e., 
Hmol ∼ 1/2kBT [18]. The NOBA molecule has
a similar length to MHTAC. Moreover, the tilted smectic is
the SmC phase instead of SmCA, but such a difference should
not be decisive, and both the nematic–tilted smectic phase
transitions should exhibit latent heats in the same range. So,
the latent heat of nematic–tilted smectic phase transitions is
much larger than the maximum anchoring energy by two or
three orders of magnitude in any scenario. In the first sce-
nario, where the anchoring energy is equally distributed over
the dislocation core molecules, we thus have 
 f mol

a (π ) ∼
7 × 10−3 
Hmol, and in the second one, where the whole
anchoring energy is condensed on the most exposed molecule
in the step cliff, we have 
 f mol

a (π ) ∼ 5 × 10−2 
Hmol. We
therefore cannot conclude where to place the cursor between
these two extreme scenarios. A numerical modeling could
again be necessary to separate the two possibilities and to see
which one is the most relevant.

IV. DISCUSSION

A. One-intersection case

1. Bell-shaped torque versus anchoring angle

As we immediately see from Fig. 2, the anchoring torque
is not a linear function of the [S, c] angle on the dislocation,
α0. The red line that depicts –�a (α0), the least-squares fit of
the second-order Fourier expansion on the experimental data,
exhibits a maximum in the available range. The coordinates of
this maximum are readily extracted from Eq. (15): −�max

a =
8.7 × 10−14N at αmax

0 ∼ 54◦. From this summit, the anchoring
torque decreases towards zero. The anchoring torque –�a is
null at α0 = 0 and seems to do the same in α0 = π (rd). These
zero values of α0 are indeed consistent with the symmetry of
the film structure about S, as discussed in Sec. III. When no
electric field E is applied, these anchoring angles correspond
to stable and unstable equilibria, respectively.

Indeed, the Fourier analysis provides interesting indica-
tions, but it can also add flaws. Before reaching the last point
at α0 = π , the anchoring torque –�a (α0), given by Eq. (15),
makes an oscillation that is relevant to a Fourier series trunca-
tion at the second order [Fig. 3(a)]. Such a negative oscillation
of amplitude around the order of magnitude of the experimen-
tal error is indeed artificial. All along this oscillation, close
to α0 = π , the anchoring torque seems to become positive,
with a c-director attraction towards the −S direction, which
is opposite to its initial attraction towards S. Such a behavior
has indeed no physical explanation and must be considered
illusory. We therefore mark the dubious track with dots in

Figs. 3(a) and 3(c). Instead, we propose a more realistic be-
havior in the form of a simple and direct extrapolation towards
the point of coordinates (α0 = 180◦, –�a = 0), and depicted
with a red dashed line. Clearly, detailed measurements should
be necessary to ascertain this point. Such additional data could
also allow for the determination of higher-order terms in the
Fourier series expansion, and for a reduction of the amplitude
and period of the parasitic oscillations, until they definitely
vanish into the experimental noise.

2. Linear approximations

Figure 3(a) sketches the torque variations versus the an-
choring angle α0 according to Eq. (15) in the case α∞ ∼ 116◦,
which corresponds to the experimental results of Fig. 2. In
the vicinity of α0 = 0, far from maximum, the anchoring
torque –�a (α0) exhibits linear variations. The calculations can
then be simplified by using the one-elastic-constant approxi-
mation, and by choosing the elastic anisotropy χ = 0 again.
These simplifications are helpful for a better understanding
of particular features in the c anchoring on edge dislocations.
Equations (7) and (10) then become, respectively,

∂α

∂x
= 2

w
sin

(
α∞ − α

2

)
(17)

and

�E = 2
√

PEK
∫ α∞

α0

cos

(
α∞ − α

2

)
dα. (18)

This last equation can easily be integrated to

�E = 4
√

PEK sin

(
α∞ − α0

2

)
. (19)

We naturally restrict the calculations to the cases where
both α0 and α∞ − α0 are significantly smaller than 1 rd. Such
an approximation allows us to express Eqs. (17) and (19),
respectively, as

α − α∞ = (α0 − α∞) exp
(
− x

w

)
(20)

and

�E = 2
√

PEK (α∞ − α0). (21)

Equation (20) is written for the x > 0 region only. The x <

0 part can be deduced by symmetry, or simply by changing x
in |x|.

The variations of the angle α that the c-director makes
relative to S as a function of distance x to the dislocation
are sketched in Fig. 3(b) according to Eq. (20) in the case of
small α∞, i.e., again, for α∞ < 1 rd. This graph illustrates the
role of two characteristic distances in the anchoring problem,
namely the distortion distance and the extrapolation length, w

and L, respectively,

w =
√

K

PE

L = 2K

ka
, (22)

where ka = 1.5 × 10−13 N, cf. Sec. III A. Let us notice that the
anchoring torque of coefficient ka acts on both sides of the dis-
location line, that is, on two half-spaces. The anchoring torque
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that the line transmits to each side of the film and that basically
enters in the extrapolation length expression is therefore one-
half of the total anchoring torque. This ka value allows us to
estimate the extrapolation length L = N × 10−7 m, which is
worth L = 7.2μm in the present experiment where N = 72.
The extrapolation length, though larger than usual, neverthe-
less remains smaller than the wall width, w = √

N × 2.2 μm,
that is, w160 = 14.7μm for a voltage V = 160 V applied on a
72-layer film.

In order not to mix the effect that arises from the film
thickness with the anchoring property of edge dislocations, we
introduce the intrinsic extrapolation length of a one-smectic-
layer-thick film, i.e., where N = 1. The intrinsic extrapolation
length of MHTAC films can then be defined as L1 = L/N =
100 nm. This value compares well with the value L = 125 nm
measured by Yokoyama et al. for pentyl-cyano-biphenyl
(5CB) on obliquely evaporated SiO [17]. Measurements per-
formed on polymer surfaces yield weaker anchorings and
therefore larger extrapolation lengths. So, with rubbed poly-
imide and nylon films, extrapolation lengths are measured to
be 330 nm [19] and 450 nm [20], respectively.

3. Amplification factor

Coming back to the anchoring of a 72-layer film on an
edge dislocation, we see that this special junction leads to an
effective extrapolation length almost two orders of magnitude
larger than in usual nematic anchorings. This indeed means
an extraordinarily weak anchoring that seems able to provide
an amplification of the anchoring effects. However, the actu-
ally measured quantity is indeed the anchoring angle on the
dislocation, α0, instead of the extrapolation length itself, L.

Equations (16) and (20) that are valid for small α∞ values
lead to a simple expression of α0 as a function of α∞, when
combined with the equilibrium relation (8):

α0 = α∞
1 + w

L

. (23)

This equation shows that the key parameter that governs
the c anchoring on a dislocation is the ratio between the
extrapolation and distortion lengths, which is expressed as

L

w
= 2

√
KPE

ka
. (24)

This ratio, extrapolation over distortion lengths, is pro-
portional to

√
KPE ∼ √

EN , which shows that it is easy to
change the anchoring conditions just by acting on the film
thickness, N lSm, or more readily, by changing the modulus of
the electric field, E. Reversing the sign of E is also a third pos-
sibility as this leads to replace α∞ by π–α∞; cf. Sec. IV A 5.
In practice, however, films thicker than N > 500 are not stable
enough to perform correct measurements. We therefore do not
have a real access to this thick-film domain. Equation (24)
indeed indicates that we are practically limited to cases where
the ratio L/w is smaller than 1. So, the anchoring angle on an
edge dislocation increases roughly as

α0 ∼ L

w
∼

√
N . (25)

This N dependence, shown by means of linear approxi-
mations here, evidences a useful amplification factor of α0

that should be valid when both α0 and α∞ are smaller than
1 rd. For larger angles, this amplification factor will only be
approximate.

4. Approximation χ = 0

As Eq. (10) shows, the anchoring angle α0 is a key pa-
rameter that allows us to calculate the applied electric torque
exactly, and to deduce the anchoring torque at equilibrium.
The experimental determination of α0 is consequently deci-
sive, and it has to be performed as accurately as possible.
Equation (10) moreover shows that the electric torque �E that
the smectic film exerts on an edge dislocation is proportional
to the factor F = √

EN I (α∞, α0, χ ), where I (α∞, α0, χ )
stands for the integral in Eq. (10). So all in all, the factor F
evidences that the electric control of the film is determined
by the applied voltage V, by the film thickness, N lSm, and by
the angle, α∞, of the electric field E relative to the disloca-
tion normal S; cf. Sec. IV A 5. With the assumption χ = 0,
it simplifies to I (α∞, α0, χ = 0) = 2 sin( α∞−α0

2 ). Moreover,
the factor F shows that the electric torque functions �E (α0)
are exactly proportional to one another when they are cal-
culated for different voltages, provided that the electric field
angle, α∞, stays the same. We shall make use of this theorem
to draw and discuss Figs. 3(a), 3(c), and 3(d) below.

Numerical calculations of the ratio Rχ =
I (α∞, α0, χ )/I (α∞, α0, χ = 0) show that Rχ stays roughly
stable over a wide range. We thus approximately find that
Rχ ∼ 1.1 ± 0.08 for α0 < 60◦ in the first interval α∞ < 90◦.
Here, ±0.08 stands for Rχ variations as a function of
α0. These variations, therefore, express a distortion of I
(α∞, α0, χ ) relative to the sine function in I (α∞, α0, χ = 0).
Similarly, in the next interval 110◦ < α∞ < 150◦, we
calculate Rχ ∼ 1.07 ± 0.08 for α0 < 120◦, and in the
last interval 150 < α∞ < 180◦, Rχ ∼ 0.97 ± 0.08 for
α0 < 120◦. So, Rχ exhibits average values that slightly
vary around 1 according to the α∞ choice. These slight
variations only change the overall proportionality factor F
that enters in the electric torque expression, �E (α0), without
producing distortions in �E (α0). However, small distortions
superimpose because of the fluctuations that appear when
calculating different Rχ as a function of α0 for the same
α∞ value. They are on the order of 8%. So, for qualitative
analyses, we may indeed approximate the proportionality
factor F with the relation F ∼ 2

√
EN sin( α∞−α0

2 ). This
comes to express the electric torque �E (α0) by means of
Eq. (19) instead of Eq. (10), with, however, a supplementary
multiplicative term between 0.95 and 1.10 according to the
value of α∞.

5. Three experimental parameters

Practically, the film thickness is determined at the begin-
ning of the experiment when preparing an induced smectic
film on an isotropic MHTAC puddle. The last parameter α∞
is fixed when selecting the dislocation line to be studied on
the film, and when choosing the sign of the voltage that we
apply on the electrodes. Changing the voltage sign comes to
subtract π from α∞. If we then apply a symmetry around
the dislocation normal, S, which is equivalent to changing the
sign of the angles, the initial α∞ angle becomes π−α∞. So,
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provided that we use voltage sign changes, we can adjust α∞
to a large span of values inside the [0, π ] range. These three
parameters—the applied voltage V, N, and α∞—thus yield
the useful experimental means to choose the torque �E (α0)
to apply on a dislocation, cf. Sec. IV A 4, and therefore for
measuring the anchoring properties of the c-director on it. In
particular, when we increase E from 0 to large values, α0 goes
from 0 to α∞. Naturally, when α0 gets close to α∞, we need
to increase E some more to compensate for the consecutive
decrease of the α∞ − α0 difference. Moreover, the whole pro-
cess takes time. We then need some luck for the dislocation to
remain steady enough in the microscope field, and therefore
for the layer number N to remain constant, too.

6. Reversibility

At this stage, we may observe two different situations. In
the simplest one, the two lines that represent the torques �E

(α0) and –�a (α0) exhibit only one intersection at a point Q
in the range [0, α∞]; cf. Fig. 3(a). Q is indeed the operating
point that represents the c-director anchoring on the edge
dislocation. When we increase the applied voltage and thus
the electric field E, the factor F increases monotonically, too,
from 0 to infinity; cf. Sec. IV A 4. Meanwhile, the electric
torque �E (α0) increases, as also the abscissa of point Q,
α0, that gradually goes from α0 = 0 until reaching α∞ for
infinite E. Then, Q moves from 0 to M. However, because
of viscosity, the process could take a long time. So practically,
we increase the voltage by steps of a few volts, waiting one
or two minutes for a new equilibrium. Such a one-intersection
behavior obviously obeys a linear regime in the interval 0 <

α0 < 45◦. For larger α0 values, the two functions �E (α0)
and –�a (α0) begin to exhibit curvatures, but fortunately the
�E (α0) curvature is weak, so that both functions continue to
exhibit only one intersection, provided that α∞ < 130◦. These
features are indeed consistent with the experimental results
analyzed in Fig. 2, where we have α∞ = 116◦.

We then decrease E from infinity back to 0 while pro-
ceeding in steps and waiting each time for equilibrium, as
when increasing E from 0 on the forward path. Thus, while
decreasing α0 from α∞ to 0, the operating point Q goes back
to 0 from M on the same path [0,M] but by going in the
opposite direction. A complete back and forth process along
a single track is thus observed in the cases where α∞ < 130◦,
provided that we go reversibly, by waiting long enough for
quasiequilibrium after each step. We can also verify under
a polarizing microscope that the interference fringe remains
fluid and able to move reversibly inside the entire angular
domain, which indeed indicates that Q has not yet reached
any broken anchoring state.

B. Irreversible process in a 2D liquid

Naturally, linear approximations of both the torques are not
correct far from α0 = 0, and Eqs. (16) and (21) cannot be used
anymore. Numerical calculations should then be undertaken
to catch the exact values of the electric and anchoring torques,
�E (α0) and –�a (α0), in particular in the three-intersection
case, i.e., in the domain 130◦ < α∞. Nevertheless, we can
discuss some anchoring properties in the domain 130◦ < α∞
by means of the anchoring torque data –�a (α0) that were

already obtained in the α∞ < 130◦ domain, since they indeed
are intrinsic and independent of the α∞ value. Moreover,
exact calculations may be avoided when we just intend to
understand the manner in which these lines move relative to
each other, in particular, when we are interested in the tran-
sition between the two configurations where the electric and
anchoring torque functions intersect in one and three places,
respectively; cf. Sec. IV A 4. At this transition, the lines are
just tangent to each other.

1. Three-intersection case

So, let us consider the domain 130◦ < α∞. We begin with
F = 0 and we gradually increase this parameter by small
voltage steps. Thus, �E (α0) increases proportionally and its
movement shifts the abscissa of its intersection with –�a (α0)
(red arrows) towards larger values. Finally, α0 passes over
the bell summit around αmax

0 ∼ 54◦, until both lines �E (α0)
and –�a (α0) get tangent to each other in point B, a little bit
farther than the maximum; cf. Fig. 3(c). Then, the voltage is
worth about V = 160 V and E = 8 × 104 V m−1. Naturally,
at this milestone point, the electric and the anchoring torques
�E and –�a are equal, so that if we increase E again, the two
lines separate from each other. The equilibrium is then broken,
and �E , being larger than –�a, definitely drives the c-director
to get almost parallel to E, and consequently α0 becomes
closer to α∞ (green arrow). At the same time, because �E

(α0) and –�a (α0) are different, the operating point Q splits
in twin operating points Q′ and Q′′ of common abscissa α0

that freely travel along their green and red lines, respectively.
The movement stops when the operating point Q finds a new
equilibrium in a new milestone point, C, at the intersection
between the lines �E (α0) and –�a (α0). This milestone C
marks the end of the free out-of-equilibrium travel of both
Q′ and Q′′ along the dual path BC. This travel is performed
freely, i.e., at a constant voltage close to 160 V, without need-
ing successive voltage steps with intermediate equilibrium
stages. Thus, the anchoring evolves in an out-of-equilibrium
and irreversible manner. Moreover, the Q separation in twin
operating points Q′ and Q′′ of common abscissa α0 evidences
that the electric and anchoring torques are unequal now, and
that their difference corresponds to a viscous torque, as de-
tailed in Sec. IV B 2. The viscous torque hinders the c-rotation
and dissipates its energy over the 3D volume of the film in w

wide ribbons along both sides of the dislocation, for a total
width of 2w. Typical values of w are in the range ∼10–20μm
depending on voltage. This dissipated energy can be measured
from the area between the red and green BC paths that the
�E (α0) and –�a (α0) torques follow, respectively. The dissi-
pated energy that Q spends along its BC paths measures the
degree of irreversibility of its movement.

Irreversible processes in physics are generally considered
to be specific to solids. As we can see here, this is not always
the case. Moreover, our system, when restricted to the plane of
the smectic layers, may be considered a perfect 2D liquid, pro-
vided that the film is free of defects except for the dislocation
on which we measure the c-director anchoring. Nevertheless,
it is not an ordinary liquid, but a liquid crystal, with therefore
some solidlike properties; see below. Being made of a tilted
smectic phase, the film carries an orientational order which
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indeed explains the existence of dissipation and irreversible
processes. Interestingly too, this orientational order allows
one to realize a rotating two-state lock that jumps from a
low- or middle-range α0 angle, between 0 and B, to a large
α0 angle, close to α∞, between C and D, respectively; see
Sec. IV C 3. The command of the lock is provided by the
electric field, which is able to move it from one anchoring
state to the other.

2. Dissipation work

Let us now detail some irreversible properties that are
initiated from point B on the way to point C. For this purpose,
qualitative handmade graphs such as Figs. 3(c) and 3(d) are
helpful. Belonging to the three-intersection cases, α∞ is larger
than 130◦, rather close to π , and kept constant during the
whole film measurements. While progressively increasing α0

from 0, i.e., by increasing the electric field E, the electric and
anchoring torques �E (α0) and –�a (α0) remain equal to each
other, at equilibrium, before reaching point B. At this point,
as mentioned above, the voltage is approximately equal to
160 V. Slightly increasing the voltage again causes the lines
�E (α0) and –�a(α0) to separate. This means that the sum
�E (α0) + �a(α0) is no longer zero, and that the equilibrium
is broken. As a result, the operating point Q exceptionally
divides into twin points Q′ and Q′′ of common abscissa α0,
as mentioned in the previous section. They follow electric and
anchoring paths, green and red, respectively, so that Eq. (8)
becomes

�E + �a = �visc =
∫

film
�local

visc dV, (26)

where �local
visc = γ1

∂α
∂t N lSm stands for the local viscous torque

that hinders the azimuthal rotations of the c-director around
the z-axis. Their viscosity coefficient is indeed different from
the viscosity coefficient related to tilt fluctuations. Integrating
Eq. (26) over the film volume yields the viscous, or dissipa-
tive, torque �visc that the edge dislocation receives from the
smectic film per unit length:

�visc = 2
∫ ∞

0
γ1 N lSm

∂α

∂t
dx, (27)

the factor of 2 standing for the two parts of the film on both
sides of the dislocation. The voltage being kept constant after
point B, we deduce ∂α

∂t = ∂α0(t )
∂t exp(− x

w160
) from Eq. (20), and

we estimate

�visc(α0) = 2γ1 N lSm

∫ ∞

0

∂α0

∂t
exp

(
− x

w160

)
dx

= Y160
∂α0

∂t
, (28)

with

Y160 = 2γ1N lSm w160. (29)

The second member of Eq. (26) is the viscous torque,
which can be expressed in a shorter form, Eqs. (28) and
(29), where w160 = 14.7μm is the wall width for a voltage
V = 160 V. To complete the calculation of the dissipation
work, we need to recall estimates of the rotational viscosity
γ1 in different tilted smectics. Indeed, this coefficient

has been determined in a SmC liquid crystal, di-(4-n-
decyloxybenzal)-2-chloro-l-4-phenylene diamine (DOBCP),
which yields γ1 ∼ 0.06 Pa s, a probably overestimated
value as the measurement has been performed about
10 ◦C below the smectic-C to nematic transition, while
we need viscosity values close to the isotropic phase [21].
Other values have been reported on different compounds.
They yield γ1 ∼ 0.02 Pa s in di-n-heptyloxyazoxybenzene
(DHAB) [22]. Somewhat smaller values
are obtained, γ1 ∼ 0.004 Pa s in p-n-decyloxybenzylidene-
p′-amino-2-methyl-butyl-cinnamate (DOBAMBC) and
γ1 ∼ 0.006 Pa s in p-decyloxibenzilidene-p′-amino-1-
methylpropyl-cinnamate (DOBA1MPC) [23], and in
compounds that belong to the [2S,3S]-4-(2-chloro-4-
methylpentanoy1oxy)phenyl trans-4′′-n-alkoxy cinnamate
series [24]. These last measurements show that γ1 increases
for molecules with short alkyl chains. With our MHTAC
molecule exhibiting a somewhat shorter aliphatic tail than
the molecules in the above references, we may anticipate an
average rotational viscosity of γ1 ∼ 0.01 Pa s. Nevertheless,
as evidenced from Ref. [23], changes in the chemical structure
of the molecules have larger effects on the viscosity than the
length of alkyl chains. This value of γ1 ∼ 0.01 Pa s should
therefore be understood as a rough estimate of the viscosity,
with perhaps an uncertainty factor of 1.5–2. Nevertheless,
without any measurement of the MHTAC viscosity, we keep
this value to estimate Y160 ∼ 10−13 J, and to evaluate the
dissipation work that the operating point Q spends when
traveling along a δα0 viscous path under an applied voltage
of 160 V, with the expression

δW (α0) = �visc(α0)δα0 = Y160
(δα0)2

δt
. (30)

3. Travel time along a reversible path

Along the branch 0AB, the interference fringe that is ob-
served under the polarizing microscope exhibits easy fluidity
and free reversibility when the film is submitted to voltage
variations. Indeed, its response appears to be immediate in
one direction or the opposite one, according to the sign of the
E variations. However, this observation needs to be detailed
further. Indeed, Eq. (30) may be used to tentatively estimate
the time that the operating point Q needs to travel, for in-
stance, from 0 to A. This time can be expressed in terms of
the viscous torque δ�(α0) = �E (α0) + �a(α0) by means of
the integration of Eq. (30):

τ0A ∼ Y160

∫ αA

0

dα0

δ�(α0)
. (31)

If the path 0A is followed reversibly, i.e., while respecting
an almost permanent equilibrium throughout, negligible dis-
sipation should occur. The denominator of the fraction should
then be close to zero, but then Eq. (31) diverges, which is
physically unacceptable, as the Q trip from 0 to A would take
an infinite time. In fact, the sum of the torques applied on
the dislocation, δ�, cannot be exactly zero. Experimentally,
we are only able to keep δ� within the torque error bar
observed in the measurements, an error bar that incidentally
corresponds to about six times the thickness of the red or green
lines in Fig. 3(c). Therefore, the condition on the viscous
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torque δ� = �E (α0) + �a(α0) � 0.9 × 10−14 N is necessary
but also sufficient, as it is experimentally equivalent to the
zero condition. So, the operating point Q that moves along the
reversible path 0AB is supposed to be in quasiequilibrium as
long as Q stays within the resolution limit. This experimental
point of view has two direct advantages: first, the divergence
has formally disappeared, and second, the running time of
Q along the 0AB path is now experimentally acceptable. To
estimate this travel time, we need to detail the manner in
which we tune the electric field E.

Practically, it is difficult to increase E while keeping the
viscous torque δ� continuously inside the error limit. So, we
proceed in an easier manner, already described in Sec. IV A 6.
We regularly increase the voltage along the reversible paths,
similar to the path from 0 to A, by steps of about 3–5 V
followed by an equilibrium time. As Fig. 3(c) shows, this path
0A belongs to an α0 range where –�a (α0) can be replaced
by linear approximations; cf. Sec. IV A 2. The electric torque
�E (α0) behaves differently, and exhibits quasi-sine and ex-
act quadratic variations relative to α0 and to E, respectively;
cf. Sec. IV A 4. Practically, the electric torque function can
be reduced to the relation �E ∼ √

E . This indicates that the
�E (α0) variations in point A are similar to the �E (α0) vari-
ations in point B, with a proportionality reduction of ∼50%;
cf. Fig. 3(c). So conversely, the voltage in A corresponds to
the voltage in B with a reduction factor of 4. Point B being
close to the bell summit, its voltage is worth about V = 160 V,
and therefore the voltage in A is about equal to 40 V. We can
now calibrate the torque step value to respect the reversibility
condition along path 0A. As discussed above, the δ�E steps
should stay below the error bar δ� ∼ 0.9 × 10−14 N, which
roughly corresponds to δα0 ∼ 0.08 rd or 5 degrees when con-
verted along the linear 0A path. This angular error bar then
extends to the whole angular range, as the uncertainties of
measurements are indeed the same over the whole angular
range. From this error bar, we can deduce the size of the
V steps by using the derivative of the expression �E ∼ √

E .
Because of their quadratic variations, the V steps depend on
the location of point Q in Fig. 3(c). They are

δV = 2 × V
δ�E

�E
. (32)

In the vicinity of point A, they should be smaller than
δV ∼ 7 V. In practice, we take δV ∼ 5 V, but possibly with
shortened waiting times for equilibrium. With these figures,
Eq. (31) yields an average time per step 
τ ∼ 10 s, which
leads to a total time τ0A ∼ 1.5 mn for the 0A path, a practical
evaluation that is consistent with the experimental observa-
tions. Let us also notice that this estimate justifies a posteriori
a measurement process that indeed uses gliding steps. Exper-
imentally, such a process consists in anticipating the moment
to make the next step, since we cannot really observe the inter-
ference fringe stabilization as soon as its center displacement
falls below the angular resolution, δα0 ∼ 5 degrees.

In summary, the more we comply with a careful equilib-
rium along a reversible path, the longer it takes. Such an
assertion indeed seems evident. Nevertheless, as shown above,
the experimental reversibility condition is not very demanding
as we can choose a process implying successive and not too
small steps, each one with an amplitude staying inside the

error bars. According to the above estimates, the travel time
over the whole 0B path should thus take about 3 mn, again
consistent with the observations.

4. Dissipative path

When the operating point Q passes milestone B while
increasing α0, indeed Q splits into twin points Q′ and Q′′
that travel along the green and red lines, respectively; cf.
Sec. IV B 1. At this moment, �E (α0) becomes larger than
−�a (α0). The viscous torque δ� = �E + �a is then positive
and drives α0 towards C. Because the viscosity is involved in
the process, cf. Eq. (26), the path BC is now dissipative and
irreversible. In principle, Q should not need any more help
to spontaneously move towards C. However, at the beginning
of the path starting from B, the viscous torque δ� is small
and remains below the error bar until reaching the abscissa
α0(B+) = α0(B) + δα0, where δα0 ∼ 5 degrees. There, point
B+ is already broken up into twin points B+′ and B+′′
that are located close to the middle of paths BQ′ and BQ′′,
respectively [Fig. 3(c)]. However, as along the reversible path
0B, the viscous torque is again insufficient to push Q towards
B+ in a reasonable time. We thus have to increase the voltage
again by successive steps as we did along path 0B. As shown
in Sec. IV B 3, each step should last about 
τ ∼ 10 s.

Indeed, points B and C mark the beginning and end of
the anchoring breaking process, respectively; see details in
Sec. IV C.

5. Free flight of a few seconds

From B+ towards C, the viscous torque is larger than δ�,
so it is no longer necessary to increase the voltage to push
the operating point Q towards C. However, in the vicinity of
C, the problem is somehow similar to the one encountered
close to B. After the abscissa α0(C−) = α0(C)–δα0 of both
the points C−′ and C−′′, the operating point Q enters a small
viscous torque domain where it is necessary again to push Q
by increasing the voltage. So, Q freely moves between these
two limits, α0 (B+) and α0 (C−). We can then estimate an
upper bound for the free flight time between B+ and C−.
The relation δ�(α0) > 0.9 × 10−14 N being satisfied all along
the trip between B+ and C−, we deduce from Eq. (31) that
the flight time from B+ to C− obeys the inequality τBC <

Y160
∫ C

B
dα0

0.9×10−14 , where the + and − signs have been dropped
for simplicity. We thus deduce that τBC < 10 s, a short time of
flight that contrasts with the longer times that were necessary
along the previous, reversible paths. In addition, we can antic-
ipate that the actual time to run from B+ to C− should indeed
be shorter by a factor of about 2, i.e., τBC ∼ 5 s, as δ� is
clearly larger everywhere than its minimum of 0.9 × 10−14 N
that we use for this estimate. This short time is somehow the
signature of the irreversible process that is initiated in point
B. Such a feature is just opposite to the behavior observed
in infinitely slow reversible processes. This time estimate is
also consistent with the surprisingly fast displacement of the
interference fringe that we have observed at this moment
under the microscope, in clear contrast with the inertia that
the fringe demonstrates along path 0B.
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6. Difficult access to milestone C

However, an important difference exists between mile-
stones B and C. Passing point B is easy. We just have to push
the operating point Q by means of weak voltage steps, of
δV ∼ 5 V. From Fig. 3(d), which depicts a part of Fig. 3(c)
zoomed by a factor of about 3, we can estimate that the
torque uncertainty is worth about δ� ∼ �(C). From Eq. (32),
and recalling that the voltage at points B and C is about
160 V, we deduce that we need voltage steps of amplitude
δV = 2 × V × δ�/�(C) ∼ 2 × 160 = 320 V to push point Q
forward in order to pass milestone C. Indeed, we may need to
apply up to our maximum voltage of 500 V, and even more
if a first step is insufficient. As discussed in Sec. IV D, films
induced on isotropic puddles become too unstable to allow
us to perform correct measurements in the range 130◦ < α∞.
Essentially, large electric fields favor the nucleation of high
Burgers vector dislocations that may suddenly invade the
whole film, causing the film thickness to increase to unknown
numbers of layers. For this reason, we could only make quick
observations around the passage of milestone C. Additionally,
reproducing the observation needed to relaunch point Q from
B again, but with point C working as a valve, see Sec. IV C 2,
required Q to pass through point A again. Clearly, such a
complication takes a long time with a serious risk of final film
destabilization.

C. Breaking of the anchoring

For the operating point Q to effectively pass C, which we
observed only a few times, we had to increase the factor F to
its maximum available value by applying our highest voltage
of 500 V. �E (α0) then tends to become a steep line; cf.
Fig. 3(d). This line, though not perfectly vertical, intersects
–�a (α0) at the abscissa α∞, slightly past the terminal mile-
stone M.

1. Complete breaking of the anchoring

After point Q passes through milestone B, the anchoring
is broken. Point Q then goes through milestone C before
finally arriving close to milestone M. During this process, the
c-director on the dislocation becomes almost aligned along
the electric field E, with the anchoring angle α0 becoming
about equal to α∞. This demonstrates that the dislocation
now has a negligible effect on c. This decoupling between c
and S confirms, if necessary, that the dislocation anchoring
is broken. Moreover, α∞ being the maximum abscissa that
α0 can reach, M is also a border marker for the operating
point Q in the –�a (α0) graph. It is worth noting that the
milestones A, B, C, D, and M are indeed functions of α∞.
This is clear for M [Fig. 3(d)], but also for A, B, C, and D,
since α∞ enters as a parameter in the definition of �E (α0), cf.
Eq. (10), and since this function determines the contact points
B and D on the –�a (α0) line. Points C and A then indirectly
result from this construction and are therefore also functions
of α∞. Experimentally, points B and C are carried by the same
�E (α0) line, at a voltage approximately equal to 160 V, i.e.,
for about E = 8 × 104 V m−1.

2. Difficult return path

We now decrease V backward from the maximum volt-
age that we previously reached, causing the factor F and
the �E (α0) line to decrease proportionally to each other; cf.
Sec. IV A 4. The anchoring torque then dominates and drives
the c-director towards S. Consequently, the operating point Q
leaves the vicinity of M and returns towards C, following the
same path as on the way from C to M, but in the reverse
direction (red arrow). When point Q returns to point C, the
�E (α0) line is again tangent at B to the –�a (α0) line as
it was on the forward journey, which means that a further
slight decrease in F causes the two lines to intersect at three
points, resulting in a three-intersection configuration. How-
ever, this event does not produce any change for point Q, as
the equilibrium between torques �E and –�a remains stable at
C. The c-director and its operating point Q therefore cannot
jump back towards B. In some sense, point C works like a
valve that prevents the direct way back to B. Decreasing F
again from C causes the operating point Q to glide, always
at quasiequilibrium, along the path towards D, that is, along
the –�a (α0) line (red arrow again), possibly by means of
decreasing voltage steps. Both torques �E (α0) and –�a (α0)
remain equal to each other, within the torque uncertainty δ�,
until the �E (α0) and –�a (α0) lines become tangent to each
other at point D. The configuration is then quite similar to the
one encountered when first reaching point B in the forward
way. So, with the operating point Q now at D, we decrease
voltage and F again towards 0. The two lines separate, which
means that Q splits into two points, Q′ and Q′′, that move
towards A along the green and red lines, respectively. Along
this DA path, the viscous torque �E (α0) + �a(α0) is negative
and drives Q back towards A. Clearly, points D and A are
analogous to points B and C, respectively, with the arc DA
being equivalent to BC. Points Q′ and Q′′ move along both
these paths in the same irreversible and out-of-equilibrium
manner as on the forward path. Both points D and A belong to
the same line �E (α0) of voltage equal to about 40 V, i.e., for
approximately E = 2 × 104 V m−1, similarly to the manner
points B and C were previously carried on the same line
�E (α0) with an approximate voltage of 160 V. The free flight
time along DA may thus be estimated using the same method
as along the arc BC, cf. Sec. IV B 5, with w40 = 2w160 and
Y40 = 2Y160 now. If such a return journey is really possible,
we may anticipate a flight time along DA that is about twice
as long as on the forward way, i.e., about 10 s.

However, as mentioned in Sec. IV B 6, we observed in
some cases on the forward path that the operating point Q
could not pass through milestone C, because too high V-steps
would have been necessary, possibly exceeding our maximum
voltage of 500 V. On the way back, we need to apply voltages
decreasing by steps of the order of δ�, which indeed are
equivalent to negative voltage steps. However, according to
the estimate of Sec. IV B 6, we have δ� ∼ � in the vicinity of
C, which means that applying a negative δ� step may result
in an electric torque �E (α0) of about zero. Consequently,
both V and F are zero or so. In this case, the operating point
Q would be directly driven to point 0, missing the target of
point A. However, this situation would not be too bad, since
a worse configuration could occur if applying a zero voltage
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were insufficient to move Q towards the arc 0A. This means
that when the anchoring is broken, with Q being at C or close
to C, applying a null voltage may not be able to restore Q to
its original state, close to 0.

In this case, using relatively large, negative voltage steps as
suggested above could result in applying a total negative volt-
age to the film. Such a negative voltage amounts to changing
α∞ by αNew

∞ = π−αOld
∞ , which replaces Fig. 3(c) by Fig. 3(a).

The difficulty is then solved. The operating point Q quickly
connects to arc 0A somewhere between 0 and the new border
milestone M at the abscissa αNew

∞ . This completely restores
the anchoring to its initial state. To come back exactly to the
initial configuration, we just need to decrease the voltage to
zero, and then to reverse again the voltage sign back to the
original sign. The initial α∞ is thus recovered, and we can
restart a new hysteresis loop, identical to the first one.

3. Broken anchoring and hysteresis loop

The three-intersection configuration between the �E (α0)
and –�a (α0) lines provides the opportunity to observe a
hysteresis loop when following, as a whole, the paths that the
operating point Q describes in the torque-anchoring angle di-
agram of Fig. 3(c). This loop consists of four branches that are
alternately reversible (AB and CD) and irreversible (BC and
DA), or equivalently, at equilibrium and out-of-equilibrium,
respectively. Point Q follows the reversible AB and CD paths
continuously, being pushed by successive small δ�E steps
of an error bar size, when necessary. Conversely, Q needs a
discontinuity to split into twin operating points Q′ and Q′′ at
a common abscissa α0, and to freely jump, being driven by
a constant applied electric field E, along the irreversible and
dissipative dual lines, �E (α0) and –�a (α0), respectively. This
discontinuity has a fortuitous and indeed indirect origin, as it
is produced by the detachment of both the –�a (α0) and �E

(α0) lines from each other, during their relative motion. The
–�a (α0) line is fixed, while the �E (α0) line moves, primarily
controlled by the variations in F or E; cf. Sec. IV A 4. Es-
sentially, their respective shapes do not belong to the same
physics. It is worth noting that such a discontinuity in the
path that point Q follows cannot occur when the –�a (α0)
and �E (α0) lines exhibit only one intersection, since then no
discontinuity may arise to break the anchoring.

Though points C and A are indeed places where the operat-
ing point Q can land after its flight from B and D, reciprocally,
point Q cannot take off back from these points C and A,
because no discontinuity exists there to force Q to jump back
towards B and D, as it was on the forward path. This particular
property shows that points C and A indeed work as switches
or valves that prevent point Q from going back to B or to D,
once running along the reversible paths CM or A0, respec-
tively; cf. Sec. IV C 2. Consequently, the operating point Q
cannot describe the ABCDA loop in the reverse way.

So, as discussed in Sec. IV B 1, the energy that is dissipated
along a path may be estimated from the area that is bounded
by the lines �E (α0) and –�a (α0). When this area is null,
the path produces no dissipation and is reversible. Such a
property is observed along paths 0AB and MCD exclusively.
In the first one, 0AB, α0 and E have low values, which means
that the anchoring is not broken. In the other path, MCD,

the anchoring angle α0 is close to α∞. In this second state,
the c-director on the dislocation is almost aligned along the
electric field E, meaning that the anchoring is broken. These
two states, nonbroken and broken anchorings, lie on different
reversible paths that are connected together by means of dis-
sipative paths BC and DA. Together with paths AB and CD,
they form a loop. Because of dissipation, the paths are traveled
in the B to C and D to A directions only, in an irreversible
process. As mentioned earlier, these one-way jumps work as
valves that build up an oriented loop, i.e., a hysteresis cycle.

However, this hysteresis loop in the torque-anchoring angle
diagram cannot be confused with ferromagnetic or ferroelec-
tric hysteresis loops, for several reasons. First, there is an
apparent difference in the rotation sense along the torque-
anchoring loop, which is observed to be clockwise according
to the arrows in Fig. 3(c), instead of being anticlockwise in
the ferromagnetic or ferroelectric hysteresis loops. The reason
for this is that the diagram should be drawn with effect-cause
axes, that is, with anchoring angle-torque axes. This leads
to exchanging the axes of the diagram, which immediately
brings back an anticlockwise rotation. However, there are also
real differences. Torque-anchoring angle loops are built here
with lines of essentially two distinct types, which are suc-
cessively reversible and nondissipative, and then irreversible
and dissipative. This is different in the ferromagnetic or ferro-
electric cases as the nature of the lines continuously changes.
Other differences may also be noticed. The hysteresis loop in
our case is unique. It joins the ABCD milestones for each α∞
parameter, provided that α∞ exceeds 130◦. Moreover, when
α∞ is changed, the reversible and nondissipative lines, AB and
CD, remain fixed and never move, while the irreversible and
dissipative lines (more precisely, their electric paths, shown
as green lines) change according to the values of F and E.
Consequently, the milestones that connect them slightly glide
along the reversible (red) lines only. Conversely, the hysteresis
loops that are observed in ferromagnetism or ferroelectricity
are built with one kind of line only. Moreover, when increas-
ing the magnetic or electric field, the different loops appear to
be nested inside each other, like “Russian dolls.”

4. Additional remarks

An indirect consequence of the breaking of the anchoring,
which is marked by a jump in the anchoring angle, is that
α0 cannot continuously cover the entire range of available
angles [0, π ] for any single choice of α∞. To fill in the
gap [αB, αD], another α∞ value should be chosen close to
αD, possibly by changing the voltage sign; cf. Sec. IV A 3.
Thus, the anchoring angles α0 on edge dislocations belong
to at least three types of domains: one domain [0, α∞] is
covered in the one-intersection regime for α∞ < 130◦, and
two other domains [0, αB] and [αD, α∞] are obtained in the
three-intersection case, i.e., for 130◦ < α∞. However, these
domains may not be sufficient. Other domains [0, α∞] should
then be used to cover the entire [0, π ] domain.

It is finally worth noting that the reversibility and irre-
versibility properties that are discussed here should not be
confused with the reversible ability of smectic films to quickly
heal up after being submitted to perturbations. Therefore,
a short time after less than a complete hysteresis cycle is
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completed, the film returns to its initial state. Being a liquid
without any defect other than the studied edge dislocation line,
the film does not wear out, although it may exhibit irreversible
behaviors like solids. However, in our smectic films, which are
free of contacts with solids or defects, the irreversibilities are
only elusive. Typically, when gradually decreasing E, and thus
decreasing α0 too, while keeping α∞ constant, we observe
that the black interference fringe that had initially disappeared
inside the dislocation line, when α0 was large and close to
α∞, reappears after a significant decrease of α0. Therefore,
provided that a sufficient part of the hysteresis cycle is run,
the film completely restores itself to its original state, and is
perfectly suitable for another use again.

D. Spring scale

Let us return to the setup and examine the method for
measuring the anchoring strength. There are two stages. First,
the film functions as a microscale, able to measure small
torques produced by a single line of molecules, even though
we are more accustomed to dealing with anchoring torques
from molecules spread over surfaces. So, we apply an electric
torque on the film surface area, limited to w-wide ribbons
along each dislocation side; cf. Sec. IV A 2. The resulting
distortion produces an elastic torque inside the film that is
balanced by the anchoring torque along an edge dislocation
line. In this way, the film functions like the spring of a spring
scale, providing a direct stress reference based on its own
elastic constant K = N × 7.5 × 10−21 J. More precisely, it al-
lows us to determine the anchoring angle of the c-director on
the dislocation, α0, with a noteworthy amplification factor of√

N , Eq. (25). By means of Eq. (10), we can then calculate
the anchoring torque –�a (α0) that the dislocation exerts on
the film at equilibrium, as a function of α0. To estimate the
error made on the anchoring constant ka, we may linearize the
calculation, which is indeed valid in the small anchoring angle
domain of Fig. 2. So, for instance, in the range α∞ ∼ 1 rd,
the anchoring torque behaves linearly ∼kaα0. The error that is
committed on the anchoring constant ka is then given by the
relation δka/ka = –α0/α0.

In a next stage, we measure α0 optically. The film is not
only a calibrated spring that weighs the torques applied onto
edge dislocations, it also functions as a display for reading
the distortion strength. To evaluate the uncertainty we commit
when pointing to α0, we consider the intensity of a fringe
obtained from the interference between two light waves per-
pendicular to a smectic film and that is observed between
crossed polarizers, e.g., oriented along the x and y axes. The
total phase shift between these waves is ϕ = Nϕ1, where the
phase shift per layer is ϕ1 = 2π

λ

n lSm ∼ 6 × 10−3 rd. In this

expression, λ is the average visible light wave, and 
n lSm =
0.5 × 10−9 m is the path difference per smectic layer. We then
rotate both the polarizers by −α0. This rotation shifts the
black fringe onto the dislocation, so that in its vicinity, the
interference light intensity becomes

I ∼ α2 ϕ2. (33)

More precisely, in the region where x > 0, and for x < w,
Eq. (20) shows that α(x) � (α∞ − α0) x

w
. The x < 0 part can

then be deduced by symmetry, or simply by replacing x with

|x|. Dropping constant terms, the interference intensity re-
duces at the lowest order to

I ∼ x2 ϕ2. (34)

We reach the uncertainty limits of the fringe location when
the light intensity I begins to exceed the minimum observable
light intensity. Then, α gives δα0. We can thus evaluate the un-
certainty that arises from the optical pointing to be δα0 ∼ 1

Nϕ1
.

Clearly, increasing the film thickness improves the quality of
the optical measurements proportionally, just as increasing
the total phase shift improves the interference quality and its
reading. In fact, the dominant uncertainty in this experiment
seems to originate from the optical detection of the fringe
center. It could then be fruitful to use films as thick as possible,
but as compensation, their stability could be shortened as
well. We could also record the light intensity along the x-axis,
perpendicular to the dislocation, and fit Eq. (34) on the data.
This process could effectively reduce the δα0 uncertainty in
the α0 measurements. However, this improved process could
again take too much time for measuring thick films before they
become destabilized.

Using the amplification factor, α0 ∼ √
N , on our α0 mea-

surements, cf. Eq. (25), and dropping the signs, we deduce the
relative error we make in measuring the anchoring constant ka

to be

δka/ka = δα0/α0 ∼ 1

N
√

N
. (35)

This estimate shows that the free SmCA film directly pro-
vides an improvement factor on the anchoring measurement
that is proportional to N3/2 ∼ 600 for N = 72 here. It is worth
noting that this improvement factor, which is more than two
orders of magnitude, is basically due to the mechanical cou-
pling of a one-layer dislocation to an N-layer-thick SmCA film.
Thanks to this improvement factor, the experimental error bar
is reduced to δα0 ∼ 5◦, and to δα0/α0 ∼ 15–20% in relative
values; cf. Sec. III. This allows us to deduce an experimental
uncertainty δka ∼ 2.5 × 10−14 N on the measured anchoring
constant ka ∼ 1.5 × 10−13 N. On the other hand, this result
also suggests that for films thinner than ∼72 × 52/3 ∼ 25
layers, the uncertainty should be larger than the measurement
itself, making it impossible to perform the measurement.

V. CONCLUSIONS

The anchoring properties of the smectic c-director on a 1D
edge dislocation, that are analyzed here, extend the widely
studied case of the nematic anchoring on 2D solid surfaces.
However, we notice several differences that do not only con-
cern the dimension of the anchoring object. In the experiments
discussed here, the c-director of a 3D SmCA film connects a
1D edge dislocation line of core size ∼lSm = 3 nm to a 2D
surface that carries an electric polarization P on a depth of
∼1 nm. They are, nevertheless, at a distance from each other
equal to the film thickness, since the dislocation is located on
the lower SmCA film surface, while the polarized surface, that
receives the electric torque, stands on the upper film surface
in contact to the air; cf. Sec. I. The competition that arises
between the 1D dislocation line and the 2D polarized surface
is thus mediated by a 3D SmCA film. A 3D distortion then
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results in w wide ribbons along both sides of the dislocation.
This specific elastic association provides a noteworthy ampli-
fication factor of

√
N in the measurements of the restoring

constant ka, and an overall improvement factor of the anchor-
ing measurement of N3/2 ∼ 600, N = 72 being the number of
smectic layers in the film, cf. Sec. IV D.

Another difference, though less original, is that the an-
choring arises between objects made of identical molecules
since naturally both the dislocation line and the film bulk only
contain MTHAC molecules. Both belong to the same materi-
als, but in different phases that are 1D and 3D liquid-crystal
systems, respectively. This specific feature may account for
large anchoring angles on dislocations, that extend over ex-
ceptionally large spans, up to [0, π ], in marked contrast with
anchoring angles that generally reach a few degrees only, e.g.,
on 2D solid surfaces. A direct consequence is that the analyses
of anchoring data by means of series expansions that basically
converge in one point are inappropriate here, even when the
convergence point is chosen to be the anchoring angle at rest,
i.e., the lowest anchoring energy angle. For this reason, we use
Fourier series that have the advantage to converge uniformly
over the whole available range of data. The fitting error is then
of the same order over the whole angular range. We thus fit
second-order Fourier series on our experimental data, i.e., on
our measurements of the torque variations as a function of
the anchoring angle. However, the quality of our experimental
data is insufficient to support fittings of higher-order Fourier
series. The main drawback of the Fourier series fits is that they
generate artificial oscillations. However, because their ampli-
tudes are lower or in the range of the experimental errors,
they indeed have no physical meaning, and we may neglect
them.

We tried three limited series expansions in order to make
comparisons: a first-order Fourier series, a second-order
Fourier series, and a linear expansion based on a one-point
convergence at α0 = 0. These data analyses highlight the
interest for using series that converge uniformly as Fourier
series, in particular, when the torque versus anchoring angle
α0 exhibits weak anchoring conditions as on edge dislocation
lines. In turn, this second-order Fourier expansion naturally
needs one anchoring constant ka per order of expansion, i.e.,
two anchoring coefficients for describing weak anchoring
properties that extend over a wide angular domain. They
are kF2

a1 = 5.07 × 10−14N and kF2
a2 = 2.42 × 10−14N, respec-

tively. For comparison, a first-order approximation may be
used in the range of small anchoring angles. The two coeffi-
cients then reduce to one anchoring coefficient ka2 = 14.74 ×
10−14 N, somewhat larger than the direct first-order eval-
uations, ka0 = 9.37 × 10−14 N and ka1 = 11.07 × 10−14 N,
probably because of a better decoupling from the large angle
data in the second-order Fourier analysis.

Another consequence of the exceptionally large range that
the anchoring angle α0 may experience here is the rich state
diagram that it may describe. The anchoring state on the dis-
location may indeed be represented by an operating point that
evolves in a torque-anchoring angle diagram. Two types of
processes may occur. The operating point Q generally moves
along reversible paths, walked in a somewhat “at-equilibrium”
fashion, with an infinitely slow velocity of displacement. To
accelerate the displacement of Q, we apply electric torque

steps of smaller amplitude than the error bar, δ� ∼ 0.9 ×
10−14 N.

When the angle α∞ of the electric field E relative to the
unit vector S (perpendicular to the dislocation, parallel to the
film, and oriented from the even- to odd-N film area) is larger
than 130◦, the operating point Q may follow another type
of path with dissipative and out-of-equilibrium properties; cf.
Figs. 1 and 3. We can then evaluate the total viscous energy
consumed along these out-of-equilibrium paths, as well as
the maximum time spent during its free flight section. These
paths are one-way paths, as the operating point indeed spon-
taneously moves from a nonbroken anchoring state with a
low anchoring angle α0 to a broken anchoring state with a
high angle α0, while other one-way paths go in the reverse
direction, from a broken anchoring state to a nonbroken one.
However, the return way may exhibit a slight difference, as it
may require a possible voltage decrease below zero. Overall,
the operating point Q describes a hysteresis loop that is run in
the usual anticlockwise sense if the diagram is drawn with
effect-cause axes, i.e., with anchoring angles-torques axes,
contrary to Figs. 2 and 3. Interestingly, the diagram then
exhibits the functioning of a two-state lock, consisting of
two valves in series. The two states correspond to low and
high levels, with α0 belonging, on the one hand, to the range
[0, αmax

0 ], where αmax
0 is the anchoring angle at the maximum

anchoring torque, and on the other hand, slightly below α∞,
respectively.

Interestingly, the irreversible and dissipative behavior that
is observed along paths connecting the two distinct states is
not due to interactions with solids or unexpected defects, as
the edge dislocation and smectic layers here are perfect 1D
and 3D liquid-crystal objects, respectively. The only source
of dissipation is fluid viscosity. However, the dissipation in
liquids is proportional to v2 and ω2, where v and ω are
translational and rotational fluid velocities, respectively. Then,
reducing velocity may significantly reduce dissipation, too.
However, this usual escape from dissipation does not work
here, since along dissipative and out-of-equilibrium paths, the
operating point indeed flies spontaneously at its own velocity
in the torque-anchoring angle diagram. Indeed, as shown in
Sec. IV B 3, we can evaluate a maximum time for the free
flight along dissipative paths. Such irreversible paths originate
from the relative shapes of the lines that show in Fig. 3 the
anchoring and electric torques versus angles, –�a (α0) and
�E (α0), respectively. They occur when they together exhibit
three intersections for α∞ > 130◦. Let us notice that this
limit of 130◦ between the one and three intersections cases
should indeed be specific of the MHTAC molecule, since
though the �E (α0) function is general and is valid for all
tilted smectics, cf. Sec. II C, the –�a (α0) anchoring torque
is not regulated by general laws of physics. The –�a (α0)
anchoring torque function is indeed specifically determined
by local interactions between MHTAC chemical functions.
So, for α∞ > 130◦, and for a particular electric field, E, the
lines that represent the torques, –�a (α0) and �E (α0), may get
tangent to each other. Then, a small additional voltage, larger
than the error bar, may cause them to separate definitively.
Such a mechanism explains the observed discontinuities that
initiate the dissipative and irreversible paths, and that lead to
an anchoring breaking, or conversely, to its restoration.
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So, the liquid nature of the edge dislocation and of the
smectic film anchored to it allows them to spontaneously heal
back in the very same state as they were before the anchoring
breaking, without any erosion effect. Such a perfect restoring
does not exist in solid, as their microscopic state unavoidably
suffers invisible but real local changes. In practice, however,
we need to run about a half hysteresis loop after the anchoring
has been broken to completely restore the film exactly in its
initial anchoring state.

Let us also notice that basically the mechanism of the
c-director anchoring on an edge dislocation may simply be
understood from a local and partial melting of the dislocation
edge that continuously increases with the c-director anchoring
angle. More specifically, we suggest that SmCA prominent
molecules in the dislocation edge enter as a thorn in the
nematic environment, all the more deeply as the c-director
anchoring angle increases on the dislocation These molecules
consequently partially melt upon contact with the nematic
phase. This melting process requires an additional energy
which indeed identifies with the anchoring energy that the
applied torque transmits to the dislocation.

These experimental results may provide an approach to
the interactions that exist between parallel edge dislocations.
They could help to understand their attraction and sticking
properties to one another for building multiple edge dis-
locations. From the anchoring properties of the c-director

on edge dislocations that are discussed and analyzed above,
we may now calibrate the amplitude of the thermodynamic
c-fluctuations that take place between two simple edge dis-
locations. This should give access to the pseudo-Casimir
force that the dislocations exert on each other, a force that
is equivalent to the Casimir force, the c-director fluctuations
replacing the Casimir electromagnetic fluctuations. This new
force could explain the relative stability of multiple disloca-
tions when submitted to an electric field of limited strength.
The multiple edge dislocations could then be understood as
being made of simple edge dislocations interacting at some
distance apart from each other by means of pseudo-Casimir
interactions. Such an interaction could be efficient at inter-
mediate and definite distances depending on the strength and
direction of an applied electric field [12]. Because of the
antagonistic anchoring conditions between two identical edge
dislocations, parallel and close to each other, we anticipate
that their individual anchoring angles α0 could significantly
exceed 90◦, so that the knowledge of the c-director anchoring
properties over a wide angular range could indeed be essential.
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