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Liquid-crystal composites of carbon nanotubes in a magnetic field:
Bridging continuum theory and a molecular-statistical approach
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We propose an approach combining the continuum theory and molecular-statistical approach for a suspension
of carbon nanotubes based on a negative diamagnetic anisotropy liquid crystal. Using the continuum theory,
we show that in the case of an infinite sample in suspension it is possible to observe peculiar magnetic
Fréedericksz-like transitions between three nematic phases: planar, angular, and homeotropic with different
mutual orientations of liquid-crystal and nanotube directors. The transition fields between these phases are found
analytically as functions of material parameters of the continuum theory. To account for the effects associated
with temperature changes, we propose a molecular-statistical approach that allows obtaining the equations of
orientational state for the orientation angles of the main axes of the nematic order, i.e., the liquid-crystal
and carbon-nanotube directors in a similar form as was obtained within the continuum theory. Thus, it is
possible to relate the parameters of the continuum theory, such as the surface-energy density of a coupling
between molecules and nanotubes, to the parameters of the molecular-statistical model and the order parameters
of the liquid crystal and carbon nanotubes. This approach allows determining the temperature dependencies
of the threshold fields of transitions between different nematic phases, which is impossible in the framework
of the continuum theory. In the framework of the molecular-statistical approach we predict the existence of an
additional direct transition between the planar and homeotropic nematic phases of the suspension, which cannot
be described based on the continuum theory. As the main results, the magneto-orientational response of the
liquid-crystal composite is studied and a possible biaxial orientational ordering of the nanotubes in the magnetic
field is shown.
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I. INTRODUCTION

In the physics of liquid crystals (LCs) and composites
materials based on them, the continuum theory [1] has proven
to be very useful and fruitful. Due to its relative simplicity, this
theory allows one to describe quite well the available nematic
state and experimentally observed magneto-orientational phe-
nomena, such as Fréedericksz transitions [2–8]. Though, a
significant disadvantage of the continuum theory is that it is
not suitable for solving problems related to the description
of temperature dependencies of the orientational states of the
LC matrix and the ensemble of impurity particles. However,
the molecular-statistical approach allows one to take into ac-
count the temperature dependencies of the orientational states
of the system components for LC and composites based on
them, and, in particular, the degree of ordering of both the
long axes of molecules and anisometric impurity particles in
terms of order parameters. The previously proposed statistical
mean-field models of LC suspensions of ferroelectric [9,10],
magnetic particles [11–13] and carbon nanotubes (CNTs) [14]
considered planar coupling of particles to the matrix in the
absence of an external field or in a field directed along the po-
larization or magnetization vector, which, of course, responds
to uniaxial ordering. The existing theoretical works do not
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cover suspensions with a homeotropic type of orientational
coupling of particles with the matrix [15–19] and the possi-
bility of a more general biaxial ordering [16,20–25], arising
in an external field during the competition of orientational
mechanisms (crossed electric and magnetic fields or different
signs of dielectric and diamagnetic anisotropy). One of the
goals of this work is to develop a molecular-statistical theory
of the mean field for the case of the biaxial nature of the
orientational ordering of LC composites of CNTs in a mag-
netic field. According to the works [26–30], the LC molecules
have a planar type of coupling with the CNT surface, due
to which in infinite samples in the absence of external fields
and bounding planes, the directions of the main axes of the
nematic order of the LC molecules and CNTs, i.e., the direc-
tors, coincide and are degenerate in orientations. In the case of
positive anisotropies of the diamagnetic susceptibility of LC
and CNTs, an external magnetic field orients the main axes of
the molecules and nanotubes in its direction and thus removes
orientation degeneracy. As the field increases, the orientation
of the LC and CNT directors does not change, but the degree
of ordering of the subsystems grows [14], and the composite
itself remains uniaxial. However, if we consider opposite sign
anisotropies of diamagnetic susceptibility (competing orienta-
tional mechanisms), namely, negative for LC and positive for
CNT, we should expect peculiar Fréedericksz-like magnetic
transitions, i.e., the mutual orientation of the LC and CNT
directors will change in a threshold manner with an increasing
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magnetic field, as was experimentally found for LC com-
posites of CNTs based on nematics with negative anisotropy
of dielectric permittivity in the electric field [31,32]. In the
first part of the paper we consider the continuum theory for
suspension of CNTs in nematic LC with negative anisotropy
of diamagnetic susceptibility. Based on the thermodynamic
potential—the free energy, whose minimization by the ori-
entation angles of the LC and CNT directors will make it
possible to obtain a system of equations of orientational
equilibrium. As a result of the analysis and solution of this
system, we determine different nematic orientational phases
of the composite, which differ in the orientation of the LC
and CNT directors relative to the field, and find the thresh-
old magnetic fields of transitions between these phases. In
the second part of the paper we consider a tensor version
of the molecular-statistical mean-field theory in which each
of the macroscopic orientation tensors (LC matrix and CNT
ensemble) is characterized by two scalar order parameters,
so with this approach the system of orientational equilibrium
equations obtained by minimizing the free energy contains
two equilibrium equations for orientation angles of the LC and
CNT directors as in the continuum theory and four additional
integral self-consistency equations for the order parameters.
The presented molecular-statistical theory allows considering
both the effect of temperature on the orientational structure
of LCs and impurity CNTs, through order parameters, and
orientational transitions induced by an external magnetic field,
through the orientation angles of the LC medium and impu-
rity nanotubes. Thus, another goal of the work is to build
a bridge between the continuum theory and the molecular-
statistical approach, which makes it possible to determine the
temperature dependencies of continuum theory parameters,
such as the surface-energy density of a coupling between LC
molecules and CNTs, as well as the magnetic fields of pe-
culiar Fréedericksz-like transitions between different nematic
orientational phases.

II. CONTINUUM THEORY

A. Free-energy density

In this section, we consider the continuum theory of
peculiar Fréedericksz-like magnetic transitions in an infinite
and homogeneous CNT suspension in a nematic LC with
negative anisotropy of the diamagnetic susceptibility. The
theory is based on the previously proposed approach [33–36],
where magnetic Fréedericksz transitions were considered for
the LC suspension of CNTs in the classical splay geometry. In
the case of a boundless sample, we can omit the contributions
to the free-energy density of elastic deformations of the LC
director and the effects of segregation of impurity particles;
then, taking into account the soft planar coupling of the LC
molecules to the CNT surface and the diamagnetic properties
of the suspension components, we write down according to
Ref. [33]

Fc = −1

2
ynμ0χ

n
a (nH)2 − 1

2
ypμ0χ

p
a (mH)2 − ynyp

W

dp
(nm)2.

(1)
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FIG. 1. Geometry.

Here, n and m are the unit vectors, known as directors, that
represent the main axes of nematic order of the LC molecules
and CNTs, respectively; H is the external magnetic field
strength; yp and yn = 1 − yp are volume fractions of the CNT
and the LC, respectively; χn

a and χ
p
a are the anisotropies

of the diamagnetic susceptibility of the LC and the CNT,
respectively; μ0 is the magnetic permeability of the vacuum;
W is the surface-energy density of the coupling between the
CNTs and the LC molecules; dp is the transverse diameter of
the CNT.

The first two terms in Eq. (1) take into account the
diamagnetic properties of the LC matrix and the impurity
CNTs, respectively, while the last term is responsible for
the finite (soft) coupling of the LC and CNT directors. It
should be noted that continuum theories of LC composites of
nanoparticles [37–40] usually assume yn = 1 due to the low
concentration of impurity, but this assumption will not be used
here, for the convenience of comparison with the results of
molecular-statistical theory [14,41].

Section II B discusses the derivation of equations describ-
ing the equilibrium orientational states of an LC suspension
of CNTs in a magnetic field.

B. Orientational equilibrium equations

In the presence of the magnetic field H = (H, 0, 0) LC
molecules tend to rotate orthogonally to the field due to the
negative anisotropy of diamagnetic susceptibility, while the
CNTs rotate parallel to it (competing orientational mech-
anisms); then the director components n and m can be
represented as

n = [cos �, sin �, 0], m = [cos �, sin �, 0] (2)

(see Fig. 1).
By substituting Eq. (2) into Eq. (1) we obtain

Fc(�,�) = 1

2
ynμ0

∣∣χn
a

∣∣H2 cos2 � − 1

2
ypμ0χ

p
a H2 cos2 �

−ynyp
W

dp
cos2(� − �). (3)

Minimization of the free-energy density (3) by � and �

allows obtaining the suspension orientational equilibrium
equations

1

2
μ0

∣∣χn
a

∣∣H2 sin 2� − yp
W

dp
sin 2(� − �) = 0, (4)

1

2
μ0χ

p
a H2 sin 2� − yn

W

dp
sin 2(� − �) = 0. (5)
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FIG. 2. Orientational phases of the LC composite of CNTs.

This system of equations has four different solutions obeying
a minimum of the free-energy density (3)

∂2Fc

∂�2
� 0,

∂2Fc

∂�2
� 0,

∂2Fc

∂�2

∂2Fc

∂�2
−

(
∂2Fc

∂�∂�

)2

� 0. (6)

All these solutions can be matched with different homoge-
neous orientational phases. Let us consider these phases in
more detail.

C. Orientational phases

The first two solutions of the system of Eqs. (4) and (5)
correspond to the values of � = 0, � = 0 and � = π/2,
� = π/2, corresponding to the planar coupling of the LC and
CNT directors (n‖m). According to Refs. [33,34,39] let us
relate these solutions to the first planar nematic phase (PN1)
and the second planar nematic phase (PN2), respectively. The
PN1 phase corresponds to the orientational structure when
the orientations of the directors n and m coincide with the
direction of the magnetic field H, and in the phase PN2 the
vectors n and m are directed orthogonally to the field H (see
Fig. 2). The third solution � = π/2, � = 0 corresponds to
the case when the LC director n is oriented orthogonally to
the field H, and the CNT director m is parallel to the field H.
This orientational structure corresponds to the homeotropic
coupling of the vectors n and m (n ⊥ m), and its correspond-
ing phase can be called homeotropic nematic (HN) according
to Refs. [33,34,39,40]. The latter solution corresponds to the
angular nematic phase (AN), in which the orientation angles
of the LC and CNT directors can take values from 0 to π/2
depending on the magnitude of the magnetic field H and the
material parameters of the system [33,34,39,40].

Let us substitute the solutions for the orientation angles
of the LC and CNT directors, corresponding to the planar
phases PN1 and PN2 and the homeotropic phase HN, into
the expression for the free-energy density (1). As a result, we
obtain the following, respectively,

F (PN1)
c = 1

2
ynμ0|χn

a |H2 − 1

2
ypμ0χ

p
a H2 − ynyp

W

dp
, (7)

F (PN2)
c = −ynyp

W

dp
, (8)

F (HN )
c = −1

2
ypμ0χ

p
a H2. (9)

Comparison of these expressions shows that in the absence
of magnetic field H = 0 the free-energy densities of the planar
phases PN1 and PN2 coincide and do not exceed the value
corresponding to the homeotropic phase HN. In the presence
of a magnetic field the values of the free-energy densities (7)
and (8) differ by the value

F (PN1)
c − F (PN2)

c = 1

2
ynμ0

∣∣χn
a

∣∣H2(1 − b), b = ypχ
p
a

yn

∣∣χn
a

∣∣ .
(10)

From this expression, it follows that when b > 1, the PN1
phase is stable, and when b < 1, the PN2 phase is. Thus,
the continuum theory predicts two different sequences of
transitions between the orientational phases described above,
which have a threshold character and can occur only when the
magnetic field reaches a certain critical value. The former is
PN1–AN–HN, and the latter is PN2–AN–HN. The final phase
is always the homeotropic phase HN, the intermediate phase
is the angular phase AN, and the initial phase can be either
planar phases PN1 or PN2.

To conclude this section, it is necessary to discuss the sym-
metry of the above-mentioned nematic orientational phases.
As can be seen in Fig. 2 both planar phases PN1 and PN2
correspond to D∞h point group symmetry. The homeotropic
phase HN has the lower D2h symmetry and the angular phase
AN has the lowest C2h symmetry with one mirror plane and
the C2 axis normal to it. The symmetry of the angular phase
AN is easily determined from the equations of orientational
equilibrium (4) and (5) and the components of the LC and
CNT directors (2). It can be seen from Eqs. (4) and (5) that
adding the value of π to � and � does not change the
form of the equations, and thus the z axis of the laboratory
coordinate system coincides with the C2 axis (see Fig. 1).
The possible biaxial character of the orientational ordering of
an LC composite of CNTs induced by a magnetic field will
be considered below within the framework of the molecular-
statistical theory. The symmetry of LCs, including the biaxial
character of the orientational order, is discussed in detail in
Refs. [42–46], and in the case of LC colloids, for example, in
Refs. [24,47–49].

Note here that for a boundless sample the above-described
transitions are a kind of analog of the Fréedericksz magnetic
transitions [1,39], since there are some characteristic thresh-
old fields, when reached, the reorientation of the LC and CNT
directors occurs. Let us proceed to finding these threshold
fields.
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D. Orientational transition fields

Let us first find the transition field H (1)
‖ between the PN1

and AN phases. Near H (1)
‖ the deviations of the LC and CNT

directors from the magnetic field direction are small � � 1,
� � 1, so the system of Eqs. (4) and (5) can be linearized and
the existence condition for its solution gives

H (1)
‖ =

√
a(b − 1), a = 2ynW

μ0χ
p
a dp

, (11)

where b is defined in Eq. (10).
The transition field H (2)

‖ between the PN2 and AN phases

can be determined in a similar way. Near H (2)
‖ the angles

� and � are close to π/2, i.e., � = π/2 − δ� and � =
π/2 − δ�, where δ� � 1, δ� � 1. In this case, the system
of Eqs. (4) and (5) can be represented as a power series
expansion in the small values δ� and δ�. Limiting ourselves
to the first order smallness and using the condition that the
solution of the system of Eqs. (4) and (5) exists, we obtain

H (2)
‖ =

√
a(1 − b). (12)

We can see from the expressions (11) and (12) that they have
real values at b > 1 and b < 1, respectively.

Let us find the last transition field H⊥ from the angu-
lar phase AN to the homeotropic phase HN. Close to this
transition, the CNT director m is slightly deviated from the
orientation of the field H, while the LC director n is almost or-
thogonal to the field, i.e., � � 1 and � = π/2 − δ�, where
δ� � 1. Expanding Eqs. (4) and (5) in a power series by
small � and δ�, using the above procedure, we obtain

H⊥ =
√

a(1 + b). (13)

From the found expressions (11), (12), and (13) it can be
seen that they unambiguously set the values of the fields of
transitions between different orientational phases of the sus-
pension for specific values of the volume fraction of impurity
yp, anisotropies of diamagnetic susceptibility of subsystems
χn

a and χ
p
a , surface-energy density of the coupling between

the CNTs and the LC molecules W and transverse diameter
of nanotubes dp. These expressions also show that the field
H⊥ is always larger than H (1)

‖ and H (2)
‖ , which confirms the

above-mentioned sequence of transitions between different
orientational nematic phases.

E. Conclusions to the continuum theory

The presented continuum theory of magnetically induced
orientational phase transitions of LC composites of CNTs is
very simple and allows describing the available nematic states
of the system in the magnetic field in the case of competing
orientational mechanisms. As a result of solving Eqs. (4) and
(5), by employing the expressions found for the threshold
fields (11), (12), and (13), it is possible to calculate the depen-
dencies of the orientation angles of the LC and CNT directors
on the value of the applied magnetic field easily, as, for ex-
ample, was done for suspensions of magnetic particles in an
LC [39]. However, the continuum theory cannot consider the
effects associated with changes in temperature. In particular,
it is beyond the scope of the theory to study the dependence
of the surface density of the coupling energy between the

LC molecules and the CNT W and the threshold transition
fields H (1)

‖ , H (2)
‖ , and H⊥ on temperature. Besides, the physical

properties of the suspension in a magnetic field and in its
absence should be different since the presence of the field
leads to the appearance of additional orientational ordering
of both LC molecules and CNTs. The molecular-statistical
theory, which will be discussed in the next section, can give
a simultaneous account of the influence of temperature and
magnetic field on the orientational states of the suspension.

III. MOLECULAR-STATISTICAL THEORY

A. Free-energy density

Let us use the previously proposed tensor version of
the molecular-statistical theory of LC composites of CNTs
[14,41]. In this approach, in addition to the intermolecular-
attraction in the LC medium, we take into account the
dispersive attraction and steric repulsion of nanotubes, the dis-
persive attraction between suspension components, as well as
the magnetic properties of the LC matrix and the anomalously
high diamagnetism of CNTs [50–54]. The effect of the im-
purity volume fraction, temperature, coupling energy of sus-
pension components, and magnetic field on the orientational
ordering of the LC matrix and CNTs was previously studied.
The concentration and temperature phase transitions in the
suspension for different values of the magnetic field strength
have been examined, but only in the case of the uniaxial nature
of the orientational ordering. The cases of both positive [14],
and negative [41] anisotropy of the diamagnetic susceptibility
of the LC matrix have been considered. In the latter case, the
magnetic-field induced transitions of an LC from the “easy-
axis” state to the “easy-plane” state, which are uniaxial, were
considered; thus, the possibility of changing the mutual orien-
tation of the main axes of the LC and CNT nematic order has
not been taken into account. The concentration and field shifts
of the phase transition point between nematic and isotropic or
paranematic phases have also been studied.

The advantage of the previously proposed tensor expres-
sion of the free-energy density [14] is that, depending on the
phase symmetry, the macroscopic orientation tensors of LC
and CNT can be written in either uniaxial or biaxial form.
According to Ref. [14], the expression for the free-energy
density in the mean-field approximation reads as

Fms = Fms
vn

λV

= −1

2
y2

nη
n
ikη

n
ik − 1

2
y2

pγ
2(ωp + κτ )ηp

ikη
p
ik − ynypγωηn

ikη
p
ik

− 1

2

√
2

3
hihk

(−ynη
n
ik + ypγ ξη

p
ik

) + ynτ 〈lnWn〉
+ ypγ τ 〈lnWp〉. (14)

Here, vn is the volume of the LC molecule, vp = πd2
plp/4 is

the volume of the cylindrical CNT, dp and lp are the transverse
diameter and the length of the CNT, respectively, V is the
suspension volume. We also introduce the value λ = An/vn,
which is the Meier-Saupe mean-field constant [55], which
corresponds to the interaction energy An of the LC molecules.
The interaction of the suspension components is determined
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by the dimensionless parameter ω = A/An, where A is the
energy of orientational interaction between the nanotubes and
the LC molecules. The parameter ωp = Ap/An describes the
relative role of the energy of interaction Ap between impurity
CNTs. Below we will consider the case of positive ω, then
in the absence of a magnetic field the preferred orientation
of the long axes of the nematic molecules and the CNTs will
coincide, corresponding to the planar coupling of the LC and
CNT directors. According to Ref. [9], the parameter ω is
proportional to the coupling energy of the particles with the
LC matrix and the form factor of the particles. The latter is
zero if the particles have a spherical shape, i.e., ω is also a
measure of the anisometricity of the particles: more elongated
CNTs correspond to larger values of this parameter. The
parameter κ = 5lp/(4γ dp) accounts for the excluded CNT
volume in the second virial approximation for cylindrical
particles, i.e., the steric repulsion of CNTs [56–59]. In
Eq. (14) we also introduce dimensionless temperature
τ = kBT/λ (kB is the Boltzmann constant, T is absolute
temperature), magnetic field strength h = H

√
μ0|χ̃n

a |/λ and
the parameter γ = vn/vp, responsible for the relative sizes
of the LC molecule and CNT. The parameter ξ = χ̃

p
a /|χ̃n

a |
is responsible for the relative contribution of diamagnetic
orientational mechanisms associated with the CNTs and
the LC, where χ̃n

a < 0 and χ̃
p
a > 0 are the anisotropies of

the diamagnetic susceptibility of single LC molecule and
single CNT, respectively. The higher the value ξ , the greater
the contribution of the CNTs to the magneto-orientational
response of the composite. Angle brackets in Eq. (14) denote
the statistical averaging over the single-particle distribution
functions Wn and Wp, respectively, of the LC molecules and
CNTs according to the orientations of their long axes.

The free-energy density (14) includes tensors of the orien-
tation ηn

ik and η
p
ik of the LC and CNT subsystems, respectively.

They are discussed in more detail in the next section.

B. Order parameters

In previous papers [14,41], the cases when the main axes
of the nematic order, the LC and CNT directrices, were fixed
in space are considered. As shown in the preceding section, in
a magnetic field, due to the opposite sign of the diamagnetic
susceptibility anisotropies of the subsystems, the nematic and
nanotube directors can change their orientation, so the ex-
pressions for the orientation tensors ηn

ik and η
p
ik should be

presented in the biaxial form [60,61]

ηn
ik =

√
3

2
Rn

(
lilk − 1

3
δik

)
+ Qn√

2
(nink − kikk ), (15)

η
p
ik =

√
3

2
Rp

(
lilk − 1

3
δik

)
+ Qp√

2
(mimk − pi pk ), (16)

through the triplets of unit orthogonal vectors

n = [cos �, sin �, 0], l = [0, 0, 1], k = l × n,

m = [cos �, sin �, 0], p = l × m, (17)

where the components of the vectors n and m remain the
same as in the continuum theory [see Eq. (2) and Fig. 2].
The arbitrary factors of

√
3/2 and 1/

√
2 multiplying the first

and second terms for both tensors (15) and (16), respectively,

have been inserted for later convenience (see Appendix A).
Here, we introduce scalar order parameters that depend on
the dimensionless temperature τ and the magnetic field h as
statistical averages of the Legendre polynomials P2:

Rn = 〈P2(lν)〉, Qn = 1√
3
〈P2(nν) − P2(kν)〉, (18)

Rp = 〈P2(le)〉, Qp = 1√
3
〈P2(me) − P2(pe)〉. (19)

Here, ν and e are unit vectors along the long axis of the LC
molecule and CNT, respectively.

Orientation tensors of the LC (15) and the CNT (16) admit
three uniaxial structures with the directors l, n, k, and l, m,
p, respectively. For Qn = 0, we obtain a uniaxial nematic LC
with the director l, similarly for the ensemble of impurity
particles for Qp = 0 we obtain a uniaxial structure with the
director l. At Qn = ∓√

3Rn we obtain for the LC uniaxial
structures with the directors n and k, respectively, and for the
CNT ensemble at Qp = ∓√

3Rp, we get uniaxial structures
with directors m and p, respectively. Thus, the parameters
Qn and Qp, respectively, characterize the difference in the
probability of orientations of LC molecules with respect to
the vectors n and k, and CNT with respect to the vectors m
and p. Under the influence of the magnetic field, the main axes
of the nematic order n and m or the directors of the LC and
the CNT (see Fig. 2), can rotate (angular phase) around the
vector l, which is considered constant. In this case, the order
parameters Qn, Rn, Qp, and Rp are independent variables and
for convenience we can introduce an additional system of the
order parameters:

Sn =
√

3Qn − Rn

2
= 〈P2(nν)〉,

Dn = Qn + √
3Rn

2
= 1√

3
〈P2(lν) − P2(kν)〉, (20)

Sp =
√

3Qp − Rp

2
= 〈P2(me)〉,

Dp = Qp + √
3Rp

2
= 1√

3
〈P2(le) − P2(pe)〉. (21)

Hereafter, we will mainly consider the positive values of Qn

and Qp, i.e., when the main axes of the nematic order of the
LC and CNT, respectively, are the vectors n and m. Consid-
eration of the negative values Qn and Qp, at which the vectors
k and p are the main axes of the nematic order of the LC and
the CNT, respectively, is excessive, since the rotation of the
vectors n and m around the direction l is determined by the
angles � and �.

From the definitions (20) and (21), we can see that the
parameters Sn and Sp characterize the degree of ordering of
the LC molecules and CNTs in the directions n and m, re-
spectively, while Dn and Dp serve as a measure of biaxiality.
It should be noted here that the biaxial ordering associated
with the nonzero order parameter Dn is also specific for the
LC molecules themselves if they are chiral (see, for example,
Refs. [60,62,63]).
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Now we turn to obtaining the equations of the orientational
state of the composite, which allow determining the equilib-
rium values of the order parameters Qn, Rn, Qp, and Rp.

C. Equations of orientational state

To determine the equilibrium values of the distribution
functions Wn and Wp, which, using the self-consistency
Eqs. (18) and (19) enable us to find the order parameters

of the composite, we need to solve the variation problem of
the minimum (14). Minimization Fms must be carried out
with additional normalization conditions for the distribution
functions, which have the form:∫

Wndν = 1,

∫
Wpde = 1. (22)

After calculating the convolutions of the tensors (15) and
(16) (see Appendix A), the expression for the free-energy
density (14) takes the form:

Fms = − 1

2
y2

n

(
Q2

n + R2
n

) − 1

2
y2

pγ
2(ωp + κτ )

(
Q2

p + R2
p

) − ynypγω(QnQp cos 2(� − �) + RnRp)

+ 1

6
h2[yn(

√
3Qn cos(2�) − Rn) − ypγ ξ (

√
3Qp cos(2�) − Rp)] + ynτ 〈lnWn〉 + ypγ τ 〈lnWp〉, (23)

to which we need to add terms

�n

(∫
Wndν − 1

)
+ �p

(∫
Wpde − 1

)
, (24)

to account for the normalization conditions (22) using the Lagrange multiplier method, where �n and �p are the Lagrange
multipliers. The variation of (23) by Wn and Wp with regard to the definitions (18) and (19) allows one to obtain the
normalized result for single-particle distribution functions of the LC molecules and CNTs over the orientations of their long
axes, respectively,

Wn = exp
{

2
3ςn[P2(nν) − P2(kν)] − 2

3σnP2(lν)
}

∫
exp

{
2
3ςn[P2(nν) − P2(kν)] − 2

3σnP2(lν)
}
dν

, (25)

Wp = exp
{

2
3ςp[P2(me) − P2(pe)] − 2

3σpP2(le)
}

∫
exp

{
2
3ςp[P2(me) − P2(pe)] − 2

3σpP2(le)
}
de

, (26)

where the following notations are introduced:

σn = − 3

2τ

(
ynRn + ypγωRp + 1

6
h2

)
, ςn =

√
3

2τ

(
ynQn + ypγωQp cos 2(� − �) −

√
3

6
h2 cos 2�

)
, (27)

σp = − 3

2τ

(
ynωRn + ypγ (ωp + κτ )Rp − 1

6
ξh2

)
, ςp =

√
3

2τ

(
ynωQn cos 2(� − �) + ypγ (ωp + κτ )Qp +

√
3

6
ξh2 cos 2�

)
.

(28)

Order parameters Rn, Qn, Rp, and Qp can be determined by means of self-consistency conditions (18), (19), and distribution
functions (25) and (26) through relations

Rn = 1 − 3

2

∂ ln J (σn, ςn)

∂σn
, Qn =

√
3

2

∂ ln J (σn, ςn)

∂ςn
, (29)

Rp = 1 − 3

2

∂ ln J (σp, ςp)

∂σp
, Qp =

√
3

2

∂ ln J (σp, ςp)

∂ςp
, (30)

which are the equations of the orientational state of the LC-CNT composite. Here we introduce the notation

J (σ, ς ) =
∫ 1

0
exp{σ (1 − x2)}I0[ς (1 − x2)]dx, (31)

where I0 is a modified Bessel function of the first kind.
The equations of the orientational state (29) and (30), which allows determining the dependencies of order parameters

on temperature and magnetic field strength, should be supplemented with the equations of orientational equilibrium for the
orientation angles of the LC and CNT directors � and �, respectively. To do this, we substitute the found distribution functions
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(25) and (26) in Eq. (23), as a result, the free-energy density takes the form

�Fms = 1

2
y2

n

(
Q2

n + R2
n − 2Rn

) + 1

2
y2

pγ
2(ωp + κτ )

(
Q2

p + R2
p − 2Rp

) + ynypγω[QnQp cos 2(� − �) + RnRp − Rn − Rp]

+1

6
h2(−yn + ypγ ξ ) − ynτ ln J (σn, ςn) − ypγ τ ln J (σp, ςp). (32)

Here, �Fms = Fms − F (iso)
ms , where F (iso)

ms is the free-energy
density of the isotropic phase, for which Rn, Qn, Rp, Qp, and
h are equal to zero.

With minimizing Eq. (32) by � and � considering
Eqs. (18), (19), (29), and (30), we obtain

h2 sin 2� − 2
√

3ypγωQp sin 2(� − �) = 0, (33)

ξh2 sin 2� − 2
√

3ynωQn sin 2(� − �) = 0. (34)

These equations for the orientation angles of the directors n
and m, obtained on the basis of the molecular-statistical ap-
proach, are similar to those obtained in the continuum theory
(4) and (5). Thus, the system of Eqs. (29) and (30) together
with Eqs. (33) and (34) makes it possible not only to describe
the different orientational phases of the LC-CNT composite
induced by a magnetic field, but also, unlike the equations of
continuum theory (4) and (5) enables us to study the effect of
the temperature on the degree of the composite components
ordering.

Let us now turn to obtaining expressions for the threshold
transition fields between the nematic phases PN1, PN2, HN,
and AN, now using the results of the molecular-statistical
approach.

D. Orientational transition fields

Equations (33) and (34) describe the same orientational
nematic phases: PN1, PN2, HN, and AN as Eqs. (4) and (5).
The procedure for finding the threshold fields of transitions
between these phases is described in Sec. II D, here we present
only the final results.

The transition field from planar phase PN1 to angular phase
AN takes the form

h(1)
‖ =

√
ã(b̃ − 1), (35)

where

ã = 2
√

3ynωQn

ξ
, b̃ = ypγ Qpξ

ynQn
. (36)

The transition fields PN2–AN and AN–HN, respectively, have
the form

h(2)
‖ =

√
ã(1 − b̃), (37)

h⊥ =
√

ã(1 + b̃). (38)

Expressions for threshold fields (35), (37), and (38) now im-
plicitly depend not only on the temperature τ through the
order parameters Qn and Qp, but also on the magnetic field
h. Thus, the determination of the transition fields h(1)

‖ , h(2)
‖ ,

and h⊥ now requires solving the system of Eqs. (29) and (30)
together with the condition of equality of the current value of

the field h with one of the field values (35), (37), and (38), as
well as the fixed angles � and �. So, to find the field h(1)

‖ we

need to use conditions � = � = 0 and h(1)
‖ − h = 0, for the

field h(2)
‖ –� = � = π/2 and h(2)

‖ − h = 0, and for the field
h⊥–� = π/2, � = 0 and h⊥ − h = 0.

E. Relationship between the parameters of the continuum
theory and the molecular-statistical approach

By comparing the expressions for the free-energy densities
(3) and (23), bringing trigonometric functions with angles
� and � to the same form, considering the definitions of
the dimensionless field h = H

√
μ0χ̃n

a /λ and the parameter
ξ = χ̃

p
a /|χ̃n

a |, it is possible to express the parameters of the
continuum theory through the parameters of the molecular-
statistical approach:

χn
a = 2χ̃n

a√
3vn

Qn, χ p
a = 2χ̃

p
a√

3vp

Qp,
W

dp
= 2λω

vp
QnQp. (39)

It is interesting to note that these values do not depend on
the order parameters Rn and Rp. As a result of solving the
system of Eqs. (29) and (30) for PN1, PN2, or HN phases,
and in the case of the angular phase AN, this system must
be supplemented by the Eqs. (33) and (34), it is possible to
calculate the dependencies of the order parameters Qn and Qp,
together with the parameters of the continuum theory χn

a , χ
p
a ,

and W on temperature and external magnetic field.

F. Estimates of material parameters

For further calculations, we introduce estimates of dimen-
sionless values and parameters of the suspension. According
to Refs. [14,41] let us assume for the anisotropy of the dia-
magnetic susceptibility of one LC molecule |χ̃n

a | ≈ |χn
a |vn ≈

4π × 10−7 nm3. In the framework of the Maier-Saupe theory,
the mean-field constant λ is proportional to nematic-isotropic
liquid transition temperature T LC

c , λ = 4.55kBT LC
c [55], which

at T LC
c ∼ 300 K gives λ ∼ 10−20 J, then the dimensionless

magnetic field h = H
√

μ0|χ̃n
a |/λ becomes of the order of

unity at H ≈ 109 A m−1. In a previous paper [41] it is shown
that the anisotropy of the diamagnetic susceptibility of a sin-
gle CNT χ̃

p
a depends not only on the diameter dp and the

length lp, but also the number of graphene layers forming
it [64]. So, for a separate single-layer CNT with a diameter
of dp = 2 nm and the length of lp = 100 nm we get χ̃

p
a ∼

4π × 10−3 nm3, which gives an estimate for the parame-
ter ξ = χ̃

p
a /|χ̃n

a | = 104. As the number of layers increases,
the CNT mass increases in proportion to χ̃

p
a . The method

for calculating the CNT mass as well as the anisotropy of
the diamagnetic susceptibility is presented in Refs. [41,65].
For CNT with the diameter of dp = 2 nm and the length
of lp = 100 nm we obtain γ = vn/vp = 1.32 × 10−3 and

054701-7



DANIL A. PETROV PHYSICAL REVIEW E 107, 054701 (2023)

κ = 5lp/(4γ dp) = 4.75 × 104, where according to Ref. [14]
it is accepted as follows: vn = 0.414 nm3. It was noted earlier
that the ω parameter, which is responsible for the orientational
coupling of the LC molecules and CNTs, is related to the
form factor of impurity particles and takes large values for
strongly anisometric objects, such as CNTs. Based on the
estimates presented in Ref. [11], we will assume in further
calculations ω = 10. The volume fraction of CNTs in the
LC can vary over a wide range yp = 10−5 − 10−2 according
to Refs. [29,66–69], but for accuracy, we take the value of
yp = 0.02. The initial and all subsequent expressions for the
free-energy density of molecular-statistical theory (14), (23)
and (32) are written in general form and include both dis-
persive attraction and steric repulsion contributions of CNTs.
For low impurity concentrations and for temperatures close
to the transition point of a nematic-isotropic liquid (τ ≈ 0.2)
the CNT attraction can be neglected compared to the steric
repulsion, and therefore we can assume ωp = 0 in numerical
calculations.

IV. RESULTS AND DISCUSSION

This section presents the results of numerical solution of
equations of orientational state for the LC suspension of CNTs
(29), (30), (33), and (34). We have considered various orien-
tational phase diagrams of the composite in a magnetic field
and temperature dependencies of threshold fields (35), (37),
and (38). Besides we have presented the field dependencies of
the orientation angles of the directors and order parameters of
the LC and the CNTs, and shown the possibility of the appear-
ance of biaxial nature of the orientational ordering of CNTs
in the magnetic field. In the following calculations, we have
used the following fixed values of the material parameters:
yp = 0.02, γ = 1.32 × 10−3, κ = 4.75 × 104 and ωp = 0.

A. Temperature dependencies of order parameters

Let us first consider the temperature dependencies of the
order parameters of the suspension in the absence of a mag-
netic field, shown in Fig. 3. The solid lines here correspond
to stable solutions, and the dotted lines indicate unstable and
metastable solutions. At h = 0 and fixed angles � = 0 and
� = 0 the system of orientational state Eqs. (29) and (30)
admits three equivalent solutions, which describe uniaxial
structures with LC and CNT directors l, n = m and k = p
[see definition (17) and Fig. 2]. As an example, in Fig. 3
one such solution is presented, where the main axes of the
nematic order of the LC and CNT correspond to the vectors
n and m, respectively, i.e., the first planar phase PN1. In
this case the biaxiality parameters Dn and Dp are equal to
zero (Qn = −√

3Rn and Qp = −√
3Rp) and there remain only

two independent order parameters Sn and Sp, determining the
degree of ordering of LC molecules and CNTs relative to
the same direction n = m [see definitions (20) and (21)].
The temperature dependencies Sn and Sp are shown in
Fig. 3(a), which demonstrates that as τ increases, the ordering
of the long axes of LC molecules and CNTs decreases, and
when the temperature reaches the critical value τ = τNI =
0.21601 the first-order transition to the isotropic phase I with
zero values of the order parameters takes place. The transition

(a)

(b)

FIG. 3. Temperature dependencies of the LC and CNT order
parameters for ω = 10 (a) LC and CNT order parameters respon-
sible for the degree of ordering of molecules and impurity particles
relative to the director n = m at � = � = 0 and (b) order parame-
ters determining the temperature dependencies of continuum theory
parameters (39).

temperature τNI can be determined from the joint solution
of the system of orientational state Eqs. (29) and (30) and
additional condition of equality of free-energy densities of
ordered and isotropic phases �Fms = 0 [see expression (23)].
In Fig. 3 there is another important temperature, namely the
point of absolute instability of the isotropic phase relative to
the transition to the ordered phase, known as the Curie-Weiss
temperature τ∗ = 0.19670, for which an analytical expression
was previously obtained [14]:

τ∗ = yn

10

⎡
⎣1 +

√
1 + 20ypγω2

(5 − ypγ κ )

⎤
⎦. (40)

Further, it should be noted that according to Ref. [14] the
volume fraction yp and aspect ratio (lp/dp) of CNTs can be
chosen so that, due to steric interactions, even in the absence
of a magnetic field at high temperatures, nanotubes can be in
an ordered phase. Due to the coupling of the LC molecules
with the CNTs, the ordering of the latter is transferred to the
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FIG. 4. Orientational phase diagram of the suspension on the
magnetic field h–parameter ξ plane for τ = 0.21 and ω = 10.

matrix, and the whole system will be in the weakly ordered
paranematic phase P instead of the isotropic state. The influ-
ence of the CNT sizes, concentration, and the coupling energy
on the phase transitions between the nematic, paranematic,
and isotropic phases is discussed in detail in Refs. [14,41].

Figure 3(b) shows temperature dependencies of order pa-
rameters Qn, Qp and their product QnQp [see expressions (18)
and (19)], which allow one to calculate the temperature de-
pendencies of the parameters of the continuum theory χn

a , χ
p
a ,

and W in accordance with the relations (39). From Fig. 3 we
can see that the order parameters of the CNT ensemble Sp and
Qp are weakly dependent on temperature, while the LC sub-
system is characterized by a significant decrease in ordering
with increasing temperature. This also leads to a significant
decrease in the anisotropy of the diamagnetic susceptibility
of the LC χn

a and the surface coupling energy density of the
LC and CNT W (see the red and black curves in Fig. 3(b),
respectively). For the temperature τ = 0.21 and coupling en-
ergy ω = 10 in the following calculations, using Eq. (39),
we obtain W = 4.7 × 10−4 J m−2, which agrees well with the
experimental data [70].

B. Orientational phase diagrams: The influence
of the magnetic field

Let us move on to the effects associated with the magnetic
field. Figure 4 presents the diagram of orientational nematic
phases of an LC suspension of CNTs on the magnetic field
h—the parameter ξ plane. Recall that this parameter is re-
sponsible for the relative contribution of two diamagnetic
orientational mechanisms of magnetic field influence on the
structure of the LC-composite. Figure 4 shows, that there is
a critical value of the parameter ξ = ξc = 19739.67, above
which, i.e., at ξ > ξc with switching the magnetic field on, the
planar phase PN1 is stable, and at ξ < ξc the planar phase PN2
is. The value ξc can be found by jointly solving the system
of orientational state Eqs. (29) and (30) with the additional
condition of equality of threshold fields h = h(1)

‖ and h = h(2)
‖ ,

FIG. 5. Orientational phase diagram of the suspension on the
magnetic field h–coupling energy ω plane for τ = 0.21 and ξ =
3 × 104.

which is reduced to a simple equation b̃ = 1 [see expressions
(36)]. As the magnetic field increases, both planar phases PN1
and PN2 cease to be stable and a peculiar Fréedericksz-like
transition into the angular phase AN occurs at h = h(1)

‖ and

h = h(2)
‖ , respectively. In large fields exceeding h = h⊥, the

homeotropic phase HN is stable.
The inset of Fig. 4 shows the part of the diagram contain-

ing the triple T point (ξ = ξT = 1181.22), where the second
planar, angular, and homeotropic nematic phases coexist.
Figure 4 shows that as ξ approaches ξT , the difference of the
threshold fields h⊥ − h(2)

‖ decreases and turns to zero at the T
point. It is found that at ξ < ξT as the magnetic field increases,
the LC molecules remain oriented predominantly orthogonal
to the field � = π/2 with the main axis of the nematic order
n, while the long CNT axes rotate orthogonally to the field,
but the orientation of the CNT director m remains fixed,
i.e., � = π/2 (see Fig. 2). As the magnetic field increases,
the nanotube order parameter Qp decreases and reaches zero
value, which is indicated by the dashed line in Fig. 4. For this
line order parameter Rp is negative, which corresponds to the
orientational anisotropy of the “easy-plane” type, i.e., the long
CNT axes are oriented in a plane orthogonal to the vector l. As
the magnetic field grows further, the Qp parameter becomes
negative and increases by absolute value. Thus, in the case
of ξ < ξT there are no peculiar Fréedericksz-like transitions
(angular phase AN is absent), the CNTs are reoriented without
rotating the main axis of the nematic order m–direct transition
from the planar phase PN2 to the homeotropic phase HN.
Positive values of Qp correspond to the planar phase PN2,
and negative values correspond to the homeotropic phase HN
with the main axes of the nematic order of CNTs m and p,
respectively (see Fig. 2).

Figures 5 and 6 show diagrams of the orientational phases
of the suspension on the magnetic field h-coupling energy
ω plane for ξ = 3 × 104 and ξ = 104, respectively. Figure 5
shows, that for high coupling energies there is a sequence
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FIG. 6. Orientational phase diagram of the suspension on the
magnetic field h–coupling energy ω plane for τ = 0.21 and ξ = 104.

of PN1–AN–HN transitions. As ω decreases, the first planar
phase PN1 becomes unstable and at ωT < ω < ωc the tran-
sition sequence changes to PN2–AN–HN, where ωc = 1.01
(see inset in Fig. 5), and the coupling energy ω = ωT = 0.62
corresponds to the T point. For ω < ωT as the field increases,
there is only a direct transition from the planar phase PN2 to
the homeotropic phase HN.

As we can see from Fig. 6 for ξ = 104 the planar phase
PN1 is unstable for any positive ω, but as in the previous case,
there is a T point ω = ωT = 1.48, to the left of which under
the action of the magnetic field there is a direct transition from
the planar phase PN2 to the homeotropic phase HN. In Figs. 5
and 6 direct transitions correspond to the dashed lines, for
which, as for the phase diagram shown in Fig. 4, the CNT
order parameter Qp turns to zero, i.e., the direct transition
changes the sign of Qp, which corresponds to the reorientation
of the CNT in the direction of the field.

Figures 7 and 8 show diagrams of the orientational phases
of the suspension on the magnetic field h-temperature τ plane
for ξ = 3 × 104 and ξ = 104, respectively. The solid lines
correspond to the threshold transition fields between the ori-
entational phases, and the dash-dotted lines correspond to the
equilibrium first-order phase transitions from strongly ordered
nematic phases PN1, PN2, AN, and HN to the weakly ordered
paranematic phase P, which is induced by the magnetic field.
In the present paper, the focus is on the orientational phase
transitions induced by an external magnetic field and the ori-
entational structure of the composite in the paranematic phase
P is not considered.

From the comparison of Figs. 7 and 8 we can see that
the transition field h(1)

‖ increases as the temperature rises, and

h(2)
‖ decreases, i.e., the magnetic field stabilizes the initial

orientational structure of the nematic in the PN1 phase and
destabilizes it in the PN2 phase. The transition field from the
angular phase AN to the homeotropic phase HN h⊥ for both
cases decreases with the temperature rise. It is interesting to
note here that for ξ = 3 × 104 (see Fig. 7) as the magnetic

FIG. 7. Orientational phase diagram of the suspension on the
magnetic field h-temperature τ plane for ω = 10 and ξ = 3 × 104.

field increases, lower temperatures are required for the tran-
sition to the paranematic phase P, that is, the magnetic field
destabilizes the homeotropic phase, while for ξ = 104 (see
Fig. 8) the opposite effect is observed, namely the magnetic
field stabilizes the homeotropic phase HN and as h increases,
higher temperatures are required for the transition to the
paranematic phase P.

C. Magneto-orientational response of the composite

Figures 9 and 10 show orientational responses of the
LC composite of CNTs to an external magnetic field for ξ =
3 × 104 > ξc and ξ = 104 < ξc, respectively. In the first case,
according to the diagrams shown in Figs. 4 and 5, switching
the magnetic field on leads to the preferential orientation of

FIG. 8. Orientational phase diagram of the suspension on the
magnetic field h-temperature τ plane for ω = 10 and ξ = 104.
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(a) (b) (c)

FIG. 9. Orientational response of the suspension to an external magnetic field for τ = 0.21, ξ = 3 × 104: (a) orientation angles of the LC
and CNT directors, (b) the nematic LC order parameter, which is responsible for the degree of ordering of molecules relative to the director n,
(c) the nematic order parameter of CNTs, which is responsible for the degree of ordering of nanotubes relative to the director m.

the long axes of the LC molecules and CNTs in the direction
of the field H, i.e., the first planar phase PN1 is stable, for
which � = 0 and � = 0 [see Figs. 2 and 9(a)]. The pla-
nar phase PN1 ceases to be stable when the magnetic field
reaches the first threshold value h(1)

‖ = 0.01647, above which
the peculiar Fréedericksz-like transition into the angular phase
AN occurs. In this phase, the orientation angles of the LC
and CNT directors increase with increasing field, i.e., due
to the negative anisotropy of diamagnetic susceptibility, the
long axes of the nematic molecules rotate orthogonal to the
field direction, entraining the CNTs as a result of orientational
coupling between the composite components. With further
growth of the magnetic field due to the positive anisotropy of
the diamagnetic susceptibility, the nanotubes begin to rotate
backward in the direction of the magnetic field, and the angle
� upon reaching the maximum value begins to decrease.
When the magnetic field reaches the second threshold value
h⊥ = 0.03568 there is a transition to a homeotropic phase HN
with fixed values of the orientation angles of the directors of
the LC � = π/2 and the CNTs � = 0. Figures 9(b) and 9(c)

show dependencies of the nematic order parameters of the LC
Sn and impurity subsystem Sp [see the definitions (20) and
(21)], describing the degree of orientational ordering of the
long axes of the LC molecules and CNTs, respectively, along
the vectors n and m. These figures show that the magnetic
field disorders the LC molecules and orders the CNTs in
the planar phase PN1 and angular phase AN. In the final
homeotropic phase HN, both order parameters Sn and Sp in-
crease as the magnetic field grows.

In the second case ξ = 104 < ξc, shown in Fig. 10, ac-
cording to the diagrams in Figs. 4 and 6 in weak fields, the
second planar phase PN2 is stable, in which the long axes
of the LC molecules and CNTs are oriented orthogonal to
the magnetic field and � = � = π/2. As can be seen see in
Fig. 10(a) this phase remains stable until the magnetic field
exceeds the threshold value h(2)

‖ = 0.02761. Above this value,
there is a transition to the angular phase AN, in which, due to
the positive anisotropy of the diamagnetic susceptibility, the
CNTs begin to rotate in the direction of the magnetic field
and transfer this rotation to the matrix. As the magnetic field

(a) (b) (c)

FIG. 10. Orientational response of the suspension to an external magnetic field for τ = 0.21, ξ = 104: (a) orientation angles of the LC and
CNT directors, (b) the nematic LC order parameter, which is responsible for the degree of ordering of the molecules relative to the director n,
(c) the nematic order parameter of CNTs, which is responsible for the degree of ordering of nanotubes relative to the director m.
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increases in the angular phase AN, the orientation angle of the
CNT director � decreases gradually and reaches zero value
at the second threshold field h = h⊥ = 0.04736, above which
the homeotropic phase HN is stable. In turn, the orientation
angle of the LC director � in the angular phase AN decreases
as the field increases and reaches the minimum, and then
increases to π/2, when the transition to the homeotropic phase
HN occurs at h = h⊥. In contrast to the previous case (ξ =
3 × 104) for ξ = 104 in the planar phase PN2, the magnetic
field orders the LC matrix and disorders the nanotubes, as
can be seen from the comparison of Figs. 9(b) and 10(b),
as well as Figs. 9(c) and 10(c). These figures show that in
the angular phase AN and homeotropic phase HN, the be-
haviors of the order parameters for ξ = 3 × 104 and ξ = 104

are similar.
Figures 9 and 10 demonstrate that for the presented range

of values, the magnetic field insignificantly changes the or-
dering of the LC molecules and CNTs toward the directors n
and m, respectively, in all the orientational nematic phases. It
should be noted that the calculation results showed that the
values of the biaxial parameters Dn and Dp [see definitions
(20) and (21)] remain close to zero and do not exceed 0.02
(by absolute value in the case of Dp < 0) both for ξ = 3 × 104

and ξ = 104. The parameters Qn and Qp, included in Eqs. (33)
and (34), which make it possible to determine the equilibrium
values of the orientation angles of the LC and CNT directors
� and �, also exhibit a slight change with an increase in
the magnetic field. From this we can conclude that, for the
presented values of the material parameters, the continuum
theory, which does not take into account the influence of
the magnetic field on the material parameters of the sys-
tem, correctly describes the behavior of the LC composite.
However, the situation changes with approaching the T point
near which the order parameter Qp decreases significantly and
turns to zero at the T point. Together with that according
to Eq. (39) the continuum theory parameters such as the
anisotropy of diamagnetic susceptibility of nanotubes χ

p
a and

surface-energy density of the coupling between the CNTs
and the LC molecules W behave similarly. Thus, near the T
point, the results of the continuum theory diverge from the
molecular-statistical approach, since the parameters χ

p
a and

W cannot be considered independent on the magnetic field.
Next, we will consider in detail the behavior of the composite
close to the T point.

To conclude this part, we should note that in Figs. 9 and
10 we only present stable solutions corresponding to the min-
imum values of the free-energy density (23). The analysis of
stable and unstable solutions is presented in the Appendix B.

D. Behavior of the composite near the triple point

As noted above, when approaching the triple T point,
the difference of the threshold fields h⊥ − h(2)

‖ decreases and
turns to zero at this point. At the same time the CNT order
parameter Qp also decreases and reaches zero both at the
T point and at the point of direct transition between phases
PN2 and HN (see the dashed line in Figs. 4–6). At the same
time, near the T point, the magnetic field induces biaxial
orientational ordering of the disperse subsystem. The degree
of biaxiality of the CNT ensemble can be determined using the

(a) (b)

(d)(c)

FIG. 11. Dependence of the CNT biaxiality parameter on the
magnetic field for τ = 0.21, ξ = 104 at (a) ω = 10, (b) ω = 2,
(c) ω = 1.7, and (d) ω = 1. The triple T point corresponds to ω =
ωT = 1.48.

parameter [71]

βp = 1 − 6

(
η

p
ikη

p
k jη

p
ji

)2

(
η

p
ikη

p
ik

)3 = 1 − R2
p

(
R2

p − 3Q2
p

)2

(
R2

p + Q2
p

)3 . (41)

This parameter lies in the range from 0 to 1. In uniaxial phases
βp = 0, while βp = 1 corresponds to maximum biaxiality.
Figure 11 shows the dependencies of CNT biaxiality degree
on the magnetic field for different values of coupling energy ω

distant and close to the T point ω = ωT = 1.48. Solid curves
correspond to stable solutions and dotted curves to unstable
ones. The biaxiality parameter of the LC subsystem βn, which
can be obtained by replacing the index p with n in Eq. (41),
remains close to zero for all investigated parameters and is not
considered further.

According to the diagram presented in Fig. 6, and
Fig. 11(a) away from the T point at ω = 10, the CNT bi-
axiality parameter increases slightly as the magnetic field
approaches the threshold h(2)

‖ . As the field increases in the
angular phase AN, the biaxiality parameter continues to in-
crease and after the transition to the homeotropic phase
HN at h > h⊥ decreases in a monotonous manner. The sit-
uation is different when approaching the T point, when the
difference in the threshold fields decreases h⊥ − h(2)

‖ . Fig-
ures 11(b) and 11(c) show the cases of ω = 2 and ω = 1.7,
respectively, which illustrate that the biaxiality parameter in-
creases significantly as the field approaches the threshold
value h(2)

‖ of the peculiar Fréedericksz-like transition and
reaches its maximum at the transition point. With further
growth of the field in the angular phase AN, the biaxial-
ity parameter slightly decreases and after transition to the
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homeotropic phase HN continues to decrease. Here it should
be noted that the dotted lines in the angular phase AN cor-
respond to unstable solutions of the system of equations of
orientational state (29) and (30), which were constructed at
fixed values of the orientation angles of the LC and CNT
directors both for � = � = π/2 and � = π/2, � = 0. From
the comparison of Figs. 11(b) and 11(c), it can be seen that
the biaxial character of the orientational ordering of CNTs
becomes stronger as we approach the T point.

The cases considered before satisfy the condition ω > ωT ,
when the existence of an angular phase AN is possible. In
Fig. 11(d) there is a case of ω = 1, when the angular phase AN
is absent, because ω < ωT . Figure 11(d) shows that previously
unstable solutions, which where located in the angular phase
AN, become stable, and the biaxiality parameter reaches a
maximum value twice as the field increases to the left and
right of the point of a direct transition between phases PN2
and HN. At fixed values of macroscopic angles � = � = π/2
positive values of Qp correspond to the PN2 phase, and neg-
ative values correspond to the homeotropic phase HN. The
transition point corresponds to the zero value of both parame-
ters Qp and βp. Thus, for CNT suspensions based on a nematic
LC with the negative anisotropy of diamagnetic susceptibility,
the maximum biaxiality of the impurity subsystem can be
detected near the T point. In other words, the biaxial ordering
of impurity particles in an LC matrix induced by a magnetic
field is possible with weak anchoring of LC molecules with
the CNT surface for ω ∼ 0.1–1. Based on the values of the
material parameters presented above, for such ω we obtain an
estimate for the magnetic field H ∼ 106–107 A m−1 required
to induce the maximum biaxiality of CNTs.

E. Conclusions to the molecular-statistical theory

In contrast to the continuum theory, the presented
molecular-statistical approach made it possible to take into
account both the influence of the magnetic field and the tem-
perature on the ordering of the LC and CNTs. Equations (33)
and (34) for the orientation angles of the LC and CNT direc-
tors obtained within the framework of the statistical theory
are similar to those found within the continuum theory (4)
and (5). Equations (33) and (34) together with the expressions
for the transition fields (35), (37), and (38) make it possible
to describe the same PN2, PN2, AN, and HN orientational
phases as the continuum theory Eqs. (4), (5), (11), (12), and
(13). However, several fundamental differences between the
two approaches have been found. First of all, as can be seen
from the expressions (11), (12), and (13), obtained within
the framework of the continuum theory, as the surface-energy
density of the coupling between the LC molecules and CNTs
decreases, the W values of the threshold fields monotonically
decrease and go to zero at W = 0, i.e., the angular phase AN
exists at any positive W . This result contradicts the phase
diagrams presented in Figs. 5 and 6, according to which the
angular phase disappears at finite coupling energies of the LC
and the CNTs ω. One more result is existence of the direct
transition from the planar phase PN2 to the homeotropic phase
HN without transition to the intermediate angular phase AN.
The next important result of the molecular-statistical approach
is the discovery of the triple T point where PN2, AN, and HN

phases coexist. These results can in no way be obtained within
the continuum theory. It is shown that, far from the T point,
the material parameters of the suspension weakly depend
on the magnetic field strength and the results of the continuum
theory and molecular-statistical approaches should coincide.
Near the T point, the biaxial nature of orientational ordering
of CNTs occurs, the nanotube order parameter Qp decreases
considerably with increasing magnetic field, and the material
parameters of the suspension, such as the anisotropy of the
CNT diamagnetic susceptibility χ

p
a and the surface-energy

density of the coupling between the LC and nanotubes W ,
change along with it [see expressions (39)]. In this case, the
results of the continuum theory and the molecular-statistical
theory diverge.

V. CONCLUSION

The paper proposes a method of bridging the continuum
theory to the molecular-statistical approach to describe a spa-
tially homogeneous CNT suspension in a nematic LC located
in the magnetic field. We have considered the case of opposite
sign anisotropies of diamagnetic susceptibility of the compos-
ite components, which leads to competition of orientational
mechanisms in the magnetic field and changes in the mutual
orientation of the main axes of the nematic order of the LC
and the CNTs.

Within the continuum theory, it has been established that
with increasing magnetic field the conditions of the CNT
coupling with the LC matrix change in a threshold way: the
initial planar type of coupling is consistently transformed
through the angular type into the homeotropic one. We have
obtained analytical expressions for the threshold fields of pe-
culiar Fréedericksz-like magnetic transitions between nematic
orientational phases, which correspond to different types of
coupling of the LC molecules and CNTs.

To construct the molecular-statistical theory of CNT
suspensions in an LC, we used the previously proposed ex-
pression for the free-energy density written in a tensor form
[14]. Using the biaxial form of the orientation tensors for
the LC and CNTs, we have obtained a system of four inte-
gral equations of the orientational state for the scalar order
parameters. Through minimizing the free-energy density by
the orientation angles of the LC and CNT directors, we have
obtained two additional equations similar to those found in
the continuum theory. This approach allowed relating the
material parameters of the continuum theory, which include
the surface-energy density of the coupling between the LC
molecules and CNTs as well as the anisotropy of the diamag-
netic susceptibility of the dispersion medium and the impurity
subsystem, to the order parameters of the molecular-statistical
theory. As a result, we have found temperature dependencies
of the threshold fields of transitions between different nematic
phases that differ in the type of the LC and CNT orienta-
tional coupling. We have studied the magneto-orientational
response of the composite and constructed the temperature
and field dependencies of the LC and impurity subsystems
order parameters. It has been found that when the orienta-
tional coupling of the LC matrix and the CNTs is weak, with
an increase in the magnetic field there can occur a direct
transition from the nematic phase with the planar coupling
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to the phase with the homeotropic coupling, bypassing the
states with angular coupling. This result cannot be reached
within the continuum theory. We have studied the biaxial
orientational ordering of CNTs in the LC matrix induced by
the magnetic field.

The molecular-statistical approach proposed in this work
is the most general, since it includes the biaxial form of the
orientation tensors of the LC and impurity subsystem. This
allows further consideration of LC composites with different
types of particles, where there is a competition of orienta-
tional mechanisms and the existence of angular orientational
coupling between the directors of LC and the impurity par-
ticles is possible. Besides, there can be specific nontrivial
distributions of director and order parameters in the presence
of nanotubes, or nanoparticles, or even flat surfaces (see, for
example, Refs. [72–74]), which requires further development
of the molecular-statistical theory.
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APPENDIX A: TENSOR CONVOLUTIONS

Normalization of tensors ηn
ik and η

p
ik [see expressions (15)

and (16)] is chosen so that their convolutions have a simple
form

ηn
ikη

n
ik = Q2

n + R2
n, η

p
ikη

p
ik = Q2

p + R2
p,

ηn
ikη

p
ik = QnQp cos 2(� − �) + RnRp. (A1)

Tensor convolutions ηn
ik and η

p
ik with the magnetic field vector

h give as follows:√
2

3
hihkη

n
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3
h2(
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3Qn cos 2� − Rn),√
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3
hihkη

p
ik = 1

3
h2(

√
3Qp cos 2� − Rp). (A2)

APPENDIX B: ANALYSIS OF
THE FREE-ENERGY DENSITY

Figure 12 shows field dependencies of the free-energy den-
sity (32), corresponding to different solutions of the system of
Eqs. (29), (30), (33), and (34). The solid lines here correspond
to thermodynamically stable solutions selected from the con-
dition of minimum free-energy density (32), and the dotted
lines represent the unstable ones. The calculation results in
Figs. 12(a) and 12(b) correspond to the magneto-orientational
responses of the suspension shown in Figs. 9 and 10, re-
spectively. In Fig. 12 there are no solutions for the isotropic
phase at h = 0 (Fms = 0) and the weakly ordered paranematic
phase for the studied magnetic field values h = 0, since they
correspond to larger values of the free-energy density.

(a) (b)

FIG. 12. Dependencies of the free-energy density on the mag-
netic field for ω = 10, τ = 0.21 at (a) ξ = 3 × 104 and (b) ξ = 104.

Figure 12(a) shows that for ξ = 3 × 104 > ξc the first pla-
nar phase PN1 is stable until h < h(1)

‖ (the curve � = � = 0),

at h(1)
‖ < h < h⊥ after a peculiar Fréedericksz-like transition,

the stable one is the angular phase AN (the curve 0 < � <

π/2; 0 < � < π/2), where, as the field increases, the LC
director rotates n in the direction of the field according to
Fig. 9(a). In the magnetic fields exceeding h = h⊥, stable
solutions are those corresponding to the homeotropic phase
HN [the curve � = π/2; � = 0 in Fig. 12(a)]. If we neglected
the existence of the angular phase AN, i.e., we neglect the pos-
sibility of changing of the LC and CNT directors orientations
in the magnetic field, according to Fig. 12(a), the PN1–HN
transition would occur as a first-order phase transition (see
the intersection point of the dotted curves � = � = 0 and
� = π/2; � = 0) with the jumps in the order parameters
of the LC Rn, Qp and the CNTs Rp, Qp. The angular phase
AN sews the solutions corresponding to the planar phase PN1
and homeotropic phase HN, resulting in the absence of the
jumps of the order parameter Rn, Qp, Rp, and Qp. Although the
curves of the dependencies of these parameters on the mag-
netic field are continuous, nonmonotone and contain breaking
points at h = h(1)

‖ and h = h⊥ [see the definitions (20) and (21)
as well as Figs. 9(b) and 9(c)].

This is somewhat different in the case of ξ = 104 < ξc,
shown in Fig. 12(b). The solutions corresponding to the fixed
angles, namely, � = � = π/2 and � = π/2; � = 0 have the
same free-energy densities and differ only by the sign of the
order parameter Qp. Thus, for the second planar phase PN2 at
� = � = π/2 the orientations of the LC and CNT directors
are set by the vectors n and m, respectively, and the param-
eter Qp > 0. If we solve the system of orientational state
equations for the planar phase PN2 at fixed angles � = π/2;
� = 0, the orientations of the LC and CNT directors are de-
termined by the vectors n and p (see Fig. 2), respectively, and
the parameter Qp < 0. Similarly, for the homeotropic phase
HN at � = � = π/2 the parameter Qp < 0 and the LC and
CNT directors are the vectors n and p. At � = π/2, � = 0
we obtain Qp > 0 and the LC and CNT directors correspond
to the vectors n and m. For the range of magnetic fields
h(2)

‖ < h < h⊥, corresponding to the angular phase AN at any
of the above fixed angles options with the growth of the field
there is a change in the parameter Qp sign, which corresponds
to the reorientation of the CNTs in the direction of the field
[see the dotted lines in Fig. 12(b)]. Figure 12(b) shows that
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for h(2)
‖ < h < h⊥ the solutions corresponding to the angu-

lar phase AN have smaller values of the free-energy density
and are therefore thermodynamically stable relative to the
solutions that were constructed at fixed angles � and � = 0.
Here, it should be recalled that the angular phase cannot exist
at any value of ξ and ω. According to the diagrams shown in
Figs. 4–6 there is a triple T point to the left of which there is a
direct transition PN2–HN with a change in the Qp parameter
sign without rotations of the CNT and LC directors.

Thus, we can conclude that the direct transition to the
homeotropic phase HN occurs from a state in which the LC
director is already oriented orthogonal to the magnetic field,
i.e., from the second planar phase PN2. The transition to
the homeotropic phase HN from the first planar phase PN1
must be accompanied by a rotation of the LC director, i.e.,
such a transition cannot be direct. It is expected that as the
concentration of the impurity yp increases the situation can be
reversed.
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Chem. 6, 74 (2010).
[17] B. Kinkead and T. Hegmann, J. Mater. Chem. 20, 448 (2010).
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