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Controlling the direction of steady electric fields in liquid using nonantiperiodic potentials

Aref Hashemi *

Courant Institute, New York University, New York, New York 10012, USA

Mehrdad Tahernia
Department of Information Engineering, The Chinese University of Hong Kong

William D. Ristenpart † and Gregory H. Miller‡

Department of Chemical Engineering, University of California Davis, Davis, California 95616, USA

(Received 22 September 2022; accepted 17 April 2023; published 31 May 2023)

When applying an oscillatory electric potential to an electrolyte solution, it is commonly assumed that the
choice of which electrode is grounded or powered does not matter because the time average of the electric
potential is zero. Recent theoretical, numerical, and experimental work, however, has established that certain
types of multimodal oscillatory potentials that are “nonantiperiodic” can induce a net steady field toward either
the grounded or powered electrode [A. Hashemi et al., Phys. Rev. E 105, 065001 (2022)]. Here, we elaborate on
the nature of these steady fields through numerical and theoretical analyses of the asymmetric rectified electric
field (AREF). We demonstrate that AREFs induced by a nonantiperiodic electric potential, e.g., by a two-mode
waveform with modes at 2 and 3 Hz, invariably yields a steady field that is spatially dissymmetric between
two parallel electrodes, such that swapping which electrode is powered changes the direction of the field.
Furthermore, we show that, while the single-mode AREF occurs in asymmetric electrolytes, nonantiperiodic
electric potentials create a steady field in electrolytes even if the cations and anions have the same mobilities.
Additionally, using a perturbation expansion, we demonstrate that the dissymmetric AREF occurs due to odd
nonlinear orders of the applied potential. We further generalize the theory by demonstrating that the dissymmetric
field occurs for all classes of zero-time-average (no dc bias) periodic potentials, including triangular and
rectangular pulses, and we discuss how these steady fields can tremendously change the interpretation, design,
and applications of electrochemical and electrokinetic systems.
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I. INTRODUCTION

The application of ac electric potentials to liquids is
a ubiquitous element of electrokinetic systems, including
induced-charge electrokinetics (ICEK) [1,2], ac electroosmo-
sis (ACEO) [3–6], and electrohydrodynamic (EHD) manipu-
lation of colloids [7–10]. Over the last few decades, a great
body of research has focused on evaluating the dynamic
response of liquids to ac polarization, in order to find the
induced electric field and ion concentrations within the liquid
[11–13]. However, ion-containing liquids respond to ac polar-
izations in intricate ways, especially when the dissolved ions
have unequal mobilities. In particular, recent studies have es-
tablished the existence of an induced, long-range, steady field
in liquids, referred to as an asymmetric rectified electric field
(AREF) [14–17]. A perfectly sinusoidal potential induces an
electric field with a nonzero time average, a zero-frequency
component, as a direct result of the nonlinear effects and
ionic mobility mismatch. AREF was shown to provide qual-
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itative explanations for several long-standing questions in
electrokinetics and to significantly change the interpretation
of experimental observations [14,18,19].

For a single-mode sinusoidal applied potential of ampli-
tude φ0 and angular frequency ω, the one-dimensional AREF
between parallel electrodes is antisymmetric with respect to
the midplane [14]. Depending on the applied frequency, elec-
trolyte type, and electrode spacing, AREF may change sign
several times within the liquid [15]. However, it remains iden-
tically zero at the midplane and at the electrodes. Such an
antisymmetric shape indicates that the AREF does not change
upon swapping the powered and the grounded electrodes, or
introducing any time or phase lag to the applied potential.

However, the aforementioned characteristics of AREF do
not necessarily hold for other classes of zero-time-average
(no dc bias) periodic potentials. In fact, a recent numeri-
cal and experimental study by Hashemi et al. [20] shows
that oscillatory potentials with a certain time symmetry break
can induce AREFs that are dissymmetric (as different from
antisymmetric) in space. Such behavior is a reminiscent of
so-called “temporal ratchets,” a well-known phenomenon in
the context of point particles and optical and quantum lattice
systems [21–24]. Here, we provide an extensive numerical
and theoretical analysis of the ratchet AREF, its origin, and
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FIG. 1. Schematic diagram of the problem. An electrolyte con-
fined between parallel, planar electrodes, separated by a gap 2�, and
powered by a multimodal potential ψ (t ) with period 2τ .

its important implications to electrokinetics. In particular, we
investigate the AREF induced by an applied multimodal elec-
tric potential.

II. PROBLEM STATEMENT

Consider a dilute binary 1-1 electrolyte confined by two
parallel, planar electrodes spaced by a gap 2� (Fig. 1). A
two-mode potential ψ (t ) = φ0[sin(ωt ) + sin(αωt )], with α a
rational number, is applied on the electrodes as

φ(−�, t ) = ψ (t ), φ(�, t ) = 0. (1)

The starting point in theory to investigate the dynamics of
such a system is the Poisson-Nernst-Planck (PNP) model. The
Poisson equation relates the free charge density to the electric
field gradient,

−ε
∂2φ

∂x2 = ρ = e(n+ − n−), (2)

while the transport of ions is governed by the Nernst-Planck
equations,

∂n±
∂t

= D±
∂2n±
∂x2 ± D±

φT

∂

∂x

(
n±

∂φ

∂x

)
. (3)

Here, the symbols denote permittivity of the electrolyte, ε;
electric potential, φ; free charge number density, ρ; charge of
a proton, e; thermal potential, φT ; ion number concentration,
n±; diffusivity, D±; location with respect to the midplane, x;
and time, t .

Initially, the ions are uniformly distributed n±(x, 0) = n∞
(the bulk electrolyte concentration), and the electric potential
is zero everywhere φ(x, 0) = 0. Note that for simplicity, we
neglect the intrinsic zeta potential of the electrodes. Finally, at
x = ±� (i.e., the electrodes), we set the flux of ions equal to
zero (i.e., no electrochemistry).

III. NUMERICAL RESULTS AND DISCUSSION

The system of equations is solved numerically following
the algorithm reported by Hashemi et al. [14]. (An implemen-
tation of this algorithm is freely available online [25].) We
focus primarily on the time average of the harmonic solutions
defined by

〈χ〉 = 1

2τ

∫ t+2τ

t
χdt, 2τ = 1

gcd(1, α)

2π

ω
, (4)

FIG. 2. Representative numerical solutions to (a) the AREF
〈Ẽ〉 = 〈E〉/(κφT ) and (b) time-average free charge density 〈ρ̃〉 =
〈ρ〉/n∞, for two-mode applied potentials [φ(t,−�) = φ0[sin(ωt ) +
sin(αωt )], φ(�, t ) = 0] in the bulk electrolyte. Parameters:
φ0 = 10φT , f = ω/(2π ) = 50 Hz, 2� = 20 µm, D+ = 10−9 m2/s,
D−/D+ = 2, c∞ = 1 mM.

where 2τ is the period of the applied potential (or that of
the harmonic solution), and gcd(1, α) is the greatest com-
mon divisor of 1 and α [26]. Representative solutions to the
AREF (time-average electric field) in the bulk electrolyte (i.e.,
several Debye layer lengths away from the electrodes) are
provided in Fig. 2(a). When α = 1, the applied potential is a
single-mode sinusoid which yields the antisymmetric AREF
[Fig. 2(a), dashed red curve]. The case of α = 2 reveals
a surprising phenomena: the shape of the AREF becomes
dissymmetric with a nonzero value even at the midplane
[Fig. 2(a), solid blue curve]. Further complicating matters, for
α = 3, the AREF is again perfectly antisymmetric [Fig. 2(a),
dashed-dotted green curve]. Therefore, it appears that depend-
ing on α, the induced AREF can be either antisymmetric
with a zero value at the midplane or dissymmetric. The corre-
sponding spatial distributions of the time-average free charge
density 〈ρ〉 are illustrated in Fig. 2(b) for different α values.
Consistent with the AREF distributions in Fig. 2(a), 〈ρ〉 is
spatially even for α = 1 and 3, but takes a dissymmetric shape
for α = 2.

The behavior becomes more complicated at the Debye
scale (i.e., up a few Debye lengths away from the electrodes).
Figures 3(a) and 3(b) show the AREF within 4 Debye lengths
away from the electrodes for α = 1 and 2. When α = 1 (i.e.,
a single-mode sinusoidal potential), AREF is zero at the elec-
trodes, which is a direct result of the antisymmetric shape of
the AREF and the total charge neutrality. The former can be
clarified by a parity analysis of the second-order perturbation
solution (in terms of the applied potential) to the problem (see
Supplemental Material [27]). The total charge neutrality on
the other hand enforces the AREF at one electrode to be equal
to that on the other electrode, that is 〈E〉−� = 〈E〉� = K for
some constant K . But, for AREF to be antisymmetric, K has
to be zero. It is worth mentioning that while the total charge
neutrality is held (and enforced by the boundary conditions),
AREF breaks the local charge neutrality. It can be seen from
the nonuniform spatial structure of the AREF and a consider-
ation of Gauss’s law.

When α = 2, an astonishingly large AREF is induced
on the electrodes (≈4 orders of magnitude larger than the
AREF in the bulk electrolyte). We note, however, that the

054608-2



CONTROLLING THE DIRECTION OF STEADY ELECTRIC … PHYSICAL REVIEW E 107, 054608 (2023)

FIG. 3. Representative numerical solutions to (a), (b) the AREF
〈Ẽ〉 = 〈E〉/(κφT ) and (c), (d) time-average free charge density 〈ρ̃〉 =
〈ρ〉/n∞, for two-mode applied potentials [φ(t,−�) = φ0[sin(ωt ) +
sin(αωt )], φ(�, t ) = 0] at the Debye scale. For visualization pur-
poses, the 〈ρ̃〉 data for α = 2 in (c) and (d) are divided by 100. The
spatial variable y denotes the distance from the corresponding elec-
trode. Parameters: φ0 = 10φT , f = ω/(2π ) = 50 Hz, 2� = 20 µm,
D+ = 10−9 m2/s, D−/D+ = 2, c∞ = 1 mM.

total charge neutrality still holds. The mere observation of
a nonzero AREF at the electrodes for α = 2 is consistent
with the dissymmetric shape of AREF in the bulk electrolyte:
The integral of the AREF over the entire domain has to be
zero, i.e.,

∫ �

−�
〈E〉dx = 〈φ〉−� − 〈φ〉� = 0. In other words, the

nonzero AREF at the electrodes and the dissymmetric shape
of the AREF in the bulk electrolyte are interrelated. A quali-
tatively consistent behavior is observed for the distribution of
ρ [Figs. 3(c) and 3(d)]. The induced 〈ρ〉 on the two electrodes
are the same for α = 1. However, when α = 2, there is a sign
flip in the time-average free charge density induced at the two
electrodes (〈ρ〉−� = −〈ρ〉�).

We now ask what happens if we flip the sign of the applied
potential [−ψ (t ) instead of ψ (t )]. For α = 1 (antisymmetric
AREF), the curves of the induced AREF by ψ (t ) and −ψ (t )
potentials are superimposed [Fig. 4(a)]. However, flipping the
sign of the potential when α = 2 (dissymmetric AREF) yields
a mirrored version of the AREF with respect to the midplane
[Fig. 4(b)]. It is worth mentioning that the sum of the solid
red [ψ (t )] and dashed blue [−ψ (t )] curves in Fig. 4(b) is
antisymmetric and zero at the midplane; the dissymmetric
components of the AREFs due to ψ (t ) and −ψ (t ) potentials
cancel each other.

We provide an explanation for this numerical observation
using symmetry arguments. Note that the field-induced ion
motion depends only on the potential gradient (not the poten-
tial itself). Therefore, one can show that flipping the sign of a
periodic, time-varying potential ψ (t ) at x = −� is equivalent

FIG. 4. Flipping the sign of the applied potential at x = −� for
(a) α = 1 and (b) α = 2. Parameters: φ0 = 10φT , f = ω/(2π ) =
50 Hz, 2� = 20 µm, D+ = 10−9 m2/s, D−/D+ = 2, c∞ = 1 mM.

to swapping the powered and grounded electrodes [by adding
the potential ψ (t ) to the both electrodes]. In other words, the
electric field induced by applying −ψ (t ) on the electrode at
x = −� is the same as that induced by applying ψ (t ) on the
electrode at x = �. Now, a simple change of variable x → −x
clarifies that if the potential ψ (t ) yields the electric field
E (x, t ), the potential −ψ (t ) would yield the mirrored version,
−E (−x, t ) [cf. Fig. 4(b)].

Focusing on the midplane (x = 0), one can write that the
functional E (0, t ) = ε(t ) = f (ψ, t ) is odd in ψ . Therefore, if
ε(t ) is the induced electric field at the midplane due to the po-
tential ψ (t ), −ε(t ) would be that due to the potential −ψ (t ).
Now consider antiperiodic potentials, i.e., ψ (t + τ ) = −ψ (t ).
We prove that 〈ε〉 (i.e., AREF at the midplane) has to be zero
for antiperiodic potentials:

ε(t + τ ) = f (ψ, t + τ ) = f (−ψ, t ) = −ε(t ). (5)

Therefore, ε(t + τ ) = −ε(t ), which upon taking a time av-
erage yields 〈ε〉 = −〈ε〉, indicating 〈ε〉 = 0. It is worth
mentioning that the above argument is general and holds for
any antiperiodic potential ψ (t ). It appears that for such poten-
tials the zero-frequency components of the induced electric
field cancel each other at the midplane, yielding an antisym-
metric AREF. However, they do not necessarily cancel out
when the excitation is nonantiperiodic.

Figure 5 illustrates several examples of the antiperiodic
and nonantiperiodic two-mode potentials. One can show that
ψ (t ) is antiperiodic if α, in its simplified fractional form,
can be expressed as {odd integer}/{odd integer} (e.g., α =
1, 5

3 , 3, 5, . . . ). Otherwise, the two-mode potential is nonan-
tiperiodic (e.g., α = 2, 4

3 , 3
2 , 4, . . . ). (See Hashemi et al. [20]

for a simple proof.) Our numerical results for a wide range
of α values corroborate our theory. For all antiperiodic po-
tentials tested, the AREF is zero at the midplane, and is
antisymmetric in space [e.g., α = 1 and 3 in Fig. 2(a)]. Fur-
thermore, a dissymmetric AREF with a nonzero value at
the midplane is induced for nonantiperiodic potentials [e.g.,
α = 2 in Fig. 2(a)]. It should be noted though that the degree
by which the AREF becomes dissymmetric is a complicated
function of α. However, regardless of the system parameters,

054608-3



HASHEMI, TAHERNIA, RISTENPART, AND MILLER PHYSICAL REVIEW E 107, 054608 (2023)

FIG. 5. Examples of (a) antiperiodic and (b) nonantiperiodic
two-mode applied potentials φ0[sin(ωt ) + sin(αωt )].

α = 2 appears to induce the most significant dissymmetric
behavior.

In Fig. 6(a), we show the effect of the two-mode potential
amplitude φ0 on the induced AREF for α = 2. As a high-order
nonlinear phenomenon [34], the dissymmetry rapidly grows
with the amplitude. At sufficiently low amplitudes, the dis-
symmetry disappears and the AREF is almost antisymmetric
[cf. Fig. 6(a), dashed red curve]. An interesting finding here
is that unlike the single-mode AREF, the curves of different
voltage amplitudes do not collapse. There is no scaling factor
(as a function of �0) that maps all of the AREF curves onto a
master curve. This is particularly significant to the application
of the AREF in particle height bifurcation [35,36]. It has
been established that for a single-mode potential, the AREF-
induced levitation height of charged colloids is insensitive to
the amplitude of the potential, as are the zeros of the AREF,
which determine approximately the heights at which the total
force on a colloid is zero [14,18]. Here, however, the zeros
of the AREF, and hence the levitation heights of the colloids,
depend on the applied potential. This adds another parameter,
along with the applied frequency, to tune the levitation height.

The effect of the applied frequency f = ω/(2π ) is more
complicated. Even for a single-mode potential, it has been
established that the spatial oscillation of the AREF (its shape)
is very sensitive to frequency [14,15]. For the two-mode po-

FIG. 6. Effects of the (a) two-mode potential amplitude and
(b) frequency on the dissymmetric AREF. For visualization purposes
the data in (a) are scaled by �3

0 with �0 = φ0/φT . Parameters: φ0 =
10φT for (b), f = ω/(2π ) = 50 Hz for (a), α = 2, 2� = 20 µm,
D+ = 10−9 m2/s, D−/D+ = 2, c∞ = 1 mM.

FIG. 7. Spatial structure of the dissymmetric AREF for differ-
ent 1-1 binary electrolytes. Parameters: φ0 = 10φT for (b), f =
ω/(2π ) = 50 Hz for (a), α = 2, 2� = 20 µm, c∞ = 1 mM. The ref-
erence results correspond to D+ = 10−9 m2/s.

tential, similar to the antisymmetric AREF, increasing the
frequency amplifies the AREF peak magnitude in the bulk and
shifts the peak location toward the electrodes [14,15], albeit
through a more complex pattern [cf. Fig. 6(b)]. Furthermore,
we note that the dissymmetry intensifies substantially with
frequency. More importantly, the sign of AREF at the mid-
plane is changed upon changing the frequency.

In Fig. 7 we inspect the effect of electrolyte type on the
dissymmetric AREF. We focus here only on 1-1 electrolytes,
and defer an analysis of electrolytes with valence mismatch
to future efforts. Two reference results for D−/D+ = 1 and 2
are also depicted for comparison. We observe that changing
the electrolyte from KOH (D+ = 1.96 × 10−9 m2/s, D− =
5.27 × 10−9 m2/s) to HCl (D+ = 9.31 × 10−9 m2/s, D− =
2.03 × 10−9 m2/s) reverses the direction of the dissymmetric
AREF. Such a field reversal has been observed for the single-
mode AREF as well (see for example Fig. 2 in Ref. [14] and
Fig. 8 in Ref. [16]). Interestingly, for KCl, with D+ ≈ D−
(D+ = 1.96 × 10−9 m2/s, D− = 2.03 × 10−9 m2/s), we ob-
serve a steady field with magnitudes comparable to KOH and
HCl, which is unexpected for such a moderate amplitude of
the electric potential. (See Ref. [15] for a detailed analysis
of the effect of ionic mobility mismatch on the magnitude
of the AREF.) In fact, our results indicate that the steady
field is generated even in a symmetric electrolyte (see the
D+ = D− case in Fig. 7). In contrast, the single-mode AREF
can only be generated in asymmetric electrolytes. Here, the
source of asymmetry that yields the steady field is the applied
nonantiperiodic electric potential.

Following Hashemi et al. [14], we have performed sev-
eral consistency checks on the numerical results, such as
the feasibility of the calculated instantaneous ion concentra-
tions, electric field, and induced zeta potential at the electrode
surface. Furthermore, the numerical solution converges and
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FIG. 8. Dissymmetric AREF due to a zero-time-average trian-
gular pulse potential applied at x = −�. (a) Positive (at t = t1) and
negative (at t = t2) triangular pulses of width 1

2 τ and amplitude
φ0. (b) The corresponding induced AREF for different values of
(t2 − t1)/τ . Parameters: φ0 = 20φT , 1/(2τ ) = 50 Hz, 2� = 20 µm,
D+ = 10−9 m2/s, D−/D+ = 2, c∞ = 1 mM.

the total mass is conserved. We have inspected the total
charge neutrality by

∫ �

−�
∂2〈φ〉/∂x2dx = 0 and, alternatively,

by 〈E〉−� = 〈E〉�. The condition
∫ �

−�
〈E〉 = 0 is also checked

to ensure that the numerical solution satisfies the boundary
conditions. A concern in the dynamic solution of the PNP
equations under oscillatory polarization is whether quasi-
steady-state conditions (harmonic solution) are achieved. We
have accurately checked that the quasisteady conditions are
attained for the present numerical results.

We emphasize that our theory is not limited to any spe-
cific potential waveform. A general zero-mean function ψ (t )
with a period 2τ has a Fourier series of the form ψ (t ) =∑∞

n=1[an cos(nπt/τ ) + bn sin(nπt/τ )], which is antiperiodic
if an = bn = 0 for even n. Therefore, any antiperiodic ψ (t )
can be expressed as

ψ (t ) =
∞∑

n=1,3,...

[
an cos

(
nπt

τ

)
+ bn sin

(
nπt

τ

)]
, (6)

and the ratio of any two frequencies will be the ratio of two
odd integers.

It should be understood that for a given applied poten-
tial ψ (t ) in the first half of the period t ∈ [0, τ ], there is
a unique antiperiodic potential that occurs by setting ψ (t +
τ ) = −ψ (t ). But an infinite number of nonantiperiodic po-
tentials can be constructed. We demonstrate this argument

for a triangular pulse of period 2τ , illustrated in Fig. 8. Two
pulses of amplitude φ0 and width 1

2τ are applied at t1 = 1
4τ

and 3
4τ � t2 � 7

4τ . We keep t1 fixed and vary t2 to cover all
possible cases. The induced AREFs are shown in Fig. 8(b)
for different t2 − t1 values. The AREF is antisymmetric only
if t2 − t1 = τ for which the potential in the second half pe-
riod becomes the negative of that in the first half [Fig. 8(b),
solid blue curve]. All other constructions yield a dissymmetric
AREF. It is interesting to note that the cases t2 − t1 = 1

2τ (con-
secutive pulses in the first half) and t2 − t1 = 3

2τ (maximally
apart pulses) provide the maximum dissymmetry and are mir-
rored. A simple time shift t → 3

2τ shows that the condition of
maximally apart pulses is actually the negative version of the
back-to-back pulses, and therefore yields the mirrored version
of the AREF [cf. Fig. 4(b)].

IV. CONCLUSIONS

In summary, our results show that ions and charged col-
loids can be concentrated to one side of a slit channel, or
another, by tuning the applied potential waveform. We demon-
strate that the induced AREF between parallel electrodes by
a nonantiperiodic electric potential is spatially dissymmetric.
An intriguing implication is then that swapping the powered
and grounded electrodes of an electrochemical cell alters the
system behavior, an observation at odds with the classical
understanding of the electrokinetics. The dissymmetric AREF
can tremendously change the design of electrokinetic systems
and their applications. It was recently shown at length that
the AREF-induced electrophoretic forces are several orders
of magnitude larger that gravitational and colloidal forces
[14,15,18,19]. Researchers can therefore use the dissymmet-
ric AREF to design electrochemical cells that selectively (to
some extent) separate charged colloidal particles or bioparti-
cles near the powered or the grounded electrodes. Moreover,
the sole physical implications of the dissymmetric AREF
opens another chapter for the researchers in the electrokinetic
community.
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