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Elastic response of colloidal smectic liquid crystals: Insights from microscopic theory
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Elongated colloidal rods at sufficient packing conditions are known to form stable lamellar or smectic phases.
Using a simplified volume-exclusion model, we propose a generic equation of state for hard-rod smectics that
is robust against simulation results and is independent of the rod aspect ratio. We then extend our theory by
exploring the elastic properties of a hard-rod smectic, including the layer compressibility (B) and bending
modulus (K1). By introducing weak backbone flexibility we are able to compare our predictions with experi-
mental results on smectics of filamentous virus rods (fd) and find quantitative agreement between the smectic
layer spacing, the out-of-plane fluctuation strength, as well as the smectic penetration length λ = √

K1/B. We
demonstrate that the layer bending modulus is dominated by director splay and depends sensitively on lamellar
out-of-plane fluctuations that we account for on the single-rod level. We find that the ratio between the smectic
penetration length and the lamellar spacing is about two orders of magnitude smaller than typical values reported
for thermotropic smectics. We attribute this to the fact that colloidal smectics are considerably softer in terms
of layer compression than their thermotropic counterparts while the cost of layer bending is of comparable
magnitude.
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I. INTRODUCTION

Nonspherical colloidal particles or elongated molecules
form liquid crystal mesophases with properties interpolat-
ing between those of a fluid, such as liquidlike diffusivity,
and those of a crystal such as long-ranged periodic order
[1]. Because of these hybrid properties, liquid crystals find
widespread use in technological applications and knowledge
of their phase behavior and mechanical response is of key
importance in controlling and optimizing material properties
composed of strongly nonspherical moieties [2]. Concepts
of liquid crystal physics are also instructive to understand
processes in the living cell [3,4] and to indentify structures
in biological matter [5].

Nematic phases are the simplest of such structures and are
characterized by long-ranged orientational order of the parti-
cles, while lacking positional order in any direction. Moving
one level up in order we find smectic-A– (SmA) type order
that combines long-ranged stacking order along the main di-
rection of particle alignment while retaining fluidity in the
plane transverse to the layer normal. As such these lamellar
structures can be interpreted in terms of a combination of
unidirectional order and bidimensional fluidity which endows
these materials with specific material properties owing to their
distinct membranelike character [6–8].

As for the colloidal domain, phase transition among ne-
matic, smectic, and other phases that may appear on variation
of particle density have been the subject of intense theoret-
ical study (the reader is referred to a number of excellent
review papers on this topic [9–12]). Minimal models that
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account for the stability nematic phases [13] and those
with lower symmetry such as smectic [14] and columnar
organizations [15,16] are based on simple uniaxial shapes
(such as cylinders) that experience hard or steeply repulsive
interactions.

For smectic materials, theoretical efforts have been aimed
mostly at analyzing mechanical instabilities based on con-
tinuum theory where the underlying microscopic features of
the particles are ignored. On the other hand, for rod-shaped
colloids microscopic theories based on density functional con-
cepts and simulations have primarily addressed the role of
smectic order in the overall phase diagram of nonspherical
colloids [14,17–19], subtle intralayer order [20], and, more
recently, also their diffusive properties [21–23].

In this work, we aim to take a more in-depth look at colloid-
based smectic liquid crystals taking hard-core cylinders as a
benchmark model. We wish to address not only thermody-
namic properties such as the equation of state but also various
mesoscopic properties including the layer spacing, thermal
corrugation of the smectic layers, and the elastic properties
related to layer compression and layer bending. The latter
are routinely described by the layer compression and bending
moduli, B and K1, respectively [1]. Our findings are relevant
for a variety of colloidal smectic systems whose lamellar
structure is stabilized primarily (but not exclusively) by hard-
core volume exclusion such as TMV [24,25], TiO2 [26],
β-FeOOH [27], goethite [28], CdSe [29], and gold nanorods
[30]. All smectic structures observed thus far were of the SmA
or SmB type. While a SmA phase retains full intralayer fluid-
ity, the SmB phase is characterized by long-ranged positional
order of some kind within each layer. Examples of SmC type
layering, in which the colloidal rods are tilted with respect to
the layer normal, are scarce. Observations of ordering of this
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kind have been reported for silica rods subjected to gravita-
tional compression [31].

A number of recent experimental studies have been de-
voted to classifying topological defects in strongly confined
colloidal smectics [32–34]. The symmetry and spatial extent
of these defects depend strongly on the elastic properties of
the smectic material which we intend to address here from
a microscopic theoretical viewpoint. Further inspiration for
undertaking a study of smectic elastic moduli stems from
the emergence of advanced continuum theories for smectics
[35–37] that rely on the elastic moduli to predict the response
of layered materials to geometric frustration and other exter-
nal stimuli.

Our approach is based on a two-way extension of the
commonly employed cell theory for positionally ordered liq-
uid crystals [38–42]. The first is a simple scaling description
for a single lamellar fluid composed of near-parallel rods by
decoupling the effects of orientational fluctuations from the
parallel-core contribution. We demonstrate that the scaling
approach gives a correct rendering of the onset of smectic
and columnar order from a nematic melt for rod- and disk-
shaped colloids alike. The second modification of the original
cell-approach involves taking into account the out-of-plane
fluctuations at the single-rod level and highlight their subtle
role in determining the elastic properties of a smectic material,
mostly in the layer bending modulus K1. By suitably renor-
malizing quantities in terms of the individual rod dimensions
we show that the equation of state and the elastic moduli of
a hard-rod smectic can be rendered independent of the rod
aspect ratio. In particular, we demonstrate that the smectic
penetration length λ = √

K1/B, which should be interpreted
as the intrinsic length scale over which elastic distortions such
as edge and screw-dislocations relax in a lamellar system,
does not primarily depend on the rod shape but only on the
overall packing fraction of the smectic material.

We subsequently discuss the role of backbone flexibil-
ity of the rods which is relevant for filamentous virus rods
and compare our predictions with experimental measurements
on smectic phases of fd suspensions [21,43]. We find good
agreement for the smectic layer spacing as a function of
rod concentration as well as for the typical smectic poten-
tial that controls the single-rod diffusivity [44–46]. Last, we
predict that the smectic penetration λ = √

K1/B ≈ 0.02L is
only a fraction of the rod length L and the smectic layer
distance, in excellent agreement with measured values for
fd. This illustrates that a hard-rod smectic has a differ-
ent mechanical response than the more commonly explored
molecular-based lamellar systems, such as lipid membranes
[47] and thermotropic smectics where the smectic penetra-
tion length was found to be comparable to the lamellar
periodicity [1,48–50]. We demonstrate that this discrepancy
is chiefly due to colloidal smectics having a considerably
smaller layer compressiblity modulus than their thermotropic
counterparts.

The remainder of this paper is organized as follows. In
Secs. II and III we discuss a density-functional theory for
a lamellar fluid by allowing for Gaussian out-of-plane fluc-
tuations at the single particle level. In Sec. IV we discuss
the role of orientational fluctuations within the lamellae and
we address out-of-plane positional fluctuations in Sec. V.

FIG. 1. Left: Sketch of a smectic-A phase of colloidal rods of
length L with layer spacing �S . Right: Illustration of the lamellar
fluid model. Each lamella is composed of strongly aligned rods with
centers of mass (red dots) roughly confined to a narrow slab of width
ξ−1 as indicated in blue.

Section VI is devoted to comparing the equation of state of
the smectic bulk phase with simulation results. We then move
on to discussing the elastic properties in Secs. VII to IX. A
comparison with experimental smectics of both lyotropic and
thermotropic nature is discussed in Sec. X. Some concluding
remarks are formulated in Sec. XI. In the Appendix we test
our simplified description of the excluded volume interac-
tions between hard colloidal bodies within a comprehensive
bifurcation analysis to identify bulk freezing transitions from
a three-dimensional (3D) nematic fluid composed of rod
or disk-shaped colloids as well as from a monolayer fluid
of rods and compare our predictions against simulation
results.

II. DENSITY FUNCTIONAL THEORY
FOR A MONOLAYER ROD FLUID

Let us consider a monolayer fluid consisting of a collection
of N slender rods of length L and diameter D � L each with
their center of mass confined to a 2D xy plane with area A. The
rods are densely packed at a concentration ρ⊥ = N/A ∼ D−2

with their main axes aligned along the out-of-plane z direction
(Fig. 1), while each rod experiences weak fluctuations about
its average orientation.

The pair interaction ur between two rods with long-axis
unit vectors ω and ω′ and center-of-mass distance �r follows
from short-range steric forces,

βur (�r; ω,ω′) =
{∞ �r < σ (�r̂; ω,ω′)

0 otherwise , (1)

where β−1 = kBT denotes the thermal energy and σ is the
contact distance between the hard cores of the rods which de-
pends nontrivially on the center-of-mass distance unit vector
�r̂ = �r/�r (for hard spheres σ simply coincides with the
sphere diameter).

Next, we apply a second-virial approximation by consid-
ering interactions between rod pairs alone. Later we will
heuristically account for higher-order virial terms through a
simple density rescaling. The grand potential � for the lamel-
lar fluid can be formally written as follows (dropping the
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orientational degrees of freedom for notational convenience),

β�[ρ] =
∫

drρ(r)(ln νρ(r) − 1 − βμ)

− 1

2

∫
drρ(r)

∫
dr′ρ(r′)
(�r), (2)

with �r = r − r′ and 
 the Mayer function that features the
pair potential,


(�r) = e−βur (�r) − 1. (3)

Most importantly, ρ(r) = ρ(r; ω) denotes the one-body rod
density while the chemical potential μ ensures its proper nor-
malization,

∫
dr

∫
dωρ(r; ω) = N . Finally, ν is the effective

thermal volume of each rod which also contains contributions
from its rotational momenta. For spherical particles, ν = �3

with � the thermal de Broglie wavelength.
The first term in the free energy Eq. (2) describes the

ideal translational and rotational entropy of each rod while
the second term relates to the excess free energy that encodes
rod-rod correlations at the level of pair interactions. Inside
the lamella rod positions are strongly confined around z = 0
while rods are free to move within the lamellar plane (xy)
that we parametrize by the 2D vector r⊥. The easiest way
to constrain the rods to remain in a monolayer configuration
would be to introduce an external harmonic potential, e.g.,
Ulam(z) ∝ U0z2 that would penalize out-of-plane excursions
with Ulam the typical (entropic) energy barrier associated with
rods hopping from one layer to the next. Once the smectic
potential has been specified one needs to resolve the one-body
density ρ(r) associated with these smectic potentials keeping
in mind that this object depends on three positional variables
and on two orientational ones.

In this paper we adopt a more manageable strategy by con-
straining the one-body density to take on a simple factorized
form,

ρ(r; ω) = G(z)ρ(r⊥; ω). (4)

We invoke a cylindrical coordinate frame r = r⊥ + zẑ with
the planar coordinate denoted by the subscript ⊥ and the out-
of-plane one by z. Then G denotes a Gaussian fluctuation (z ∈
[−∞,∞]),

G(z) =
(

ξ

π

)1/2

exp(−ξz2), (5)

where (2ξ )−1 = 〈z2〉 quantifies the mean-squared value for
the out-of-plane excursions which are expected to be very
small compared to the rod length, i.e., 〈z2〉 � L2. Then,
lim Gξ→∞ describes the limiting case of perfectly confined
rods. The above parametrization implies that the in-plane po-
sitional correlations are coupled to the rod orientations while
both are assumed to be unaffected by the out-of-plane rod
fluctuations.

Inserting Eq. (4) into the grand potential and minimizing
with respect to the unknown planar density ρ(r⊥; ω) we obtain
the Euler-Lagrange equation (again dropping all dependencies
on ω to prevent cluttered notation),

ln ν2ρ(r⊥) −
∫

dr′
⊥ρ(r′

⊥)
zz(�r⊥) = βμξ , (6)

with νn denoting the n-dimensional analog of the thermal
volume and �r⊥ = r′

⊥ − r⊥. We have introduced an in-
tralamellar chemical potential βμξ = βμ − √

ln(ξν1/π ) +
1/2 that is smaller than the corresponding value μ for the
unlayered (isotropic or nematic) bulk fluid. Furthermore,

zz(�r⊥) denotes a Mayer function preaveraged over the
out-of-plane fluctuations,


zz(�r⊥) =
∫ ∞

−∞
dzG(z)

∫ ∞

−∞
dz′G(z′)
(�r)

=
∫ ∞

−∞
d�zG(�z)
(�r), (7)

where the distribution of the out-of-plane differential distance
�z = z′ − z is itself a Gaussian,

G(�z) =
(

ξ

2π

)1/2

e− 1
2 ξ (�z)2

. (8)

The key ingredient describing the rod interactions in the con-
fined fluid is the second-virial coefficient for two rods with
their z coordinates constrained to a plane,

K0 =
∫

d�r⊥
zz(�r⊥). (9)

For purely hard rods, 
 = −1 if the rod cores overlap and
the kernel can be identified with (minus) the excluded volume
between two rods with centers of mass confined to a bidimen-
sional plane. This modification aside, the expression above
is identical to stationary condition obtained from Onsager
theory for conventional hard-rod nematics [13] with ρ⊥(ω) =
ρ⊥ f (ω) in terms of some normalized orientational probability
f (ω) that we will specify in Sec. IV. For later reference we
also define Fourier transform (FT) of the excluded-volume
manifold between two particles,

K̂(q⊥) =
∫

d�r⊥
zz(�r⊥)eiq⊥·�r⊥ , (10)

so that limq⊥→0 K̂ = K0. Fortunately, the double convolution
of Eq. (7) enables us to recast the kernel as a simple Fourier
integral,

K̂(q⊥) =
∫ ∞

−∞

dqz

2π
[Ĝ(qz )]2
̂(qzẑ + q⊥), (11)

with Ĝ(qz ) = exp(−q2
z /4ξ ) the FT of the Gaussian proba-

bility. Realizing that the Mayer function simply designates
(minus) the subvolume where the cores overlap we write,

K̂(q⊥) = −
∫

d�rσ

∫ ∞

−∞

dqz

2π
eiq·�rσ −q2

z /2ξ

= −
∫

d�rσ eiq⊥·�rσG(�rσ · ẑ). (12)

Next we invoke the standard particle-based parametrization
of this subvolume via �rσ = L

2 t1ω + L
2 t2ω′ with coordinates

−1 < ti < 1 (i = 1, 2). The Jacobian associated with the coor-
dinate transformation is given by d�rσ = 1

2 L2D| sin γ |dt1dt2
with γ denoting the enclosed angle between the main rod
axes. This is our key result that we will elaborate below for
two particular situations that are relevant for typical liquid
crystal organizations of rod-shaped particles.
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III. TWO LIMITING CASES: NEMATIC
AND MONOLAYER FLUID

Two limiting situations are easily identified from Eq. (12).
First, if there is no lamellar confinement at all, then the rod
positions can explore full three-dimensional space such as in
a nematic phase. Then G = 1 and the excluded volume to
leading order for sufficiently slender rods L/D � 1 can be
computed in analytical form [51],

K̂(nem) = −2L2D| sin γ | j0
(

L
2 q · ω

)
j0

(
L
2 q · ω′) + O(LD2),

(13)

in terms of the spherical Bessel function j0(x) = x−1 sin x.
Since the focus of our study is not on nematics we do not
discuss subsequent contributions of the order of the cylinder
volume LD2 (a technical discussion can be found in Ref. [52]).

The second limiting case is more relevant to a smectic
organization and occurs when the rods behave as a strict
monolayer fluid with no positional fluctuations along the
plane normal. The Gaussian distribution then becomes a delta
distribution, i.e., limξ→∞ G = δ(�rσ · ẑ). The hard-core ker-
nel K̂c(q⊥) is then equivalent to the FT of the excluded area
between two rods at equiplanar centers of mass (�z = 0).
This quantity has been analyzed in detail by Poniewierski
[51]. Equating G = δ(�rσ · ẑ) in Eq. (12) we find,

K̂(mono) = −L2D

2
| sin γ |

2∏
i=1

∫ 1

−1
dtiδ(�rσ · ẑ)eiq⊥·�rσ

= −L2D| sin γ | sin (R/m)

R
+ O(D2), (14)

where R is a length scale compiling the coupling between the
wave vector and rod orientations,

R = bz(q⊥ · a) − az(q⊥ · b), (15)

and a = Lω/2, b = Lω′/2, az = |a · ẑ|, and bz = |b · ẑ|. The
length m selects the maximum of the latter two rod projections
onto the lamellar normal ẑ in terms of the Heaviside step
function �,

m = az�(az − bz ) + bz�(bz − az ). (16)

The first contribution in Eq. (14) is of order O(LD) and van-
ishes for a pair of perfectly parallel cylinders (γ → 0). The
next order term should be of O(D2), which we approximate
here by the FT of a disk with radius D. We thus obtain a
simplified expression for the total kernel for a monolayer rod
fluid,

K̂(mono) ∼ −L2D| sin γ | sin (R/m)

R
− πD2 J1(q⊥D)

1
2 q⊥D

, (17)

with J1 a Bessel function of the first kind. At present, there is
no exact expression for the O(D2) term which should depend
on the orientation of both rods and involve subtle correlations
between the cylinder ends [52]. We remark that the excluded
volume for infinitely thin rods (L/D → ∞), given by the
zero-wave-number limit of Eq. (17), is identical to the one
derived by Oettel et al. [53]. In real smectic phases, however,
the rods are never perfectly confined to the lamellar midplane
but are able to exercise small out-of-plane excursions that we
will describe in Sec. V.

In the Appendix we demonstrate that our approach to
describing excluded-volume interactions, namely pairing an
orientationally dependent contribution for infinitely thin par-
ticles with a tractable parallel core term, can be applied to
both rods and disks alike and allows us to accurately predict
the onset of smectic or columnar freezing from a nematic
reference fluid as well as the fluid-solid transition within a
single smectic monolayer.

IV. ORIENTATIONAL FLUCTUATIONS

We focus on the smectic-A phase in which there is no
long-ranged positional order transverse to the nematic director
and the one-body density can be written as ρ⊥(ω) = ρ⊥ f (ω)
in terms of a fixed planar rod density ρ⊥. For simplicity,
we use the monolayer expression for the excluded volume
Eq. (14) and introduce the Helmholtz free energy of a lamellar
fluid ignoring any term that is independent of the orientational
probability f ,

βFL

N
∼ 〈ln f (ω)〉 + 8�

π
φ⊥g(φ⊥)

〈〈 | sin γ |
m̄

〉〉
. (18)

The brackets are short-hand for the angular integral 〈·〉 =∫
dω f (ω) and likewise for a double angular average 〈〈·〉〉 =∫
dω f (ω)

∫
dω′ f (ω′). We further introduced the normal-

ized lengths m̄(ω,ω′) = m/(L/2), planar rod packing fraction
φ⊥ = (π/4)ρ⊥D2, and rod aspect-ratio � = L/D � 1. Since
the fluid residing within each lamella is spatially uniform,
we apply a Lee-Parsons rescaling of the packing fraction
φ⊥ → φ⊥g(φ⊥), where g(φ) = (1 − 3

4φ)/(1 − φ)2 represents
a correction factor to the second-virial approach, derived from
the Carnahan-Starling equation of state for hard spherical
particles, that entails an ad hoc resummation of higher-order
virial terms [54,55]. Despite the heuristic nature of the theory,
the Lee-Parsons formalism is known to give quantitatively
reliable results for the fluid phase behavior of elongated hard
cylinders at elevated packing conditions [17]. We remark that
the free energy above is very similar to that of a nematic
phase except for the factor m̄ which, as we will argue, will be
very close to unity if the orientational fluctuations are weak.
A crucial difference with the nematic fluid with prescribed
density ρnem, however, is that the planar packing fraction φ⊥
is not a priori known but is controlled by the smectic spacing
for a given overall (3D) rod packing fraction as we will point
out in Sec. VI.

The formal way forward is to resolve the Euler-Lagrange
equation from the extremum condition δF/δ f = 0 which can
be done numerically [56,57]. In this study, we will pursue
a much simpler algebraic route to addressing intralamellar
orientational order by assuming orientational order to be both
asymptotically strong and of simple uniaxial symmetry so
that the angular probability only depends on the polar angle
θ between the rod orientation vector ω and the layer normal
along the z axis. Both criteria should be fulfilled for stable
smectic structures composed of uniaxial rods whose interac-
tions are apolar and achiral. Then f (θ ) can be approximated
by a Gaussian trial function [58],

fG(ω) ∼ α⊥
4π

e− 1
2 α⊥θ2

, (19)
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which applies within the interval 0 < θ < π/2 combined with
its mirror form f (π − θ ) for π/2 < θ < π and α⊥ � 1 a
variational parameter that is required to be large for con-
sistency reasons given that the Gaussian trial form does not
reduce to the required isotropic distribution fG = (4π )−1 in
the limit α⊥ → 0. In a dense smectic environment, rod align-
ment is usually very strong and this criterion is readily met.
Ignoring constant terms we write the Helmholtz free energy as
a combination of orientational and excluded-volume entropy
per particle and keep only leading-order terms valid for small
interrod angles. Then m̄ → 1 and the free energy Eq. (18)
takes the following form,

FL

N
∼ 〈ln fG(θ )〉 + 4

�

π
φ⊥g(φ⊥)〈〈γ 〉〉. (20)

The double orientational averages are known up to leading
order for large α⊥ [9,58],

〈ln fG(θ )〉 ∼ ln α⊥ − 1

〈〈γ 〉〉 ∼
√

π/α⊥.
(21)

Minimizing the lamellar free energy FL with respect to α⊥
then yields a quadratic relation with the planar rod packing
fraction,

α⊥ ∼ 4(φ⊥g(φ⊥)�)2/π, (22)

similar to the case of a nematic fluid.

V. OUT-OF-PLANE FLUCTUATIONS

We will now release the constraint of infinite lamellar
confinement (monolayer case) and consider the density dis-
tribution ρ(r) = ρ⊥ p(z) with intralamellar density ρ⊥ and
out-of-plane positional fluctuations along the layer normal
described by a probability p(z). Each rod is able to explore
the full range of z positions, subject to the constraint that
the rod must not overlap with a neighboring particle whose
mass center resides in the adjacent smectic layer a distance
�S away from the test rod. For simplicity, we assume the rods
to be parallel and coaxial so that overlap occurs whenever
|�z| < L. We only consider nearest neighbor lamellar inter-
actions. Then we may construct a fluctuation free energy per
rod that depends on a single positional degree and reflects a
balance between translational entropy and a volume-exclusion
penalty,

βFfluc

N
=

∫ ∞

−∞
dzp(z)[ln{�p(z)] − 1} + 1

2

∫ ∞

−∞
dzp(z)

×
∫ ∞

−∞
dz′{p(z′ − �S ) + p(z′ + �S )}�(L − |�z|),

(23)

with � the thermal wavelength. The corresponding single-
particle distribution p(z) can be resolved self-consistently

through formal minimization δFfluc[p]/δp = 0 which leads
to,

p(z) = exp

(
λ′ −

∫ ∞

−∞
dz′ p(z′){H (L − |�z − �S|)

+ H (L − |�z + �S|)}
)

, (24)

where λ′ denotes a multiplier ensuring normalization∫
dzp(z) = 1. If we assume the rods in the neighboring lamel-

lae to be fixed at their midplane, then we can establish an
analytical mean-field solution from p(z′) ≈ δ(0) which gives
p(z) = 1/2(�S − L) for |z| < (�S − L) and p(z) = 0 other-
wise. A numerical solution for p(z) can be obtained through
iteration but the results merely lead to entropic rounding at the
edges of the step function thus rendering the distribution con-
tinuously differentiable. Even though p(z) is not Gaussian, we
may tentatively identify p(z) = G(z) via Eq. (5) and connect
the mean-squared out-of-plane displacement to the Gaussian
parameter ξ ,

ξ ∼ 3

2(�S − L)2
, (25)

revealing, as expected, that out-of-plane fluctuations ∼ξ−1

grow stronger at larger lamellar distances �S > L.
For real smectic phases such as those composed of fd rods,

the out-of-plane fluctuations and the typical energy barrier the
rods need to jump from one layer to the next have been studied
in detail [23,44,45,59]. The density distribution normal to the
layer for small deviations from the lamellar midplane can be
described by a Gaussian,

p(z) ≈ exp[−2π2U0(z/L)2] z/L � 1, (26)

with U0 a typical smectic layer potential (expressed in units
kBT ) for which experimental values are available. It should be
noted that the non-Gaussian tail of p(z) plays an essential role
in determining the potential amplitude. Comparing with our
Gaussian distribution we may identify the smectic potential to
the layer spacing for small out-of-plane excursions z/L � 1,

U0 ∼ 3

4π2

(
�S

L
− 1

)−2

. (27)

In Sec. X we will discuss a comparison with experimental
measurements of the smectic potential for fd rods.

A. Effect of layer interdigitation

The naive description proposed so far overestimates the
smectic potential since rods are known to migrate from one
layer to the next [44,45] which suggests a degree of dy-
namic interdigitation between smectic layers. This can be
understood from the fact that rods are never closely packed
together within each lamella but experience a certain degree
of free volume that enables particles to at least partially pen-
etrate into a neighbor layer. Clearly, interdigitation becomes
less prominent at larger packing conditions. This effect can
be taken into account, at a simplified mean-field level, by
introducing a finite layer interdigitation potential W which
broadens the out-of-plane distribution p(z) and partly captures
the non-Gaussian tails of the out-of-plane distribution which
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now reads,

p(z) =
⎧⎨
⎩

1 |z| < �S − L
e−βW �S − L < |z| < �S − L + ζ

0 |z| > �S − L + ζ

, (28)

with 0 < ζ < L a interdigitation depth such that ζ = L im-
plies that each rod can fully penetrate the adjacent layer while
for ζ = 0 no interdigitation occurs at all and the previous re-
sult Eq. (24) is recovered. In real systems with strong in-plane
crowding, we expect ζ to be only a fraction of the rod length.
After some algebra, we find that the smectic layer potential
associated with p(z) reads,

U0 ∼ 3[(�̄S − 1) + e−βW ζ̄ ]

4π2{(�̄S − 1)3 + e−βW [(�̄S − 1 + ζ̄ )3 − (�̄S − 1)3]} ,

(29)

in terms of the interdigitation depth ζ̄ = ζ/L and spacing
�̄S = �S/L both normalized to the rod length. The inser-
tion potential can be interpreted as a potential of mean force
represented by the free energy cost of inserting a rod into a
bidimensional fluid for which scaled particle theory (SPT) can
be invoked [60,61]. Then W is simply the excess chemical po-
tential μex of a bidimensional fluid of hard disks representing
the rod cross sections residing on the lamellar area A. This
expression is well known and reads [62],

βW = − ln(1 − φ⊥) + 1 + φ⊥(1 − φ⊥)

(1 − φ⊥)2
, (30)

where φ⊥ denotes the in-plane packing fraction that implicitly
depends on the lamellar spacing via φ⊥ = φ�S . In fact, the
SPT theory and variations thereof [63] have been used rou-
tinely in cell-type theories for smectic and other liquid crystal
states [38–42]. The presence of layer interdigitation lowers the
smectic potential to values that are in good agreement with
experimental measurements on smectic phases of fd rods as
we will discuss in Sec. X.

VI. FROM MONOLAYER FLUID TO SMECTIC
LIQUID CRYSTAL

We now wish to construct a tractable thermodynamic the-
ory for a 3D smectic phase composed of M → ∞ lamellae.
For purely hard interactions an appealing route is to use cell
theory to correlate the 2D fluid behavior with a 1D periodicity
of the smectic liquid crystal.

The basic assumption of the cell approach for describing
a smectic structure is that the vertical degrees of each rod
(along the layer normal) are constrained by the presence of
the adjacent smectic layers such that rods are not permitted to
cross layer boundaries. Maximum positional freedom of each
rod is then dictated by the size of the cell which is proportional
to the smectic layer spacing. With these constraints, the 1D
ordered dimension and the 2D fluid dimensions of the smectic
structure are fully decoupled and can be modelled separately.
Similar arguments can be applied to other positionally ordered
liquid crystals, such as the columnar, and even solids [38].
Focusing on the 1D ordered dimension, we assume that the
layers impart some effective potential that can be purely hard-
core like [38,39] or feature an additional continuous potential

to account for long-range repulsive interactions between par-
ticles [64,65]. Then the excess free energy is connected to
the mean out-of-plane free distance �S each rod is able to
explore before touching a rod from an adjacent layer. The
configurational integral of a collection of M uncorrelated cells
reads [66],

Q ≈
(

�−1
∫

dze−βucell

)M

, (31)

where the cell potential can be reverse-engineered from the
out-plane-fluctuation probability Eq. (28) through a simple
Boltzmann inversion ucell(z) = −β−1 ln p(z),

ucell(z) =
⎧⎨
⎩

0 |z| < �S − L
W �S − L < |z| < �S − L + ζ

∞ |z| > �S − L + ζ

. (32)

The soft potential W accounts, albeit heuristically, for the
degree of rod interdigitation across adjacent lamellae. The
excess free energy per rod βFcell = − ln Q associated with
smectic layering in the thermodynamic limit M → ∞ thus
reads,

Fcell

N
∼ − ln[�−1(�S − L + ζe−βW )] − ln 2. (33)

The contribution proportional to the interdigitation depth ζ is
due to the soft-cell potential Eq. (32) and is not considered
in conventional cell approaches where this effect is ignored,
i.e., W → ∞ (ζ = 0). Conservation of number of particles
and the single-occupancy condition (each rod belongs to only
one smectic layer) requires that the overall (3D) rod density
relate to the in-plane concentration via ρ = ρ⊥/�S .

We now wish to put our model to a quantitative test by
comparing the equation of state of the (3D) smectic phase
for hard cylinders to results from computer simulation for
hard spherocylinders. Subtle end-cap effects that distinguish
these two particle shapes are deemed of minor importance for
sufficiently elongated particles L/D � 1. In order to address
the thermodynamics of the smectic phase we combine the
above cell contribution with the intralamellar fluid contribu-
tion discussed previously [cf. Eq. (18)]. Ignoring all constant
factors we find a simple expression that incorporates the ideal,
orientational, rod excluded-volume, and lamellar entropies,
respectively,

FS

N
∼ ln φ + 2 ln[φ⊥g(φ⊥)] + 2φ⊥g(φ⊥)

− ln
[
1 − �̄−1

S (1 − ζ̄e−βW )
]
, (34)

where �̄S = 2π/qSL denotes the spacing (in units rod length)
between adjacent smectic layers. In the Gaussian approxima-
tion, the orientation-dependent part of the excluded volume
produces a constant of “2” as originally pointed out by
Odijk [67]. The equilibrium spacing is then easily found
from minimization ∂FS/∂�S = 0 and the pressure from PS =
φ2[∂ (FS/N )/∂φ]. The results in Fig. 2 demonstrate that our
simple model gives a quantitatively reliable prediction of the
equation of state at relatively low packing fraction (φ < 0.5)
while somewhat overestimating the simulated values at large
packing fraction. We find that the pressure is rather insensitive
to the choice of the interdigitation depth ζ . This confirms the
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FIG. 2. Equation of state of a smectic-A phase of hard rods.
Plotted is the osmotic pressure PS (in units kBT per rod volume)
versus the packing fraction φ. The prediction from the theoreti-
cal model is generic and does not depend on the rod aspect ratio
� = L/D. Simulation results are quoted from McGrother et al. [17]
(L/D = 3.2, 4, 5) and Bolhuis et al. [18] (L/D = 40).

robustness of the cell description in the sense that the thermo-
dynamic properties of the smectic phase are insensitive to the
details of the cell potential. However, we will demonstrate in
the next section that the mechanical properties of the smectic
material do depend on the out-of-plane fluctuations which in
turn are steered by the degree of layer interdigitation and the
choice of ucell.

VII. LAYER COMPRESSION MODULUS

In order to describe long-wavelength elastic distortions of
a colloid-based smectic material we consider the elastic free
energy per unit volume of a smectic liquid crystal which is
given by the following expression [1],

FS

V
= B

2

[
∂u

∂z
− 1

2

(
∂u

∂x

)2
]2

+ K1

2

(
∂2u

∂x2

)2

, (35)

with u(x, z) the displacement field denoting a local displace-
ment of the smectic layer away from its equilibrium position.
The deformations are described by two elastic moduli; the
layer compression modulus B and splay modulus K1. The
latter is associated with layer bending which in the above
expression is assumed to be unidirectional along the x axis
(see Fig. 4). Both moduli can be combined into a single
length scale; the smectic penetration length λ = √

K1/B.
Furthermore, the Landau-Peierls instability dictates that the
mean-squared fluctuations of the displacement field u diverge
with the system size �s [1,8],

〈u(r)2〉 = kBT

8π
√

K1B
ln(�s/�S ), (36)

with
√

K1B a characteristic energy scale per unit area which
along λ defines the elastic response of a smectic material.
We now wish to quantify these for the specific case of a
hard-rod smectic by analyzing each of the contributions sep-
arately. First, the compression modulus B can be defined
following a general analysis of Ref. [68] for bilayer smectics

FIG. 3. Layer compressibility modulus B of a hard-rod smectic
as a function of the overall packing fraction φ. The modulus is
expressed in units kBT/vr in terms of the rod volume vr = π

4 LD2.

with spacing δS ,

B = δS

(
∂2 fL

∂δ̄2
S

)
μ

, (37)

with δ̄ = δS − h and h the bilayer thickness. The free energy
fL per bilayer and unit area must be defined at constant chem-
ical potential of the bilayer constituents in order to facilitate
fluctuations in the surface coverage on dilation or compres-
sion of the smectic layers. Translating this expression to our
current entropy-stabilized hard-rod smectic with spacing over
rod length �̄S we find that the layer compressibility modulus
(rendered dimensionless in units of thermal energy kBT per
particle volume vr) reads,

B = �̄S

(
∂2[φ⊥FS/N]

∂�̄2
S

)
φ

. (38)

The difference with the previous definition for the bilayer
case is that layer compression happens at constant overall
rod packing fraction instead of chemical potential and that
the average layer thickness is fixed at L. This seems a rea-
sonable assumption for most smectic organizations, including
bilayer phases. Our prediction of the compressibility modulus
is shown in Fig. 3 and features a fairly steep (about fourfold)
increase of the compression resistance of a hard-rod smectic
at moderately high densities 0.4 < φ < 0.55.

VIII. SPLAY MODULUS

The modulus K1 refers to a splay deformation of the layer
normal, which coincides with the orientational director of the
rods, on layer bending. To the best of our knowledge, no
attempt has been made so far to quantify K1 from microscopic
theory. For nematic phases, however, theoretical predictions
of the Frank elastic moduli have been proposed decades ago
starting with the work of Straley [69]. Within the second-virial
approximation the splay modulus is formally given by the
following expression [10,69],

K1 = kBT
ρ2

2
g(φ)

〈〈∫
d�r(�x)2
(�r)ωxω

′
x

〉〉
ḟ

, (39)
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pure splay

pure bend

FIG. 4. Two principal effects of layer bending; (top) a pure bend
deformation of the smectic layer keeping a uniform (splayless) di-
rector field and (bottom) a splay deformation of the director field
without layer bending. The lamellar midplane is indicated in blue.

with ḟ denoting the derivative of the orientation distribution
with respect to its argument. Using an asymptotic expansion
based on the trial form Eq. (19) Odijk [70] obtained the fol-
lowing scaling expression, valid in the limit of strong nematic
alignment,

βK1D ∼ 7

8π
φ�, (40)

with � = L/D the rod aspect ratio. In the smectic phase,
the rod positions are not uniformly distributed but strongly
localized about the lamellar midplane. The corresponding mi-
croscopic expression for the splay modulus of a smectic phase
reads,

βK1 ∼ ρ2

2
g(φ⊥)�S

〈〈∫
d�r⊥(�x)2
zzωxω

′
x

〉〉
ḟ

∼ −ρ2

2
g(φ⊥)�S

〈〈∫
d�rσG(�zσ )(�xσ )2ωxω

′
x

〉〉
ḟ

.

(41)

Analogous to the case of a nematic phase we may obtain a
scaling expression of the double orientational average using
the Gaussian algebraic manipulations outlined in Ref. [70].
The key step is to eliminate the azimuthal part cos 2�ϕ =
2 cos2 �ϕ − 1 via γ 2 ∼ θ2 + θ ′2 − 2θθ ′ cos �ϕ and apply
double Gaussian averages over the remaining combinations
of γ and θ1 and θ2 that are listed in Ref. [70]. A tedious but
straightforward computation then leads to following result up
to leading order for weak out-of-plane fluctuations (ξL2 � 1),

βK1D ∼ 11

2π3/2
α

−1/2
⊥ (φ�)2g(φ⊥)

(
1 − 6√

2πξL2

)
. (42)

Higher-order corrections are of O(ξ−1) and will not be con-
sidered here. Plugging in the quadratic relationship for α⊥
[Eq. (22)] we obtain the following analytical result,

βK1D ∼ 11

4π

(
1 − 6√

2πξL2

)
φ�. (43)

We infer from comparison with Eq. (40) that in the absence of
positional fluctuations (ξ → ∞) the splay elasticity is about

three times larger than that of a nematic phase at compa-
rable rod concentration φ�. As expected, the presence of
out-of-plane fluctuations with strength ξ−1 reduces the splay
modulus and will only reach the nematic level for very weakly
ordered smectics with a large spacing and strong positional
fluctuation about the lamellar midplane. For a typical hard-rod
smectic with a spacing of about �S = 1.1L, equivalent to
ξL2 ∼ O(102), K1 is about 15% smaller than in the limit of
infinite lamellar confinement (ξ → ∞).

So far we have only considered pure splay and ignored any
bending of the layers. Let us now contemplate an infinitesimal
bending of the smectic layer while keeping a uniform direc-
tor field n̂(r) = ẑ. This amounts to bending a smectic layer
without splaying the director field as illustrated in Fig. 4. The
excluded volume Eq. (14) between two test rods with centers
of mass confined on a weakly curved 2D plane now depends
on the curvature κ which should be weak on the scale of the
particle size (κL � 1). The projected excluded volume (with
dimension area) between two thin hard rods with centers of
mass residing on a curved (2D) layer is given by minus the
kernel K and reads,

K(κ ) ∼ −1

2
L2D| sin γ |

2∏
i=1

∫ 1

−1
dti

× G{�zσ − κ−1[
√

1 − (κ�xσ )2 − 1]}. (44)

Taylor expanding up to second order in the curvature κ for-
mally gives,

K(κ ) ≈ K(0) + κ2δK + O(κ4). (45)

We are primarily interested in the correction δK which has
dimension length to the fourth power. The double integral
Eq. (44) can be rendered analytically tractable by keeping the
lowest-order term for small angular fluctuations θ � 1 and
positional fluctuations about the smectic plane ξL2 � 1 we
find,

δK ∼ 3

128
√

2π
L5Dξ |γ |5. (46)

The elastic free energy density corresponds to the change in
free energy per unit volume incurred by slight layer bending.
Within the second-virial approximation it can be written as,

δFS

V
≈ 1

2
kBT ρ2g(φ⊥)�S〈〈−δK〉〉κ2. (47)

The brackets denote a double average over the orientational
distribution function which we assume is unaltered by layer
bending. We may read off the bend modulus under the con-
straint of a uniform director field,

Kb ∼ kBT ρ2g(φ⊥)�S〈〈−δK〉〉. (48)

It is easily ascertained that this quantity has units of
force. Using the Gaussian orientational average 〈〈|γ |5〉〉 ∼
60π1/2α

−5/2
⊥ [70] up to leading order for strong in-plane align-

ment α⊥ � 1 combined with Eq. (22) we find the following
scaling expression for the bend modulus,

βKbD ∝ −(ξL2)α−5/2
⊥

∝ −(φ�)−3g(φ⊥)−4�−4
S (ξL2). (49)
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(a)

(b)

FIG. 5. (a) Penetration length λ = √
K1/B of a hard-rod smectic

in units of the rod length L versus the rod packing fraction φ. The
penetration length is shape-independent and does not depend on the
rod aspect ratio. (b) Same as a function of the smectic layer spacing
�̄S (in units rod length L).

We observe that the layer stiffness is much more sensitive to
the strength of the orientational fluctuations α⊥ than to the
out-of-plane fluctuations which are principally controlled by
the lamellar distance �S via Eq. (25). Noting that φ� � 1
for thermodynamically stable smectics and ξL2 ∼ O(102) for
typical lamellar spacings we find that for moderate rod aspect
ratio � = 10 the bend contribution is at least two orders of
magnitude smaller much than the splay modulus Eq. (43).
The difference is even greater for slender rods � � 10 where
splayless layer bending has a marginal effect on the smectoe-
lastic response. We remark that K1 depends nontrivially on
the packing fraction because the equilibrium spacing �S itself
depends nonanalytically on φ though the minimum condition
∂FS/∂�̄S = 0 of the smectic free energy Eq. (34).

Now that we have established that director splay is much
more important than pure layer bending, at least for hard-rod
smectics, we may combine the prediction for the compress-
ibility modulus B with the expression for the intralamellar
splay elastic constant Eq. (43) and compute the smectic pen-
etration length λ = √

K1/B shown in Fig. 5. We find that this
length constitutes only a tiny fraction of the rod length (or
smectic layer spacing) and that it decreases linearly at elevated
packing conditions. We further observe that the penetration
length exhibits a (weak) maximum around φ ≈ 0.43. We have
not verified the robustness of the maximum in relation to the
approximations made in our theory.

IX. ROLE OF BACKBONE FLEXIBILITY

In order to render our theory more appropriate for experi-
mental systems such as filamentous virus fd rods we have to
account for the slight flexibility of the virus backbone, which
has been shown to quantitatively affect the phase diagram
[71,72]. Liquid crystals of semiflexible polymers have also
been the subject of recent simulations in an effort to test
scaling concepts that were put forward in earlier theoretical
work on polymeric liquid crystals (see Refs. [73,74] for a
discussion).

In our theory we shall account for backbone flexibility
by introducing a correction to the orientational entropy of
perfectly rigid rods considered thus far in our modeling. The
presence of rod flexibility, however slight, gives rise to an
additional entropy generated by the internal configurations of
a so-called wormlike chain (wlc) [9] which can be described
by the following nonlinear expression in the orientational
probability f [75,76],

Fwlc

N
= − 2L

3�p

∫
dω[ f (ω)]1/2∇2[ f (ω)]1/2. (50)

Here ∇2 denotes the Laplace operator on the unit sphere and
�p is the persistence length that represents the typical length
scale over which the orientational fluctuations of the local
(Kuhn) segments of each rod are correlated. Since fd rods
are rather stiff with a persistence length strongly exceeding
the contour length (�p ∼ 3 − 10L) [71], the entropy associ-
ated with the internal fluctuations of the effective segments
is relatively small compared to the orientational entropy of
the entire rod. In the semiflexible regime (D � �p � L) it
can be demonstrated that the second-virial coefficient between
two wormlike chains between is the same as the one for rigid
rods [9,58]. Strictly, this is no longer the case in the rod limit
�p � L where rod-rod exclusion is expected to depend on the
degree of flexibility but we shall assume deviations from the
rigid rod excluded volume to be small for the case of fd.

The wormlike chain entropy can be estimated from the
Gaussian orientational distribution fG and reads up to leading
order for strong orientational order [9],∫

dω[ fG(ω)]1/2∇2[ fG(ω)]1/2 ∼ −α⊥
2

. (51)

From which we obtain,

Fwlc

N
∼ Lα⊥

3�p
. (52)

In case of strong in-plane orientation order (α⊥ � 1) the
number of polymer conformations is severely limited which
thus leads to a free energy penalty. Adding the wormlike chain
correction to the Helmholtz free energy per particle Eq. (20)
for the lamellar fluid we find (ignoring irrelevant constants),

FL

N
∼ ln α⊥ + 4

�

π
φ⊥g(φ⊥)

√
π/α⊥ + Lα⊥

3�p
, (53)

which on minimization yields a cubic equation in α⊥,

α
1/2
⊥ ∼ (2/π1/2)φ⊥g(φ⊥)� − L

3�p
α

3/2
⊥ . (54)
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The physical branch is the one for which α⊥ is real-positive
and which converges to Eq. (22) in the rigid rod limit �p/L →
∞. Compared to the case of perfectly rigid rods, a small but
finite amount of backbone flexibility leads to a reduction of
the orientational order of the rods for any given planar packing
fraction φ⊥ and rod aspect ratio �.

We may now simply repeat the analysis we did for the
rigid rods by retaining the intralamellar orientational order
parameter α⊥ to be resolved from the cubic equation, shown
previously. The total free energy of the smectic phase, again
ignoring irrelevant constants, is now given by,

FS

N
∼ ln φ + ln α⊥ + φ⊥g(φ⊥)

[
4�

(πα⊥)1/2
+ 2

]

+ Lα⊥
3�p

− ln
[
1 − �̄−1

S (1 − ζ̄e−βW )
]
. (55)

From the equation above, we identify the entropies associated
with ideal gas behavior, orientational fluctuations, excluded-
volume repulsion (composed of a parallel core plus an
orientation-dependent part), single-rod conformational fluctu-
ations and lamellar confinement, respectively.

X. COMPARISON WITH EXPERIMENTAL RESULTS:
COLLOIDAL VERSUS THERMOTROPIC SMECTICS

We are now in a position to recompute quantities such as
the smectic layer spacing, splay and compression moduli and
penetration length for stiff rods by considering a large but
finite persistence �p/L � 1 and compare with experimental
measurements for fd rods. Given that the intralamellar ne-
matic order parameter α⊥ is no longer strictly quadratic with
rod density we must take Eq. (42) rather than Eq. (43) to
compute the splay modulus. The rigid rod results shown in
Fig. 3 and Fig. 5 are recovered simply by taking the limit
�p/L → ∞. The limit of stability for the smectic phase at
lower rod packing fraction can be gleaned from the nematic-
smectic bifurcation Eq. (A12) which now also depends on
the persistence length. The results (not shown here) are in
line with the scenario emerging from a more elaborate theo-
retical analysis by van der Schoot [77], namely an increase
of the nematic-smectic instability density and a simultane-
ous reduction of the smectic layer spacing with increasing
rod flexibility. The reduction of the layer spacing with �p is
demonstrated in Fig. 6 where we show a comparison between
our model predictions and experimental data for fd rods in
the smectic concentration range. Recently, the penetration
elastic length was measured to be λ � 0.02 ± 0.01 µm which,
considering the micrometer contour length of filamentous
viruses, gives λ/L ≈ 0.02 ± 0.01 [78] which is in outstand-
ing agreement with the predictions showcased in Fig. 5 for
rigid rods. More specifically, taking an effective persistence
length �p/L = 100 and interdigitation depth ζ̄ = 0.5 we find
λ/L = 0.019 in quantitative agreement with the experimental
value at least for the particular concentration considered in
experiment (φ/φNS = 1.36) [78].

Let us now compare our findings with results reported for
thermotropic smectics which are stabilized by attractive forces
acting between the mesogens rather than through a trade-off
between orientation versus volume-exclusion entropy. Taking

fd (M13KE)
fd (Y21M)

(a)

(b)

FIG. 6. Theory-experiment comparison based on data for fd virus
rods in a smectic organization. (a) Lamellar spacing versus rod
packing fraction φ renormalized to the value at nematic-smectic
coexistence φNS. The interdigitation depth is fixed at ζ̄ = 0.5. Shown
are results for two different fd strands: M13KE (�p/L = 3) and the
much stiffer Y21M (�p/L = 10). (b) Smectic potential for a number
of different interdigitation depths ζ̄ = ζ/L and �p = 250. Experi-
mental data are based on M13KE.

the lamellar spacing �S as the intrinsic length scale one finds
that generically λ ∼ �S . Quoting experimental values from
Refs. [48–50,79] we specify λ ∼ 1 to 7 nm with �S ∼ 3 nm
[80]. By contrast, for colloidal smectics composed of fd rods,
λ amounts to only a fraction of the lamellar spacing. The
main reason behind this discrepancy is that the typical layer
compressibility modulus B ∼ 103−4 N/m2 for colloidal rod
smectics is found to be at least three orders of magnitude
smaller than the typical value B ∼ 107 N/m2 encountered
for thermotropic smectics [48,79,81,82]. The splay constant,
however, is of similar magnitude for both colloidal and ther-
motropic smectics. For a typical thermotropic smectic we
quote from Refs. [48,79] a splay director diffusion coeffi-
cient K1/ηs ∼ 2 × 10−10 m2/s which, taking a typical (splay)
viscosity ηs ∼ 10−2 Pa s, leads to a modulus of about K1 ∼
10 pN. This value is also in agreement with the study of
Bradshaw and Raynes [83]. For colloidal fd rods, the experi-
mental value for the splay elastic constant is found to be about
2 ± 1 pN [78]. This estimate is based on (1) measurement
of the bend modulus κ of fluidlike membranes composed of
a monolayer of aligned viruses [84], which gives after nor-
malization by the lamellar spacing �S: K1 = κ/�S ≈ 1 pN,
and (2) the nematic splay elastic constant evaluated close to
the nematic-smectic transition inferred from Odijk’s scaling
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prediction [Eq. (40)] for rigid hard rods [70] K1 ≈ 3K2 ≈
3 pN, where K2 is the twist elastic constant measured from
unwinding the helical mesostructure of a cholesteric virus
suspension under a magnetic field [85]. The experimental
value is thus found to be at most an order of magnitude
smaller than our prediction K1 ∼ 10 pN according to Eq. (43)
taking typical values for fd (� = 100, φ = 0.5, D = 10 nm,
and ξL2 = 200). The discrepancy could be attributed to the
absence of conformational fluctuations in our treatment of the
volume-exclusion entropy as well as the neglect of electro-
static interactions in our model.

XI. CONCLUSION

Inspired by a recent upsurge in experimental work on col-
loidal smectics, we have proposed a microscopic theory that
combines concepts from density functional and cell theory in
an effort to predict the thermodynamics and elastic properties
of colloidal smectic phases stabilized primarily by entropic
forces due to rod volume exclusion. In our study, we focus on
predicting the layer compression and bending moduli, which
for colloidal smectics have scarcely been addressed thus far,
and we quantify those as a function of the rod packing fraction
and rod aspect ratio. The characteristic length scale associ-
ated with the ratio of the elastic moduli, called the smectic
penetration length, amounts to only a fraction of the layer
spacing in contrast to thermotropic smectic materials where
the two length scales are found to be similar. We attribute this
to the fact that smectics composed of colloidal rods experi-
ence a much smaller layer compressibility (B) than typical
thermotropic smectics whereas the energy scales associated
with layer bending (K1) are of comparable magnitude. This
illustrates that colloidal smectics have a mechanical response
that is considerably different from their thermotropic counter-
parts with key implications for their defect topology.

We further demonstrate that introducing small degree of
backbone flexibility, such as present in filamentous virus
rods, leads to a reduction of the equilibrium lamellar spacing.
Our predictions for the spacing, penetration length and layer
“barrier-hopping” potential which governs the single-particle
diffusive dynamics along the layer normal, are in quantitative
agreement with experimental measurements.

Since our theory is restricted to hard-core volume exclu-
sions alone, the effect of electrostatic repulsion and other
“soft” interactions as well as the subtle role of rod flex-
ibility in the volume-exclusion entropy is overlooked here
and should be addressed in more elaborate numerical treat-
ments including computer simulations as has been done for
the semiflexible case [73,74,86]. We believe that this is-
sue is particularly relevant for stiff but nonrigid rods with
�p > L such as filamentous fd virus discussed here, where
backbone flexibility is usually ignored but is found to play
an important role nevertheless in determining the smectic
mesostructure and dynamics through the “hopping” poten-
tial [44,72]. Although fd rods are strongly charged and
strictly do not interact as hard objects, their phase behav-
ior can be mapped quite efficiently on a hard-core model
using a suitable renormalization of the rod dimensions
[72]. Similar recipes could be applied to other smecto-
genic colloidal particles provided the soft interactions are

not too strong and long-ranged. Our predictions will then be
instrumental, for instance, in guiding continuum models
[35–37] to classify topological defects in a wide range of
lyotropic smectic materials.
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APPENDIX: APPENDIX: INCIPIENT FREEZING
FROM A UNIFORM NEMATIC FLUID

In this Appendix we wish to illustrate the wider appli-
cability of the analytical rendering of the excluded volume
between elongated colloidal particles proposed in Sec. III in
relation to phase transitions in systems of rod and disk-shaped
colloids. We use a simple stability analysis to predict the
nematic-smectic or nematic-columnar transition at the level of
bifurcations from a spatially uniform nematic fluid. We apply
this to a number of relevant systems, namely rods and disks in
3D and rods confined to a smectic monolayer. An overview of
the results is given in Table I. Details of the analysis for each
specific case can be found in the paragraphs below.

The case of a monolayer rod fluid, which is relevant
for thin films or strongly confined systems of elongated
macromolecules, has received recent attention from density
functional theory [53], experiment [87], as well as computer
simulation [88]. In the latter study, for strictly flat monolayers
a nematic-solid transition was identified around a packing
fraction 83% independent of the aspect ratio [89]. This value
is very close to our prediction (81%) listed in Table I. In
the context of space-filling smectics solidification of a sin-
gle smectic monolayer can be tentatively connected to the
emergence of SmB order. Our results then suggests that the
transition from SmA to SmB order occurs at very high pack-
ing conditions. It is likely, however, that the crossover from
SmA to SmB order for strictly hard cylinders is pre-empted by
transitions to solid phases that are thermodynamically more
stable under these conditions [12,17,18].

For slender rods in a 3D bulk nematic, the results are in
good agreement with computer simulation results where the
nematic-smectic transition is found to vary only weakly with
aspect ratio [17,18]. This complies with the “rule-of-thumb”
that a critical packing fraction of a little over 40% seems
required to stabilize a frozen state in hard-body systems, ir-
respective of their shape [15,90]. For strictly parallel rods the
transition would happen at a far too low packing fraction,
namely φ∗ = 0.34. We conclude that orientational fluctua-
tions play an essential role in steering the transition towards a
realistic density range.

Our treatment of the excluded-volume correlations can be
further tested by scrutinizing the nematic-columnar transition
for thin disks (L/D � 1). For strictly parallel particles the
excluded volume is identical to the one for elongated cylinders
so that a second-virial theory would not be able to distinguish
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TABLE I. Nematic-solid (NX), nematic-smectic (NS), and nematic-columnar (NC) freezing of hard cylinders. Overview of bulk freezing
transitions in terms of the bifurcation packing fraction φ∗ for hard cylinders in a two-dimensional monolayer fluid and in three dimension bulk
nematics. The corresponding wave number defining the typical distance between adjacent smectic layers or columns is indicated by q∗. The
relevant transition values are indicated in bold.

Transition φ∗ parallel φ∗ freely rotating q∗ parallel q∗ freely rotating

NX monolayer rods 0.58 0.81 5.13/D 5.13/D
NS rods in 3D 0.34 0.40 4.49/L 4.86/L
NC rods in 3D 0.44 0.73 5.13/D 5.13/D
NS disks in 3D 0.34 0.75 4.49/L 4.49/L
NC disks in 3D 0.44 0.61 5.13/D 5.45/D

between oblate and prolate cylinders. For disks, however, we
know from simulations [15,16,91] and experiments on clay
platelets [92–94] that the nematic-columnar transition pre-
empts the nematic-smectic transition whereas second-virial
theory for parallel cylinders predicts that columnar order is
always metastable with respect to the smectic phase [95].
While it is known since Onsager’s seminal work [13] that
second-virial approaches generally fall short in quantitatively
describing discotic systems [96], we argue that the orienta-
tion fluctuations of the disks (ignored in parallel-core models
[12]) also play a key role in favoring columnar over smectic
ordering. This is corroborated by our theory (see Table I)
in that freely rotating hard disks favor columnar over smec-
tic order, even though the critical packing fraction at the
nematic-columnar transition (φ∗ = 0.61) is overestimated by
our theory in line with earlier theoretical findings [97].

1. Freezing of a monolayer rod fluid

When the intralamellar density exceeds a critical value the
monolayer fluid is expected to transition into a solid character-
ized by in-plane periodic order following some Bravais lattice
that we may parametrize by a (combination of) wave vectors
q⊥. Close to the nematic-solid (NX) transition, that we assume
to be of a second-order nature [88,89], the one-body density
can be written in terms of the reference solution for the fluid
state and a periodic density modulation with infinitesimally
small amplitude ε � 1 [10,95,98],

ρ(r⊥; ω) = ρ⊥[ f (ω) + ε fq(ω)eiq⊥·r⊥ ], (A1)

where the orientation distribution fq(ω) �= f (ω) in general
depends on the wave vector q⊥ of the in-plane density modu-
lation.

Next, we linearize the grand potential Eq. (2) for arbitrarily
small amplitude ε. The result is a bifurcation condition that
identifies the point where spatially nonuniform distributions
for the planar one-body density branch off from the fluid
solution,

fq(ω) = ρ⊥ f (ω)
∫

dω′ fq(ω′)K̂(q⊥). (A2)

The key quantity is the kernel K̂ that combines the hard-core
volume-exclusion contributions discussed in the main text,

ρ⊥K̂(q⊥) = −8φ⊥g(φ⊥)

{
J1(q⊥)

q⊥
+ F (q⊥)

}
. (A3)

The first terms denotes the parallel hard-core term while the
second term accounts for the orientational fluctuations of the
rods and features an explicit coupling between the incipient
density modulation and the azimuthal rod angle,

F (q⊥) = γ �

3π

3∑
n=1

j0

[
q⊥
2

�(θan · ω⊥ − θ ′an · ω′
⊥)

]
, (A4)

with ω⊥ = (sin ϕ, cos ϕ, 0). Here the density modulation
describes, for instance, a hexagonal Bravais lattice with prim-
itive vectors a1 = (

√
3, 1)/2, a2 = (−√

3, 1)/2, and a3 =
(0, 1). Other crystal symmetries may be probed likewise [99].

Symmetry-breaking solutions deviating from a uniform
fluid towards a solid state may be probed from the condition
Eq. (A2). In the simplest case, we assume that the orienta-
tional distribution does not respond to the incipient density
modulation and obeys a Gaussian form Eq. (19). This amounts
to replacing in Eq. (A2),

fq(ω) = fG(ω). (A5)

The bifurcation condition Eq. (A2) is then equivalent to a
divergence of the static structure factor indicating a loss of
local stability of the monolayer fluid,

S−1(q⊥) = 1 + 8φ⊥g(φ⊥)

{
J1(q⊥)

q⊥
+ 〈〈F (q⊥; )〉〉

}
= 0.

(A6)

The brackets denote a double Gaussian average defined in
the main text. The bifurcation solution of Eq. (A6) then cor-
responds to the lowest (real-positive) value of φ∗

⊥ with the
associated wave number indicated by q∗

⊥. The averages of
the interrod angles are known analytically in the asymptotic
limit and are given in Eq. (21). This is not the case, however,
for the angular average of F where the polar and azimuthal
angles are strongly convoluted with the wave vector q⊥. To
make headway we assume that the polar angles of the rods
are “frozen” at a small value θ = θ ′ = θc � 1 while fluctu-
ations in the azimuthal angles remain a priori unrestricted.
Next we substitute the asymptotic expression γ ≈ (θ2 +
θ ′2 − 2θθ ′ cos �ϕ)1/2 ∼ 21/2θc

√
1 − cos �ϕ with �ϕ = ϕ −

ϕ′. Technically this amounts to replacing the Gaussian orien-
tational probability by an even simpler factorized form,

fG(ω) ∼ δ(θ − θc)

sin θc

1

2π
. (A7)

Since the azimuthal fluctuations are presumed unaffected by
the density modulation, the three lattice vector contributions
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an are equal. Using the result 21/2

2π

∫ 2π

0 dx
√

1 − cos x = 4/π ,
the problem reduces to a single azimuthal average,

〈〈F (q⊥)〉〉 ∼ 4

π2
(�θc)

∫ 2π

0

dϕ

2π
j0

[
q⊥
2

(�θc) cos ϕ

]
. (A8)

We may link the constrained polar angle θc to the nematic
order parameter α⊥ and rod packing fraction φ⊥ via,

�θc ∼ �〈θ2〉1/2
fG

∼ (2�2/α⊥)1/2. (A9)

We invoke the quadratic relationship with the packing fraction
φ⊥ Eq. (22) and find,

�θc ∼
(π

2

)1/2 1

φ⊥g(φ⊥)
, (A10)

independent from the rod aspect ratio �. A trivial reference
case is a system of perfectly parallel hard cylinders previously
analyzed by Mulder [95]. We set θc = 0 and f (ω) = δ(ω) and
find that the structure factor Eq. (A6) has a pole at φ⊥ ≈ 0.58
and q⊥ ≈ 5.13. The presence of orientational fluctuations ex-
pressed by Eq. (A8)] leads to a much higher transition values
namely φ⊥ ≈ 0.81 while leaving the critical wave number
unchanged (q⊥ ≈ 0.513). The results have been tabulated in
Table I.

2. Smectic versus columnar freezing of hard rods

In order to further test our theory, we consider the much
more widely studied system of rigid hard cylinders in 3D
[10,12,14,17,18]. When exceeding a certain critical packing
fraction these systems are known to form a smectic-A phase
emerging from a nematic fluid. In our approach, the hard-body
interaction between the cylinders can be approximated by
a parallel hard-core contribution supplemented with a fluc-
tuation term that depends on the rod orientations. Ignoring
correlations between end-caps which should be negligible for
sufficiently long rods � = L/D � 1, we find that FT of the
excluded volume reads as follows,

K̂(q) ≈ −2πLD2 j0(q‖L)
J1(q⊥D)

1
2 q⊥D

− 2L2D| sin γ | j0

(
L

2
q · ω

)
j0

(
L

2
q · ω′

)
+ O(D3).

(A11)

Assuming the principal director to point along the z axis of the
laboratory frame we write q‖ = q · ẑ and q⊥ = q · x̂ = q · ŷ.
Similarly to the monolayer case we may probe bifurcations
from the uniform nematic fluid towards, for instance, a smec-
tic structure for which q · ω = q‖ cos θ and q⊥ = 0. Then, the
nematic-smectic (NS) bifurcation in the asymptotic limit of
strong alignment follows from,

S−1
NS (q‖) ∼ 1 + 8φg(φ)

[
j0(q‖L) + 1

π
�〈〈γ 〉〉 j2

0

(
q‖L

2

)]
= 0.

(A12)

Using the Gaussian approximation we write for the double
averaged angle,

�〈〈γ 〉〉 ∼ π

2g(φ)φ
. (A13)

The solution is φ∗ = 0.403 and q∗
‖L = 4.86 independent of

the rod aspect ratio �.
To finalize our analysis we also explore the possibility

of a nematic-columnar transition for rods in which case a
density modulation develops across the plane transverse to
the nematic director q = (q⊥, 0, 0). In the asymptotic limit of
near-parallel rods we find Dq · ω ∼ O(q⊥Dθ ) ∼ 0 so that the
divergence criterion for the structure factor reads,

S−1
NC (q⊥) ∼ 1 + 8φg(φ)

[
J1(q⊥D)

1
2 q⊥D

+ 1
π
�〈〈γ 〉〉

]
= 0, (A14)

with solution φ∗ = 0.73 and q∗
⊥D = 5.14. This demonstrates

that the nematic-smectic transition strongly pre-empts the
columnar phase as is well known from computer simulation
[14,17,18] and experiment [25,43].

3. Smectic versus columnar freezing of hard disks

We finish our analysis by addressing freezing instabilities
in fluids of thin cylindrical disks with a large diameter-
to-thickness ratio D/L � 1. The orientational fluctuation
contribution to the excluded volume for thin disks is much
more complicated than the one for rods and has been com-
puted by one of us [100],

K̂(ω,ω′) ≈ − 2πLD2 j0(q‖L)
J1(q⊥D)

1
2 q⊥D

− π

4
D3| sin γ |

[
A1

J1(q̄2)
1
2 q̄2

+ A2
J1(q̄1)

1
2 q̄1

]

+ O(DL2), (A15)

with q̄n =
√

( D
2 q · v̂)2 + ( D

2 q · ŵn)2 and,

An = 1

2

∫ 1

−1
dt cos

(
D

2
tq · ŵ1

)
cos

(
D

2

√
1 − t2q · v̂

)

≈ J0(q̄n), (A16)

with v̂ = (ω × ω′)/| sin γ | and ŵn = ωn × v̂ two auxiliary
unit vectors associated with the particle frame of each disk.
It is easily verified that the zero-wave-number limit (q̄n = 0)
of the second contribution above yields −π

2 D3| sin γ | which
corresponds to (minus) the excluded volume between two
infinitely thin hard disks of diameter D. Taking the asymptotic
limit of small polar angles and considering only density mod-
ulations in the xy plane perpendicular to the nematic director
(q‖ = 0) we find that the orientation-dependent arguments of
the Bessel functions can be expressed as,

q̄ ∼ ±q⊥D

(
θ ′ − θ cos �ϕ

2γ

)
. (A17)

The sign is irrelevant here given that both Bessel functions
above are even functions. The next step is to preaverage the
term between brackets over the disk orientations which in
the Gaussian approximations gives a mere constant of O(1),
namely 〈〈(θ ′ − θ cos �ϕ)/2γ 〉〉 = c0 ≈ 0.3. Taking all this
into account we find that the divergence of the structure factor
at the nematic-columnar (NC) transition can be established
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from the following simple condition,

S−1
NC (q⊥) ∼ 1 + 8φg(φ)

[
J1(q⊥D)

1
2 q⊥D

+1

2
δ〈〈γ 〉〉J0(c0q⊥D)J1(c0q⊥D)

c0q⊥D

]
= 0, (A18)

where δ = D/L � 1 defines the aspect-ratio of the disk. Ap-
plying the Gaussian scaling arguments invoked for rods to the
case of disks we find,

δ〈〈γ 〉〉 ∼ 2

g(φ)φ
, (A19)

which renders the results independent of the disk aspect ratio.
The bifurcation criterion is easily resolved numerically and
yields φ∗ = 0.61 and q∗

‖L = 5.45. Similarly, we may probe
the nematic-smectic transition from taking q = q‖ẑ. Then, in
the asymptotic limit we infer that q̄ ∼ O(q‖Lθ ) is small and
can be set to zero in good approximation. The condition for
the nematic-smectic transition for disks then reads,

S−1
NS (q‖) ∼ 1 + 8φg(φ)

[
j0(q‖L) + 1

2δ〈〈γ 〉〉] = 0, (A20)

which has a solution φ∗ = 0.75 and q∗
‖L = 4.49. The results

are summarized in Table I.
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