
PHYSICAL REVIEW E 107, 054603 (2023)

Synchronization and alignment of model oscillators based on Quincke rotation
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Colloidal spheres in weakly conductive fluids roll back and forth across the surface of a plane electrode
when subject to strong electric fields. The so-called Quincke oscillators provide a basis for active matter
based on self-oscillating units that can move, align, and synchronize within dynamic particle assemblies.
Here, we develop a dynamical model for oscillations of a spherical particle and investigate the coupled
dynamics of two such oscillators in the plane normal to the field. Building on existing descriptions of Quincke
rotation, the model describes the dynamics of the charge, dipole, and quadrupole moments due to charge
accumulation at the particle-fluid interface and particle rotation in the external field. The dynamics of the
charge moments are coupled by the addition of a conductivity gradient, which describes asymmetries in
the rates of charging near the electrode. We study the behavior of this model as a function of the field
strength and gradient magnitude to identify the conditions required for sustained oscillations. We investigate
the dynamics of two neighboring oscillators coupled by far field electric and hydrodynamic interactions
in an unbounded fluid. Particles prefer to align and synchronize their rotary oscillations along the line of
centers. The numerical results are reproduced and explained by accurate low-order approximations of the
system dynamics based on weakly coupled oscillator theory. The coarse-grained dynamics of the oscillator
phase and angle can be used to investigate collective behaviors within ensembles of many self-oscillating
colloids.

DOI: 10.1103/PhysRevE.107.054603

I. INTRODUCTION

Collections of mobile oscillators can exhibit complex be-
haviors due to interactions that influence and respond to their
respective positions and phases [1]. These “swarmalators”
combine the swarming dynamics of mobile agents with the
synchronization of coupled oscillators to produce new forms
of self-organization outside of equilibrium. In addition to
their positions and orientations, mobile oscillators are dis-
tinguished by internal states, namely, the oscillation phase,
that influence their interactions with neighboring oscillators.
In general, these interactions are nonreciprocal such that the
action of one oscillator on another does not produce an equal
and opposite reaction [2]. As a result, weakly coupled oscil-
lators can beat faster (or slower) when synchronized due to
interactions between their respective phases. Similar effects
drive steady currents among swarmalators that break time-
reversal symmetry to enable diverse behaviors prohibited at
equilibrium [3].

Active colloidal particles [4] powered by chemical fu-
els [5,6] or external fields [7,8] enable experimental models
of mobile oscillators by which to investigate their collec-
tive behaviors [9]. Magnetic Janus spheres with anisotropic
susceptibility exhibit simultaneous rotation and oscillation
in a precessing field that mediate their synchronization and
self-assembly [10]. Conductive particles oscillating between
biased electrodes by contact-charge electrophoresis (CCEP)
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attract or repel each other depending on their relative phases
[11,12]. Pear-shaped colloids rolling along circular trajecto-
ries by Quincke rotation organize to form aster-like vortices
and rotating flocks characterized by sustained particle currents
[13]. In these examples, the oscillatory dynamics of each
individual particle is coupled to that of its neighbors by mag-
netic [10,14], electric [11,12], and/or hydrodynamic [15,16]
interactions. The oscillator positions and phases evolve in time
due to nonreciprocal interactions that cannot be described by
gradients of a scalar potential.

Recently, we reported a colloidal oscillator based on
Quincke rotation [17] of a spherical particle at the surface
of a plane electrode [18] (Fig. 1). Like similar Quincke
rollers [19,20], particle rotation is caused by charge accu-
mulation at the particle-fluid interface and its mechanical
relaxation in the applied field. Oscillatory dynamics at high
field strengths is attributed to asymmetries in the rates of
charging that occur when the particle size is commensurate
with a field-induced boundary layer near the electrode sur-
face. The back-and-forth motion of particles is reproduced
by a modified leaky dielectric model [21,22] that uses spatial
gradients in the fluid conductivity to describe the effects of
asymmetric charging. Notably, Quincke oscillators produce
electric and hydrodynamic disturbances that can influence the
dynamics of neighboring particles; however, the effects of
these interactions on the oscillation phase and orientation have
not been investigated. Unlike similar interactions between
spherical particles under Quincke rotation [23,24], coupled
particle oscillators can both synchronize and align to enable
new types of collective behavior.
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FIG. 1. (a) Schematic illustration of a single spherical particle
of radius a, permittivity εp, and conductivity κp immersed in a vis-
cous fluid of permittivity εf and conductivity κf(r). Different from
the standard model of Quincke rotation, we consider the effects of
conductivity gradients ∇κf �= 0, which describe asymmetric rates of
charge accumulation at the particle surface [18]. Under appropriate
conditions, application of an external field Ee causes the particle
to rotate back and forth about an axis perpendicular to the field.
(b) Oscillatory dynamics of the angular velocity �1 as predicted by
the model for (dimensionless) parameters εp = 1.5, κp = 0, Ee = 10,
γ = 1.2. All quantities are presented using natural units described in
the text.

Here, we develop a dynamical model for Quincke os-
cillation of a spherical particle and investigate the coupled
dynamics of two model oscillators in the plane normal to the
field. Building on previous work on Quincke rotation [23,24],
the model uses the leaky dielectric framework to describe
the dynamics of the charge moments up to the quadrupole.
The addition of a conductivity gradient parallel to the applied
field leads to new couplings between the moments that drive
particle oscillations at high field strengths. We characterize the
behaviors predicted by the model for different field strengths
and gradient magnitudes. To describe the coupled dynamics
of two oscillators, we consider the leading-order electric and
hydrodynamic interactions in the far field. Numerical inte-
gration of the model suggests that these interactions act to
synchronize and align particle rotation parallel to the line
of centers. Using the theory of weakly coupled oscillators
[25,26], we derive accurate low-order approximations of the
system dynamics to describe the evolution of the oscillator
angles and phases. These coarse-grained models can be used
to investigate the collective dynamics of oscillator ensembles
comprised of many self-oscillating colloids.

II. QUINCKE OSCILLATOR MODEL

Building on existing models of Quincke rotation [23,24],
we develop a simple model to describe the Quincke oscil-
lations of a spherical particle subject to an external field.
Quincke rotation is well described by the Taylor-Melcher
leaky dielectric model [21,22], which treats the particle and

the surrounding fluid as homogeneous Ohmic conductors con-
taining no free charge. The application of an external field
drives the accumulation of charge at the particle-fluid inter-
face. Above a critical field strength, the action of the field on
the field-induced surface charge causes the particle to rotate at
a steady rate. To induce oscillations, we introduce a gradient
in the fluid conductivity oriented parallel to the applied field
such that charge accumulates faster on one side of the particle
and slower on the other. This asymmetric charging process
provides a crude approximation to the more complex pro-
cesses of charge carrier formation and recombination near the
electrode surface [18]. For simplicity, our model ignores other
effects of the electrode such as enhancements in the hydrody-
namic resistance to rotation and electrostatic interactions with
the particle’s image. With these simplifying assumptions, we
derive evolution equations for the particle charge q, dipole p,
and quadrupole Q moments, which are coupled to one another
by the gradient conductivity. Interactions with higher-order
charge moments are neglected.

We consider a spherical particle of radius a, permittivity
εp, and conductivity κp immersed in an unbounded fluid of
permittivity εf and conductivity κf(r) (Fig. 1). Assuming zero
charge in each bulk phase, the electric potential inside and
outside of the sphere are governed by the Laplace equation

∇2ϕ̄ = 0 for r < a,

∇2ϕ = 0 for r > a.
(1)

Consequently, the potentials can be expanded in multipole
expansions of the form

ϕ̄(r) = ϕe(r) + q

a
+ r · p

a3
+ 1

2

rr : Q
a5

+ . . . for r < a,

ϕ(r) = ϕe(r) + q

r
+ r · p

r3
+ 1

2

rr : Q
r5

+ . . . for r > a,

(2)

where ϕe(r) is the external potential present in the particle’s
absence. At the particle surface, the charge density σ is related
to the jump in the electric displacement field as

σ = −r̂(εf∇ϕ − εp∇ϕ̄) for r = a, (3)

where r̂ is the unit vector in the radial direction. The surface
charge density evolves in time due to the jump in the electric
current normal to the particle-fluid interface and to the rotation
of the particle with angular velocity �

∂σ

∂t
− r̂ · (κf(r)∇ϕ − κp∇ϕ̄) + ∇s · (σ� × r) = 0. (4)

Here, we deviate from the standard treatment of Quincke
rotation with the introduction of a position-dependent conduc-
tivity κf(r). With this change, the leaky-dielectric model is no
longer self-consistent: steady currents through a medium of
variable conductivity are accompanied by volumetric charge,
which is neglected in Eq. (1). This heuristic approximation is
motivated by the asymmetric charging of the particle surface
when its size is comparable to that of a field-induced boundary
layer at the electrode surface [18].

As described previously [23,24] and detailed in the Sup-
plemental Material [32], we derive the moment evolution
equations by substituting the multipole expansion into Eq. (4)
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for the surface charge and collecting like powers of r. The
charge q, dipole p, and quadrupole Q evolve in time as

dq

dt
= − 1

τ
q − γ

τ
·
(

2

3a
p − a2

3
∇ϕe(0)

)
, (5)

dp
dt

= � × [p + a3ε′
cm∇ϕe(0)] − 1

τ ′ [p + a3κ ′
cm∇ϕe(0)]

− γ ′

τ ′ ·
(

aqδ + 3

5a
Q − 2a4

5
∇∇ϕe(0)

)
, (6)

dQ
dt

= { � × [2Q + 4a5ε′′
cm∇∇ϕe(0)]}st

− 1

τ ′′ (Q + 2a5κ ′′
cm∇∇ϕe(0))

− 1

τ ′′ {γ ′′[4ap − 2a4∇ϕe(0)]}st.

(7)

Here, the timescales for the relaxation of the charge, dipole,
and quadrupole are, respectively,

τ = εf

κf(0)
, τ ′ = εp + 2εf

κp + 2κf(0)
, τ ′′ = 2εp + 3εf

2κp + 3κf(0)
. (8)

Similarly, the dimensionless conductivity gradients are

γ = a∇κf(0)

κf(0)
, γ ′ = a∇κf(0)

κp + 2κf(0)
, γ ′′ = a∇κf(0)

2κp + 3κf(0)
.

(9)

The Claussius-Mossotti factors for the dipole and quadrupole
are

ε′
cm = εp − εf

εp + 2εf
, ε′′

cm = εp − εf

2εp + 3εf

κ ′
cm = κp − κf(0)

κp + 2κf(0)
, κ ′′

cm = κp − κf(0)

2κp + 3κf(0)
. (10)

To preserve the properties of the quadrupole, which is sym-
metric and traceless, the bracketed terms with superscript “st”
denote the symmetric and traceless components of the second-
order tensor, that is, [A]st = 1

2 (A + Aᵀ) − 1
3 tr(A)δ, where Aᵀ

denotes the transpose, δ is the identity tensor, and tr(A) = Aii

denotes the trace. Equation (7) neglects the additional con-
tributions due to the octopole, thereby closing an otherwise
infinite system of moment equations in which the conductivity
gradient couples the dynamics of neighboring moments. The
validity of this approximation is established by comparison to
the full numeric solution for different gradient magnitudes γ

(see Supplemental Material, Sec. 2 [32]).
To determine the angular velocity � of particle rotation,

we balance the electrostatic torque [27] on the particle in the
external electric field with the hydrodynamic torque [28] on
the particle in the ambient flow field ue(r) at low Reynolds
number

8πηa3
[
� − 1

2∇ × ue(0)
] = − 4πεf

[
p × ∇ϕe(0)

+ 1
3 (Q · ∇ ) × ∇ϕe(0)

]
, (11)

where η is the fluid viscosity. On the right-hand side, the
expression for the electric torque neglects additional contribu-
tions due to higher-order moments and their interactions with
higher-order gradients of the external field. For the purpose
of calculation, the quadrupolar contribution to the torque can

be written using index notation as 1
3εi jkQ jl∂xl ∂xk ϕe(0). On the

left-hand side, the expression for the hydrodynamic torque
assumes that the spherical particle is immersed an unbounded
fluid. The torque balance (11) omits the effect of particle
inertia, which is assumed to be negligible for micron scale
particles [18].

To facilitate our analysis, we adopt a convenient set of
units in which the following quantities are set to 1: the par-
ticle radius a, the fluid permittivity εf, the fluid conductivity
κf(0), and the fluid viscosity η. In these units, length is scaled
by the radius a, time by εf/κf(0), the electric field by Es =√

ηκf(0)/ε2
f , the particle charge by a2Es, the dipole by a3Es,

and the quadrupole by a4Es. We use the same notation to de-
note the resulting dimensionless variables. The dimensionless
problem is fully specified by the external potential ϕe(r), the
conductivity gradient ∇κf(0), the particle permittivity εp, the
particle conductivity κp (often zero), and the external flow
field ue(r).

III. SINGLE SPHERE IN A UNIFORM FIELD

We first consider the dynamics of a single sphere in a
uniform electric field Ee = Eee3 and conductivity gradient
γ = γ e3, both directed in the 3-direction (normal to the elec-
trode present in the experimental system [18]). We assume
that the particle rotates in the 1-direction such that the system
has mirror symmetry about the 23-plane. The condition of
mirror symmetry further requires that the components p1, Q12,
Q21, Q13, and Q31 are zero. With these simplifications, the
moment dynamics can be written as

q̇ = −q − γ

3
(2p3 + Ee),

ṗ2 = −�1(p3 − ε′
cmEe) − 1

τ ′ p2 − 3γ ′

5τ ′ Q23,

ṗ3 = �1 p2 − 1

τ ′ (p3 − κ ′
cmEe) − γ ′

τ ′

(
q + 3

5
Q33

)
,

Q̇22 = −2�1Q23 − 1

τ ′′ Q22 + 2γ ′′

3τ ′′ (2p3 + Ee), (12)

Q̇23 = �1(Q22 − Q33) − 1

τ ′′ Q23 − 2γ ′′

τ ′′ p2,

Q̇33 = 2�1Q23 − 1

τ ′′ Q33 − 4γ ′′

3τ ′′ (2p3 + Ee),

where the angular velocity is �1 = 1
2 p2Ee. Other nonzero

components of the symmetric and traceless quadrupole mo-
ment are related to those above as Q32 = Q23 and Q11 =
−Q22 − Q33. The dimensionless parameters appearing in
these equations depend on the particle permittivity εp and
conductivity κp as

τ ′ = εp + 2

κp + 2
, τ ′′ = 2εp + 3

2κp + 3
,

γ ′ = γ

κp + 2
, γ ′′ = γ

2κp + 3
,

ε′
cm = εp − 1

εp + 2
, ε′′

cm = εp − 1

2εp + 3
,

κ ′
cm = κp − 1

κp + 2
, κ ′′

cm = κp − 1

2κp + 3
. (13)
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FIG. 2. Dynamical phase diagram showing the different behav-
iors of a single sphere in a uniform field as a function of the
(dimensionless) field strength Ee and conductivity gradient γ . Other
parameters are held constant: εp = 1.5 and κp = 0. In the “station-
ary” region, there is a stable fixed point with �1 = 0. In the “rotat-
ing” region, there are two stable fixed points corresponding to steady
particle rotation in either direction. In the “oscillating” region, there
are no stable fixed points and the sphere rotates back and forth in a
periodic or sometimes chaotic manner. In the “bistable” region, the
stable limit cycle (or strange attractor) coexists with the stable fixed
points for steady rotation. This region is identified by the probability
of approaching the limit cycle for a specified distribution of initial
conditions.

The problem is therefore specified by four dimensionless pa-
rameters: the particle permittivity εp, the particle conductivity
κp, the external field Ee, and conductivity gradient γ . Figure 2
summarizes the different dynamical behaviors of the model
as a function of the external field strength Ee and the con-
ductivity gradient γ for a nonconductive particle κp = 0 with
permittivity εp = 1.5.

A. Fixed points

For γ = 0, the fluid conductivity is spatially uniform, and
the model dynamics (12) simplifies to the standard model for
Quincke rotation. That model admits one fixed point in which
the particle is stationary

p3 = κ ′
cmEe,

0 = q = p2 = Q22 = Q23 = Q33.
(14)

Additionally, there are two fixed points in which the particle
rotates with a constant velocity

�1 = ± 1

τ ′
√

(Ee/Ec)2 − 1,

p2 = ± 2

Eeτ ′
√

(Ee/Ec)2 − 1,

p3 = ε′
cmEe − 2

τ ′Ee
, (15)

0 = q = Q22 = Q23 = Q33,

(a)

(b)

FIG. 3. (a) Oscillatory dynamics of the dipole p for (di-
mensionless) parameters εp = 1.5, κp = 0, Ee = 10, and γ = 1.2.
The oscillation period is T = 4.36. (b) Limit cycle projected
onto the p2-p3 plane. The colormap shows the oscillation phase
from (a).

where Ec = √
2/τ ′(ε′

cm − κ ′
cm) is a critical field strength. The

particle can rotate in either direction depending on the initial
conditions. This rotating solution exists only when ε′

cm > κ ′
cm

or, equivalently, when εp/κp > 1. Moreover, linear stability
analysis indicates that the rotating solution is stable only when
the external field exceeds the critical field strength Ee > Ec;
for weaker fields, the particle does not rotate.

The addition of a finite conductivity gradient γ perturbs the
stationary and rotating solutions; however, the qualitative be-
havior of the fixed points is unchanged. Below a critical field
strength, the particle remains stationary (Fig. 2, “stationary”
region). This stationary solution is stable for conductivity gra-
dients below a critical value (here, γ = 1.291 for εp = 1.5);
higher conductivity gradients lead to unphysical solutions and
are not considered. At higher field strengths, there are two
stable fixed points corresponding to particle rotation with a
constant speed in either direction (Fig. 2, “rotating” region).
Finally, at sufficiently high fields and conductivity gradients
the rotating solution becomes unstable; there are no stable
fixed points in this region of the phase diagram (Fig. 2, “oscil-
lating” region). Instead, the particle rotates back and forth in
an oscillatory or sometimes chaotic manner.

B. Oscillatory solutions

Figure 3 shows the oscillatory dynamics of the dipole
moment as predicted by Eq. (12) for Ec = 10 and γ = 1.2
[see also Fig. 1(b) for the angular velocirty]. As detailed
previously [18], Quincke oscillations derive from couplings
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among the charge moments introduced by the conductivity
gradient, which affects the charging rate at the particle surface.
As described by the moment Eq. (12), the disturbance field
produced by one moment leads to currents that alter the others.
In particular, the quadrupolar disturbance contributes to the
charging of the dipole moment as to reverse the direction of
rotation, thereby enabling back-and-forth oscillations. Similar
dynamics were observed in a related mechanical model of an
overdamped water wheel [29] with a spatial gradient in the
leakage rate [18]. The stable limit cycle is invariant to a sym-
metry operation that combines 180◦ rotation about the 3-axis
and a T/2 shift in the oscillation phase where T denotes the
oscillation period. This phase-angle symmetry will be relevant
to our description of the interactions between neighboring
oscillators. The predicted oscillation frequency increases with
increasing field strength in quantitative agreement with previ-
ous experimental observations (Fig. S2 [32]).

Within some parts of the “oscillating” region (Fig. 2),
the particle exhibits asymmetric oscillations and chaotic dy-
namics (Figs. S3 and S4 [32]). Asymmetric limit cycles
are characterized by a nonzero time average in the rotation
velocity. Similar behaviors were observed in experiments
on Quincke rollers, which sometimes roll across a surface
with a time-periodic speed [18]. Chaotic dynamics are dis-
tinguished by aperiodic reversals the direction of particle
rotation similar to that reported previously for Quincke ro-
tation with finite particle inertia [30]. These behaviors are
typically found at lower field strengths near the boundary
between “rotating” and “oscillating” regions of the phase di-
agram (Fig. 2). In the present study, we focus our attention
on the symmetric oscillations found at higher field strengths
(Fig. 3).

Stable limit cycles and strange attractors are also found to
coexist with the stable fixed points describing steady rotation
(Fig. 3, “bistable” region). To map this bistable region of the
phase diagram, we integrate the dynamics numerically from
a distribution of initial conditions centered on a point on the
attractor. Some of these initial conditions relax back to the
attractor while others evolve to one of the two fixed points.
The colormap in Fig. 3 shows the fraction of initial conditions
that return to the limit cycle. Notably, the limit cycles and
strange attractors in the bistable region sometimes lack the
mirror symmetry implicit in Eq. (12). Instead, the direction
of rotation in the 12-plane changes direction in a periodic or
aperiodic manner (Fig. S5). To avoid this behavior, we focus
our analysis on larger gradients γ in the “oscillating” region
of the phase diagram (Fig. 3).

IV. TWO SPHERES IN A UNIFORM FIELD

We now consider the dynamics of two interacting spheres
(denoted α and β) subject to a uniform field Ee = Eee3 and
conductivity gradient ∇κf = γ e3 in the 3-direction [Fig. 4(a)].
The spheres are separated by the displacement vector R =
rβ − rα , which is directed perpendicular to the applied field.
Each sphere induces electric and hydrodynamic disturbance
fields that influence the dynamics of the neighboring parti-
cle. The electric field at the center of sphere α due both to
the external field and to the disturbance field of sphere β

(a)

(b)

e3
e2

e1

Ee γ

α β

R

top view
ΨβΨα

(c)

Δϕ = T/2

FIG. 4. (a) Schematic illustration of two oscillating spheres α

and β with angular orientations ψα and ψβ separated by a displace-
ment R. (b) With the constraint of mirror symmetry, the oscillators
synchronize with a stable phase difference �φ = T/2. (c) Freely
rotating spheres oscillate in phase (�φ = 0) with orientations ψα =
ψβ = π/2. The angular velocities are computed by numerical in-
tegration of the moment equations accounting for the far field
interactions due to electric (16) and hydrodynamic (17) disturbances.
The parameters are Ee = 10, γ = 1.2, εp = 1.5, κp = 0, and R = 10.

is given by

−∇ϕe(rα ) = Ee − qβR̂
R2

+ 1

R3
(3R̂R̂ − δ) · pβ

− 1

2R4
(5R̂R̂R̂ − 2δR̂) : Qβ + . . . . (16)

When the spheres are widely separated (i.e., R � 1), only the
leading-order terms are expected to contribute significantly.
We substitute this expression for the field into Eqs. (5) to
(7) for the dynamics of sphere α, neglecting those terms of
order R−4 and higher. The dynamics of sphere β is similarly
perturbed by the disturbance field due to sphere α.

The electric disturbance fields also contribute to the electric
torques acting on each particle. We substitute Eq. (16) for the
field at sphere α into the torque balance (11), neglecting those
terms of order R−4 and higher. The interactions we consider
include charge-dipole interactions of order R−2, dipole-dipole
interactions of order R−3, and charge-quadrupole interactions
of order R−3. In addition to electric interactions, we consider
the leading-order hydrodynamic interactions between the two
spheres. The fluid vorticity at the center of sphere α due to
rotation of sphere β is given by

∇ × ue(rα ) = − 1

R3
(δ − 3R̂R̂)�β. (17)
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We substitute this expression into the torque balance (11)
to account for far-field hydrodynamic interactions of order
R−3. We neglect the hydrodynamic force on sphere α in the
direction R × �β and hold the positions of the two spheres
constant. The torque on sphere β is similarly perturbed by the
electric and hydrodynamic disturbance fields due to sphere α.

With these electrostatic and hydrodynamic interactions,
the coupled dynamics of the two spheres can be integrated
numerically to identify their stable behavior(s). For spheres
separated by a large distance (R = 10) in the “oscillating”
regime, we find one metastable attractor with mirror symme-
try and one stable attractor without this symmetry [Figs. 4(b)
and 4(c), respectively]. When mirror symmetry is imposed,
the two in-line oscillators exhibit antiphase synchronization
with a stable phase difference of T/2 [Fig. 4(b)]. When this
symmetry is relaxed, the particles evolve to a synchronized
state characterized by in-phase oscillations aligned perpendic-
ular to their line of centers [Fig. 4(c)].

V. WEAKLY COUPLED PARTICLE OSCILLATORS

When the particles are sufficiently far apart, their coupled
oscillatory dynamics can be accurately described using the
formalism of weakly coupled oscillators [25,26]. In this ap-
proach, the dynamical state variable X (t ) for each particle
oscillator is replaced by a low-order approximation based
on the phase θ (t ) and the angle ψ (t ). Here, X (t ) is a 9-
dimensional vector that describes the charge q(t ), the three
components of dipole p(t ), and the five independent compo-
nents of the quadrupole Q(t ). To derive evolution equations
for the phase and angle, we write the dynamics of sphere α as

Ẋα = F (Xα ) + R−2I2(Xα, Xβ ) + R−3I3(Xα, Xβ ) + . . . , (18)

where F (Xα ) describes the dynamics of the individual sphere,
and the functions In(Xα, Xβ ) describe interactions with a
neighboring sphere β. The inverse distance R−1 plays the role
of the small parameter in a singular perturbation analysis.

For a single particle, the dynamics on the limit cycle XLC(t )
can be parameterized by the phase θ and the angle ψ of the
oscillator. The oscillation phase is defined as

θ (t) = (t + φ) mod T, (19)

where T is the oscillation period and φ is the relative phase.
We define the relative phase such that θ = 0 corresponds to
zero angular velocity prior to rotation in the positive one-
direction [see Fig. 1(a)]. Similarly, we choose the angle ψ = 0
to describe oscillatory rotations about the 1-axis. Other limit
cycles are obtained by rotation of the dipole and quadrupole
in the three-direction by an angle ψ . Away from the limit
cycle, we map each point X (t ) in the basin of the limit cycle
to the asymptotic phase �[X (t )] and angle �[X (t )] to which
it evolves—that is, �[X (t )] = θ (t ) and �[X (t )] = ψ (t ) as
t → ∞.

The phase of oscillator α evolves in time as

θ̇α = ∇X �(Xα ) · Ẋα

= 1 + R−2∇X �(Xα ) · I2(Xα, Xβ ) + . . . ,
(20)

where we made use of Eq. (18) and the fact that ∇X �(Xα ) ·
F (Xα ) = 1. For weakly coupled oscillators, the state variable

Xα (t ) is well approximated by its value on the limit cy-
cle Xα (t ) ≈ XLC(t + φα,ψα ) as parameterized by the relative
phase φα and the angle ψα . Substituting this approximation
into Eq. (20) and averaging the dynamics over one oscillation
cycle, we obtain the following approximate dynamics for the
relative phase of oscillator α:

φ̇α = 1

R2T

∫ T

0
∇X �[XLC(t + φα,ψα )]

· I2[XLC(t + φα,ψα ), XLC(t + φβ,ψβ )]dt + · · ·
= R−2Hφ

2 (ψα,ψβ,�φ) + R−3Hφ

3 (ψα,ψβ,�φ) + . . . ,

(21)

where Hφ

2 (ψα,ψβ,�φ) and Hφ

3 (ψα,ψβ,�φ) are oscillation-
averaged interaction functions that depend on the oscillator
angles ψα and ψβ and the phase difference �φ = φβ − φα .
We use the adjoint method [26,31] to compute the phase
response curve (PRC) ∇X �[XLC(θ, ψ )], which describes the
shift in phase induced by an infinitesimal perturbation of
the limit cycle. The interaction functions I2(Xα, Xβ ) and
I3(Xα, Xβ ) for in-line oscillators are summarized in the Ap-
pendix.

We derive the oscillation-averaged evolution of the angle
ψα in an analogous fashion as

ψ̇α = 1

R2T

∫ T

0
∇X �

[
XLC(t + φα,ψα )

]

· I2[XLC(t + φα,ψα ), XLC(t + φβ,ψβ )]dt + · · ·
= R−2Hψ

2 (ψα,ψβ,�φ) + R−3Hψ

3 (ψα,ψβ,�φ) + . . . ,

(22)

where Hψ

2 (ψα,ψβ,�φ) and Hψ

3 (ψα,ψβ,�φ) are interaction
functions for the oscillator angle. Here, the angle response
curve ∇X �[XLC(θ, ψ )] describes how perturbations to the
limit cycle alter the oscillator angle. By definition, changes in
the oscillator angle due to rotation in the 3-direction (parallel
to the external field and the conductivity gradient) do not alter
its phase. As a result, the angle response vector ∇X �, which
points in the direction of increasing angle, must be normal to
phase response vector ∇X �, which points in the direction of
increasing phase.

To evaluate the angle response curve ∇X �[XLC(θ, ψ )], we
introduce a transformation function R3(ψ, X ) that rotates the
components of the state vector X about the 3-axis by the angle
ψ . Using this function, the limit cycle for angle ψ is related
to that for zero angle as XLC(θ, ψ ) = R3[ψ, XLC(θ, 0)]. Dif-
ferentiating the limit cycle XLC(θ, ψ ) with respect to ψ , we
obtain a vector ∂ψR3[ψ, XLC(θ, 0)] that points normal to the
phase response vector in the direction of increasing angle. Due
to the rotational symmetry of the dynamics about the 3-axis,
the angle response curve ∇X �[XLC(θ, ψ )] must be parallel to
this vector such that

∇X �(XLC(θ, ψ )) = ∂ψR3[ψ, XLC(θ, 0)]

|∂ψR3[ψ, XLC(θ, 0)]|2 . (23)

Here, the normalization condition ∇X �[XLC(θ, ψ )] ·
∂ψR3[ψ, XLC(θ, 0)] = 1 is obtained by differentiating the
angle map �[XLC(θ, ψ )] = ψ with respect to ψ .
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(a)

(b)

FIG. 5. Phase interaction functions for two weakly coupled, in-
line oscillators as a function of their phase difference �φ = φβ − φα .
(a) Oscillation-averaged interaction functions Hφ

2 (ψα,ψβ, �φ) and
Hφ

3 (ψα, ψβ, �φ) of Eq. (21) computed numerically for parameters
Ee = 10, γ = 1.2, εp = 1.5, and κp = 0 with in-line orientation
ψα = ψβ = 0. Dashed and dot-dashed curves denote the odd and
even parts of H3, respectively. (b) The G3(ψα, ψβ, �φ) function
of Eq. (24) describes the evolution of the phase difference �φ for
ψα = ψβ = 0. The filled and open circles denote the stable and
unstable fixed points of the phase difference.

A. Two in-line oscillators: ψα = ψβ = 0

We first consider the case of two particles α and β os-
cillating in a common direction perpendicular to both the
external field Eee3 and the displacement vector Re2 [Fig. 4(a)
with ψα = ψβ = 0]. For each oscillator, the angle is fixed to
zero; however, the relative phase is free to evolve due to elec-
trostatic and hydrodynamic interactions. Figure 5(a) shows
the interaction functions Hψ

2 (0, 0,�φ) and Hψ

3 (0, 0,�φ) as
a function of the phase difference �φ = φβ − φα for in-
line oscillators with ψα = ψβ = 0. Notably, the second-order
interaction function is zero to within the precision of the com-
putation. The disturbance fields induced by the charges qα and
qβ do not alter the oscillator phases. For this configuration,
the leading-order contribution is the third-order interaction
proportional to R−3.

The evolution of the phase difference �φ = φβ − φα is
determined by the odd part of the interaction function

�̇φ = R−3
[
Hφ

3 (0, 0,−�φ) − Hφ

3 (0, 0,�φ)
]

= R−3Gφ

3 (0, 0,�φ). (24)

The roots of the Gφ

3 (0, 0,�φ) function correspond to syn-
chronized states characterized by a constant phase difference

(a)

(b)

total

FIG. 6. Decomposition of the interaction functions for two inline
oscillators (ψα = ψβ = 0) into electrostatic, charging, and hydro-
dynamic contributions. (a) Gφ

3 (ψα,ψβ, �φ) function of Eq. (24)
describing the evolution of the phase difference. (b) Sφ

3 (ψα, ψβ,�φ)
of Eq. (25) describing the evolution of the phase sum. The func-
tions are calculated numerically for parameters Ee = 10, γ = 1.2,
εp = 1.5, and κp = 0.

[Fig. 5(b)]. For the parameter values investigated, two in-
line oscillators synchronize with a stable phase difference
of �φ = T/2 in agreement with numerical simulations pre-
sented above [cf. Figs. 5(b) and 4(b)].

The interactions between the two oscillators can also alter
the frequency of their oscillations as described by the even
part of the interaction function [Fig. 5(a), dot-dashed curve].
The phase sum �φ = φα + φβ evolves as

�̇φ = R−3
[
Hφ

3 (0, 0,�φ) + Hφ

3 (0, 0,−�φ)
]

= R−3Sφ

3 (0, 0,�φ). (25)

Here, the Sφ

3 (0, 0,�φ) function is negative for all phase
differences, which implies that interactions act to slow the
frequency of oscillations.

To better understand the physical origins of these interac-
tions, we decompose the leading-order interaction functions
Gφ

3 (0, 0,�φ) and Sφ

3 (0, 0,�φ) into three contributions: elec-
tric charging interactions that alter the moment dynamics of
Eqs. (5) to (7), electrostatic interactions that alter the elec-
tric torque in Eq. (11), and hydrodynamic interactions that
alter the hydrodynamic torque in Eq. (11). As illustrated
in Fig. 6, each of these three interactions make signifi-
cant contributions to the synchronization and frequency of
coupled Quincke oscillators. Hydrodynamic interactions fa-
vor antiphase synchronization for which the hydrodynamic
resistance of particle rotation is minimal [Fig. 6(a), hydro-
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dynamic]. Under these conditions, the Sφ

3 (0, 0,�φ) function
is positive indicating an increase in the frequency for the
coupled oscillators [Fig. 6(b), hydrodynamic]. Such antiphase
synchronization is not favored by the electrostatic interactions
due to dipole-dipole repulsion [Fig. 6(a), electrostatic]; how-
ever, these effects are insufficient to determine the overall
response. The dipolar field of each particle acts to oppose
the external field at the site of its neighbor thereby slowing
its oscillation frequency [Fig. 6(b), charging]. These elec-
tric charging interactions also favor antiphase synchronization
[Fig. 6(a), charging]; however, the physical mechanisms of
this effect are not intuitive.

B. Two free oscillators

Relaxing the in-line constraint that ψα = ψβ = 0, the be-
havior of two weakly coupled Quincke oscillators is governed
by the three-dimensional (3D) dynamical system

ψ̇α = R−3 Hψ

3 (ψα,ψβ,�φ),

ψ̇β = R−3 Hψ

3 (ψβ,ψα,−�φ), (26)

�̇φ = R−3 Gφ

3 (ψα,ψβ,�φ),

which describes the evolution of the oscillator angles ψα and
ψβ and the phase difference �φ = φβ − φα . For brevity, we
denote these dynamics as Ẋ = F(X) where each component
of F(X) is a 2π -periodic function its vector argument X =
[ψα,ψβ, ω�φ]� where ω = 2π/T is the natural frequency
of the oscillator. Figure 7 shows the 3D phase portrait for this
system highlighting its various symmetries and fixed points.

The dynamics of Eq. (26) is characterized by several sym-
metries that significantly constrain the behavior of the system:
phase-angle, permutation, and mirror symmetries. As dis-
cussed above, phase-angle symmetry implies that a shift in
the phase of either oscillator by T/2 is equivalent to a change
in angle by π . Together with the periodicity condition, this
symmetry implies that

F(X) = F(X + n1a1 + n2a2 + n3a3), (27)

where a1 = [π, π, 0]�, a2 = [π, 0, π ]�, and a3 = [0, π, π ]�
are primitive basis vectors and n1, n2, and n3 are arbitrary
integers. This translational symmetry is identical to that of
a face centered cubic (FCC) lattice in crystallography; the
Wigner-Seitz cell is the rhombic dodecahedron illustrated in
Fig. 7(a). This primitive unit cell can be used to fill phase
space using translations along the basis vectors.

Additionally, invariance of the dynamics under permuta-
tion of the indices α and β implies that

F(X) = QF(QX) with Q =
⎡
⎣0 1 0

1 0 0
0 0 −1

⎤
⎦. (28)

This symmetry operation can be interpreted as a 180◦ rotation
in phase space about the basis vector a1. Finally, because the
motion of each oscillator is achiral, their coupled dynamics

Ψα
Ψβ

Δϕ 0

π

(a)

(b)

rotation
axes

primitive
cell

unstable
saddle

flow
speed

0 −π

π

0
−π

−T/2

T/2

minimal
cell a1

a2

a3

stable

minimal
cell

FIG. 7. Three-dimensional phase portrait of the dynamics for
two weakly coupled Quincke oscillators. (a) The periodic domain
of the variables ψα, ψβ, �φ can be divided using symmetries of the
dynamics, namely, translation along the basis vectors a1, a2, a3 and
rotation about the yellow axes. Knowledge of the dynamics within
the minimal cell is sufficient to reconstruct the full system. (b) Within
the minimal cell, streamlines of the dynamics flow from the unstable
fixed points (yellow) to the stable fixed points (blue). Streamlines are
computed numerically for parameters Ee = 10, γ = 1.2, εp = 1.5,
and κp = 0.

exhibits the following symmetry with respect to mirror reflec-
tion about the e1 direction [Fig. 4(a)]:

F(X) = QF(QX) with Q =
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦. (29)

This operation can be interpreted as a 180◦ rotation in phase
space about the vector [0, 0, 1]�. These two-fold rotational
symmetries in phase space are illustrated by the yellow axes
in Fig. 7(a). Using these symmetries, we identify a minimal
cell in phase space which concisely summarizes the system’s
dynamics [Fig. 7(b)].

Linear stability analysis of Eq. (26) reveals one stable
fixed point located at ψα = ψβ = π/2, �φ = 0 [Fig. 4(b),
blue spheres]. This point corresponds to synchronized rotation
along the axis connecting the two oscillators in agreement
with the numerical results above [Fig. 4(c)]. Inspection of
the eigenmodes shows how the system relaxes to this stable
solution. The angle sum ψα + ψβ and the angle differ-
ence ψα − ψβ evolve rapidly to their asymptotic values in
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pursuit of parallel alignment. Once aligned, the respective
phases of the two oscillators slowly relax into synchrony
(Fig. S6 [32]). The unstable fixed points and saddle points
of the dynamics are also illustrated in the minimal cell of
Fig. 4(b).

Using the above symmetries, we can create accurate para-
metric approximations of the interaction functions of the form

Hψ

3 (ψα,ψβ,�φ)

=
∑
jkl

Aφ

jkl e
i[ j(ψα+ψβ−�φ)+k(ψα−ψβ+�φ)+l (−ψα+ψβ+�φ)],

(30)

where j, k, l = 0,±1,±2, . . . , are integers, and Aφ

jkl are
complex coefficients. This Fourier series preserves the trans-
lational symmetry of Eq. (27). Additionally, the mirror
symmetry condition of Eq. (29) provides additional re-
lationships among the coefficients. Accounting for these
symmetries, the first few terms of the angle interaction func-
tion are given by

Hψ

3 (ψα,ψβ,�φ)

= Bψ

1 sin 2ψα + Bψ

2 sin 2ψβ

+ (
Cψ

1 sin �φ + Cψ

2 cos �φ
)

sin(ψβ − ψα )

+ (
Cψ

3 sin �φ + Cψ

4 cos �φ
)

sin(ψβ + ψα )

+ Dψ

1 sin(2ψβ − 2ψα ) + Dψ

2 sin(2ψβ + 2ψα )

+ (
Eψ

1 sin 3�φ + Eψ

2 cos 3�φ
)

sin(ψβ − ψα )

+ (
Eψ

3 sin 3�φ + Eψ

4 cos 3�φ
)

sin(ψβ + ψα ) + . . . ,

(31)

where the Aψ, Bψ,Cψ, . . . , are coefficients to be determined.
Similarly, the phase interaction function can be approximated
as

Hφ

3 (ψα,ψβ,�φ)

= Aφ + Bφ

1 cos 2ψα + Bφ

2 cos 2ψβ + Bφ

3 sin 2�φ

+ Bφ

4 cos 2�φ

+ (
Cφ

1 sin �φ + Cφ

2 cos �φ
)

cos(ψβ − ψα )

+ (
Cφ

3 sin �φ + Cφ

4 cos �φ
)

cos(ψβ + ψα )

+ Dφ

1 cos(2ψβ − 2ψα ) + Dφ

2 cos(2ψβ + 2ψα )

+ (
Eφ

1 sin 3�φ + Eφ

2 cos 3�φ
)

cos(ψβ − ψα )

+ (
Eφ

3 sin 3�φ + Eφ

4 cos 3�φ
)

cos(ψβ + ψα ) + . . . .

(32)

To estimate the coefficients, we first compute the interac-
tion functions on a regular grid of 34 × 34 × 34 points in
ψα,ψβ,�φ phase space. The coefficients are estimated from
these data using linear regression. This parametric approx-
imation agrees with the numerically computed interaction
function to within 5%. Table I summarizes the coefficients
using the specific parameter values considered throughout.
Notably, these dynamics cannot be described by a gradient
system, that is, F(X) �= ∇U (X) for some scalar potential

TABLE I. Coefficients for the approximate interaction functions
Hψ

3 (ψα, ψβ, �φ) and Hφ

3 (ψα, ψβ,�φ) of Eqs. (31) and (32) ob-
tained by linear regression for parameters Ee = 10, γ = 1.2, εp =
1.5, and κp = 0.

n 1 2 3 4

Bψ
n 5.9863 −0.0003 − −

Cψ
n −0.2423 0.1550 −1.2558 0.3454

Dψ
n 0.0003 0.0001 − −

Eψ
n 0.0690 0.02174 0.2845 −0.0237

Aφ
n −0.4548 − − −

Bφ
n −0.3210 0.0000 −0.0224 0.0443

Cφ
n 0.0151 0.1349 −0.2492 −0.5552

Dφ
n 0.0000 0.0000 − −

Eφ
n 0.0044 −0.0180 0.0309 0.0704

U (X). As a result, other behaviors such as stable limit cycles
or strange attractors may be possible for coupled Quincke
oscillators under different conditions.

In our present analysis, the positions of the two oscillators
are held constant while their oscillation angles and phases
evolve to a synchronized state of parallel alignment. Relax-
ing this constraint, electrostatic interactions between the like
charged particles act to increase the interparticle separation
R at a rate proportional to R−2. Hydrodynamic interactions
due to particle rotation leads to particle motion perpendicular
to the line of centers at a rate proportional to R−2; however,
such oscillatory motions are expected to average to zero in
the far field. Future efforts to describe the coupled dynam-
ics of Quincke oscillators should consider the effects of the
electrode surface, which is expected to alter the qualitative
behavior of the interaction functions.

VI. CONCLUSION

The dynamical model developed herein can be used to
describe the collective behaviors of many Quincke oscillators
interacting via electric and hydrodynamic interactions. In the
limit of weak coupling, these mobile oscillators are charac-
terized by their position, angle, and phase, which evolve in
time due to pairwise, nonreciprocal interactions with neigh-
boring particles. Here, we show that two such particles prefer
to synchronize, align, and accelerate their rotary oscillations
along the line of centers. For three or more particles in the
plane normal to the field, competition among these mutually
incompatible tendencies is expected to produce a variety of
dynamical behaviors that depend on the particle configura-
tion. To enable comparison with experimental studies, future
work should consider the effects of the electrode surface in
mediating the electric and hydrodynamic interactions among
the particles. In particular, particle motions due to rotation-
translation coupling at the solid surface may enable new
types of time-averaged interactions that direct the formation
of dynamic particle assemblies. These and other colloidal
oscillators can provide useful models of active matter based on
self-oscillating units with which to understand and engineer
swarmalator dynamics.
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APPENDIX: INTERACTION FUNCTION
FOR IN-LINE OSCILLATORS

We consider two in-line oscillators (ψα = ψβ = 0) sepa-
rated by the displacement R = Re2 and subject the external
field Ee = Eee3 and the conductivity gradient ∇κf = γ e3. We
assume the system has mirror symmetry about the 23-plane,
which implies that several components of the dipole and
quadrupole moments are zero (namely, p1 = Q12 = Q21 =
Q13 = Q31 = 0 for each oscillator α and β). The second-order
interaction function I2(Xα, Xβ ) appearing in Eq. (18) has the
following nonzero components:

I p2
2 (Xα, Xβ ) = −�α2

1

(
pα

3 − ε′
cmEe

) − κ ′
cm

τ ′ qβ,

I p3
2 (Xα, Xβ ) = �α2

1 pα
2 + 1

2
pα

2Ee ε′
cmqβ,

IQ22
2 (Xα, Xβ ) = −IQ33

2 (Xα, Xβ ) = −2�α2
1 Qα

23,

IQ23
2 (Xα, Xβ ) = �α2

1

(
Qα

22 − Qα
33

) + γ ′′
3

τ ′′ qβ,

with �α2
1 = 1

2
pα

3qβ. (A1)

Similarly, the third-order interaction function is

Iq
3 (Xα, Xβ ) = γ

3τ
pβ

3 ,

I p2
3 (Xα, Xβ ) = −�α3

1

(
pα

3 − ε′
cmEe

) − 1

2
pα

2Ee ε′
cm pβ

3

+ 2κ ′
cm

τ ′ pβ

2 ,

I p3
3 (Xα, Xβ ) = �α3

1 pα
2 − pα

2Ee ε′
cm pβ

2 − κ ′
cm

τ ′ pβ

3 − 2γ ′

5τ ′ qβ,

IQ22
3 (Xα, Xβ ) = −2�α3

1 Qα
23 − 4κ ′′

cm

τ ′′ qβ − 2γ ′′

3τ ′′ pβ

3 ,

IQ23
3 (Xα, Xβ ) = �α3

1 (Qα
22 − Qα

33) + 3pα
2Ee ε′′

cmqβ − 2γ ′′

τ ′′ pβ

2 ,

IQ33
3 (Xα, Xβ ) = 2�α3

1 Qα
23 + 2κ ′′

cm

τ ′′ qβ + 4γ ′′

3τ ′′ pβ

3 ,

with �α3
1 = 1

2

(
Qα

23qβ − pα
2 pβ

3 − 2pα
3 pβ

2 − 1

2
pβ

2 Ee

)
.

(A2)
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