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Single active particle in a harmonic potential: Question about the existence of the Jarzynski relation
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The interest in active matter stimulates the need to generalize thermodynamic description and relations to
active matter systems, which are intrinsically out of equilibrium. One important example is the Jarzynski relation,
which links the exponential average of work done in an arbitrary process connecting two equilibrium states
with the difference of the free energies of these states. Using a simple model system, a single thermal active
Ornstein-Uhlenbeck particle in a harmonic potential, we show that if the standard stochastic thermodynamics
definition of work is used, the Jarzynski relation is not generally valid for processes connecting stationary states
of active matter systems.
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I. INTRODUCTION

Active matter systems [1–6] consist of particles that con-
sume energy from their environment to propel themselves.
These systems are intrinsically out of equilibrium and there-
fore, as a matter of principle, standard relations derived for
equilibrium systems do not apply to them. Some of these
relations can be generalized by introducing effective thermo-
dynamic parameters, but, at least for now, there is no general
framework for doing this and thus, the validity of such proce-
dures has to be checked on a case by case basis.

The Jarzynski relation [7] applies to processes connecting
two equilibrium states of a system in contact with a heat
reservoir at temperature T (here and in the following we set
Boltzmann constant kB = 1). While the work done on such a
system in an infinitely slow (quasistatic) process is unique and
equal to the difference of the free energies of the two states,
work done in an arbitrary process is generally different from
the quasistatic work, it depends on the process realization, and
for a given realization it may be lower than the free energy
difference, violating the second law of thermodynamics. The
Jarzynski relation introduces a constraint on the work fluctu-
ations. It connects the exponential average of work w done
in different realizations of an arbitrary process between two
equilibrium states to the difference of the free energies of
these states,

〈exp (−w/T )〉 = exp (−�F/T ). (1)

The usefulness of relation (1) is in that it allows one to extract
the free energy difference, i.e., equilibrium information, from
an ensemble of nonequilibrium trajectories of the system [8].

It should be appreciated that in order to write down the
Jarzynski relation one needs a characteristic energy scale.
For transitions between equilibrium states there is a single,
universal energy scale, set by the temperature of the reservoir,
T .

If one tries to generalize the Jarzynski relation to processes
involving active matter systems, in principle one needs to
generalize the notion of the free energy. One can avoid this
task by noticing that in the limit of infinitely slow processes

one expects the work to become a nonfluctuating quantity.
This allows one to replace �F by work done in a quasistatic
process, wqs. The generalized Jarzynski relation would then
connect the exponential average of the work done while driv-
ing an active matter system between two stationary states to
the work done in a quasistatic process,

〈exp (−w/T )〉 = exp (−wqs/T ). (2)

Here we investigate the existence of such a relation for a small
active matter system using the standard stochastic thermody-
namics definition of work.

The second problem with using the generalized Jarzynski
relation to describe active matter systems is whether the ther-
mal energy set by the temperature of the reservoir that enters
into Eq. (2) is the appropriate characteristic energy scale for
an active system. In the following, for brevity, we will often
call this characteristic energy scale an effective temperature.

We recall that for active matter systems a number of dif-
ferent effective temperatures have been introduced [9–14].
It is a priori not clear whether one of these temperatures
provides the characteristic energy scale that allows Eq. (2) to
be generalized to active matter systems.

We study probably the simplest active matter system
that can be externally manipulated, a single thermal ac-
tive Ornstein-Uhlenbeck particle (AOUP) [12,15,16] in a
harmonic potential. We consider two different classes of
processes. In the first class we change the position of the
minimum of the potential. In this case no work is done in the
quasistatic process and the right-hand-side of the Jarzynski
equality becomes equal to one. We show that in the limit of
infinitely fast and slow but finite speed processes two different
characteristic energy scales, i.e., two different effective tem-
peratures, have to be used to keep the exponential average of
the work equal to one.

In the second class of processes we change the force con-
stant of the harmonic potential. In this case, the quasistatic
work is nonzero. We show that for both infinitely fast and slow
but finite speed processes there is no characteristic energy
scale, i.e., no effective temperature, that makes the generalized
Jarzynski relation valid.
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Our results demonstrate that at least with the standard defi-
nition of work, relation (2) is not generally valid for processes
connecting stationary states of active matter systems. We note
that while Eq. (2) seems a natural extension of the original
Jarzynski relation (1) to active matter systems, it was not
derived by theoretical arguments [17]. Instead, we treat it as
a working hypothesis whose validity we test for one specific
system.

II. A THERMAL AOUP IN A HARMONIC POTENTIAL

We consider a single active particle moving in a harmonic
potential. The particle is endowed with a self-propulsion force
that evolves according to the Ornstein-Uhlenbeck stochastic
process [18]. Following Ref. [19] we assume that the particle
also experiences the standard thermal noise. The equations of
motion read:

γ ẋ = −k(x − x0) + f + ζ , 〈ζ (t )ζ (t ′)〉 = 2γ T δ(t − t ′),
(3)

τp ḟ = − f + η, 〈η(t )η(t ′)〉 = 2γ Taδ(t − t ′). (4)

In Eq. (3) γ is the friction coefficient, k is the force con-
stant, x0 is the location of the potential minimum, f is the
self-propulsion, and ζ is the thermal noise characterized by
temperature T . In Eq. (4) τp is the persistence time of the
self-propulsion and η is the noise of the reservoir coupled to
the self-propulsion, characterized by active temperature Ta.
Equivalently, the particle can be described by the Fokker-
Planck equation for a joint probability distribution of the
position and the self-propulsion, P(x, f ; t ),

∂t P(x, f ; t ) = 	P(x, f ; t ), (5)

where the evolution operator 	 reads,

	 = − γ −1∂x[−k(x − x0) + f − T ∂x]

− ∂ f
[− f /τp − (

γ Ta/τ
2
p

)
∂ f

]
. (6)

We note that the so-called drift coefficients [18] in evolution
operator (6) are linear in x and f and therefore, the stationary
solution of Eq. (5) has a Gaussian form. In particular, the
position distribution reads,

pss(x) ∝ exp

[
− (1/2)k(x − x0)2

T + Ta/(kτp/γ + 1)

]
. (7)

We follow standard stochastic thermodynamics [20,21] and
define the work done while changing the parameter α of the
potential U (x) = (1/2)k(x − x0)2 as

w =
∫ τ

0
dt α̇ ∂αU (x). (8)

We note that the same definition of work was used in the
analysis of active engines [22–24]. We consider two classes
of processes, with α = x0 and α = k.

III. WORK DONE BY SHIFTING THE POTENTIAL
MINIMUM

In the case of moving the potential minimum, x0 → x0 +
�x0, the work done in an infinitely slow (quasistatic) process

vanishes, wqs = 0, and, as stated earlier, the right-hand-side
of generalized Jarzynski relation, Eq. (2), is equal to one.

The work done in an instantaneous process is equal
to wins = (1/2)k(−2�x0(x − x0) + �x2

0 ) and its distribution
reads,

pins(w) = 〈
δ
(
w − (1/2)k

(−2�x0(x − x0) + �x2
0

))〉ss
, (9)

where here and in the following 〈. . .〉ss denotes averaging over
the stationary distribution. We note that using, in Eq. (9),
the distribution just before x0 is changed can be justified by
considering a general finite speed process and taking the limit
of an infinitely fast switch x0 → x0 + �x0 (see Appendix A).

Explicit calculation shows that in this case the generalized
Jarzynski relation is satisfied with Teff 1 = T + Ta/(kτp/γ +
1),

〈exp(−w/Teff 1)〉ins = 1, Teff 1 = T + Ta/(kτp/γ + 1),

(10)

where 〈. . .〉ins denotes averaging over distribution of work
done in an instantaneous process. We note that effective tem-
perature (10) is the temperature that is obtained if stationary
state distribution of particle positions, Eq. (7), is interpreted as
the Gibbs measure, pss(x) ∝ exp(−U (x)/Teff 1). Furthermore,
Eq. (10) is consistent with the result of Paneru et al. [25] who
considered work extracted from an active information engine.

For finite-speed processes it is convenient to follow
Mazonka and Jarzynski [26] and write a Fokker-Planck
equation for a joint probability distribution for the position,
self-propulsion, and work, p(x, f ,w; t ),

∂t p(x, f ,w; t ) = [	 + ẋ0k(x − x0)∂w]p(x, f ,w; t ). (11)

Assuming that at the start of driving the particle is in the
stationary state, we get the following initial condition for
Eq. (11), p(x, f ,w; t = 0) = pss(x, f )δ(w). Once again we
note that drift coefficients in Eq. (11) are linear. This fact and
a Gaussian (albeit singular) initial condition p(x, f ,w; t = 0)
imply that distribution p(x, f ,w; t ) is a Gaussian distribution
with time-dependent coefficients. It follows that work distri-
bution p(w; t ) = ∫

dxdf p(x, f ,w; t ) is also a Gaussian and
therefore it is fully characterized by the first two cumulants of
the work. To calculate these cumulants we use Eq. (11), and
for slow but finite speed driving we get the following result
(see Appendix A for details of the calculation):

〈w〉sl = ẋ0γ�x0, (12)

σ 2
w = 〈w2〉sl − (〈w〉sl )2 = 2ẋ0γ�x0(T + Ta), (13)

where 〈. . .〉sl denotes averaging over the work distribution for
slow but finite speed driving. In the limit of infinitely slow
driving, i.e., in the quasistatic limit ẋ0 → 0, the variance of
the work vanishes, i.e., the work does not fluctuate, and the
average work vanishes as well.

For a Gaussian distribution of work, generalized Jarzynski
relation (2) is satisfied with T replaced by effective tempera-
ture Teff if [26]

〈w〉 = wqs + σ 2
w/(2Teff ). (14)

Thus, results (12) and (13) imply that for slow but finite speed
driving the generalized Jarzynski relation is satisfied with
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Teff 2 = T + Ta,

〈exp(−w/Teff 2)〉sl = 1, Teff 2 = T + Ta (15)

(recall that wqs = 0 for moving the potential minimum). We
note that the effective temperature that enters into the gen-
eralized Jarzynski relation for slow but finite speed driving
is the same as the effective temperature obtained from the
fluctuation-dissipation ratio in the limit of small frequencies
(see Appendix B for details).

We conclude that two different effective temperatures, i.e.,
two different characteristic energy scales, are required to make
the generalized Jarzynski relation valid for this very simple
class of processes.

IV. WORK DONE BY CHANGING THE FORCE CONSTANT

Next, we consider work done by increasing the force con-
stant of the potential, k → k + �k. To simplify the notation
in this section we set the potential minimum at x0 = 0. For
the increase of the force constant, the work done in an in-
finitely slow (quasistatic) process is nonzero. The quasistatic
work can be calculated by rewriting Eq. (8) with α = k as
an integration over k of ∂kU (x) = x2

2 averaged over stationary
state distribution, Eq. (7),

wqs =
∫ k+�k

k
dk1

〈
x2

2

〉ss

. (16)

The result reads

wqs = T + Ta

2
ln

k + �k

k
− Ta

2
ln

(k + �k)τp/γ + 1

kτp/γ + 1
. (17)

The work done in an instantaneous process is equal to
wins = (1/2)�kx2 and its distribution reads

pins(w) = 〈δ(w − (1/2)�kx2)〉ss

=
√

k

πw�kTeff 1
e− kw

�kTeff 1 , (18)

where Teff 1 is defined in Eq. (10). We remark that in Eq. (18),
using the distribution just before k is changed follows by
analogy with Eq. (9), where it can be justified by an explicit
calculation.

Explicit calculation shows that for instantaneous changes
of the force constant, Teff 1 cannot be used in the generalized
Jarzynski relation,

〈exp(−w/Teff 1)〉ins =
√

k + �k

k
�= exp(−wqs/Teff 1). (19)

In fact, there is no effective temperature, i.e., no characteristic
energy scale, that is independent of the change of the force
constant and that leads to the generalized Jarzynski relation
for work distribution (18).

To investigate the existence of the generalized Jarzynski
relation for a slow but finite rate increase of the force constant,
we derive an approximate distribution of work done in this
process. To this end we follow Speck [27] who derived the
analogous distribution for work done on a Brownian particle
in a harmonic potential. The calculation is somewhat tedious
but straightforward; it is presented in Appendix C. The ap-
proximate distribution of work for a slow but finite speed

change of the force constant is a Gaussian with cumulants that
are given by the following, rather complicated, expressions:

〈w〉sl = wqs + k̇
∫ k+�k

k
dk1

[
γ T

4k3
1

+ γ Ta(4(k1τp/γ )2 + 3k1τp/γ + 1)

4k3
1 (k1τp/γ + 1)3

]
, (20)

σ 2
w = 2k̇

∫ k+�k

k
dk1

[
γ T 2

4k3
1

+ γ T Ta(2k1τp/γ + 1)

2k3
1 (k1τp/γ + 1)2

+ γ T 2
a ((k1τp/γ )2 + 3k1τp/γ + 1)

4k3
1 (k1τp/γ + 1)3

]
. (21)

Cumulants (20) and (21) do not satisfy relation (14) and
therefore, again, there is no effective temperature, i.e., no
characteristic energy scale, that leads to the generalized
Jarzynski relation for a slow but finite speed process in which
the force constant is increased.

V. DISCUSSION

Our results imply that if one uses the standard definition of
work, Jarzynski relation (1) generally cannot be extended to
active matter systems. For some classes of processes, depend-
ing on the speed of driving, different characteristic energy
scales, i.e., different effective temperatures, have to be used
to make generalized Jarzynski relation (2) valid. For other
classes of processes there is no characteristic energy scale that
would lead to the generalized Jarzynski relation.

We emphasize that this result follows if one uses the defini-
tion of work utilized in standard stochastic thermodynamics,
Eq. (8). It is possible that other definitions of work, e.g.,
excess work defined by Hatano and Sasa [28], could lead
to a generalized Jarzynski relation. This may seem plausible
since, although in this work we showed that the Jarzynski
relation generally cannot be extended to active matter systems,
elsewhere [29] we showed that fluctuation theorems for differ-
ent kinds of entropy are in general satisfied for active matter
systems [30]. On the other hand, we recall that fluctuation
theorems for entropy do not involve any characteristic energy
scale and thus the issue that makes the generalized Jarzynski
relation invalid does not occur. This subject is left for a future
investigation.

Our finding is consistent with the fact that in out-of-
equilibrium systems there is no unique characteristic energy
scale that for equilibrium systems is set by the temperature.
For this reason, if one uses relations that give thermodynamic
temperature for equilibrium systems, one generally gets dif-
ferent effective temperatures. Simply speaking, there is no
“effective temperature”. Only in certain cases, e.g., for glassy
systems under shear [31,32] or athermal model foams [33],
a priori different effective temperatures turn out to have the
same value [34]. This result follows from a well understood
theoretical argument involving the separation of time scales
of different relaxation processes.
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APPENDIX A: WORK DONE WHILE SHIFTING
THE POTENTIAL MINIMUM

Our calculation of the first two moments of the distribution
of the work done while shifting the potential minimum fol-
lows a similar calculation presented in Ref. [26], which was
concerned with a passive Brownian particle.

We consider a thermal AOUP in a harmonic potential. To
simplify the notation in this section we set the initial potential
minimum at x0(t = 0) = 0.

We assume that at time t = 0 the potential minimum starts
moving with constant velocity ẋ0. Using Eq. (8) of the main
text we obtain the following equation of motion for the work
done while shifting the potential minimum,

∂tw = −ẋ0k(x − ẋ0t ). (A1)

Following Ref. [26] we switch to the reference frame of the
moving potential minimum and introduce a new variable,
y = x − ẋ0t . Next, we rewrite the Fokker-Planck equation,
Eq. (11) of the main text, as an equation describing the
joint probability distribution for the particle’s position (in
the reference frame of the moving potential minimum), self-
propulsion, and work accumulated between the initial time
and time t ,

∂t p(y, f ,w; t ) = { − γ −1∂y[−ky − γ ẋ0 + f − T ∂y]

− ∂ f
[− f /τp − (

γ Ta/τ
2
p

)
∂ f

]
+ ẋ0ky∂w

}
p(y, f ,w; t ). (A2)

The initial condition for Eq. (A2) reads p(y, f ,w; t = 0) =
pss(y, f )δ(w).

Starting from Eq. (A2) we can derive the following equa-
tions for the averages of w and y, and f ,

∂t 〈w〉 = − ẋ0k〈y〉, (A3)

∂t 〈y〉 = − ẋ0 − (k/γ )〈y〉 + γ −1〈 f 〉, (A4)

∂t 〈 f 〉 = − τ−1
p k〈 f 〉. (A5)

Initial conditions for these equation are 〈w〉(t = 0) = 0,
〈y〉(t = 0) = 0, and 〈 f 〉(t = 0) = 0.

Solving Eqs. (A3)–(A5) we get 〈w〉(t ) = ẋ2
0γ t +

(ẋ2
0/k)(exp(−kt/γ ) − 1). Recalling that the change of

the potential minimum over time τ is �x0 ≡ ẋ0τ , we obtain

〈w〉 = ẋ0γ�x0 + (
ẋ2

0/k
)
(exp (−k�x/γ ẋ0) − 1). (A6)

In the limit of slow but finite driving, Eq. (A6) leads to
Eq. (12) of the main text. Incidentally, in the limit of infinitely
fast process Eq. (A6) reproduces 〈w〉ins = k�x2

0/2.
To evaluate the variance of the work we need to derive

equations of motions for the second cumulants. We follow the
notation of Ref. [26]:

σ 2
w = 〈w2〉 − 〈w〉2, (A7)

cyw = 〈yw〉 − 〈y〉〈w〉. (A8)

The derivation of equations of motion is straightforward but
somewhat lengthy. The result is

∂tσ
2
w = −2ẋ0kcyw, (A9)

∂t cyw = −(k/γ )cyw + γ −1c f w − ẋ0kσ 2
y , (A10)

∂tσ
2
y = −(2k/γ )σ 2

y + (2/γ )cy f , (A11)

∂t cy f = −(k/γ + 1/γ )cy f + γ −1σ 2
f , (A12)

∂tσ
2
f = −(2/τp)σ 2

f + (
2γ Ta/τ

2
p

)
, (A13)

∂t c f w = −τ−1
p c f w − ẋ0kcy f . (A14)

We note that Eqs. (A11)–(A13) do not couple to the other
equations; since initial conditions for Eqs. (A11)–(A13) are
stationary state averages, σ 2

y , cy f , and σ 2
f will not change:

σ 2
y = T/k + Ta/(k(kτp/γ + 1)), (A15)

cy f = Ta/(kτp/γ + 1), (A16)

σ 2
f = γ Ta/τp. (A17)

The remaining equations can be integrated, starting from
Eq. (A14), then moving to (A10) and finally (A9). Then we
again recall that the change of the potential minimum over
time τ is �x0 ≡ ẋ0τ and we get

σ 2
w = 2ẋ0k�x0

(
γ σ 2

y + τpcy f
)

+ 2ẋ2
0

(
γ 2σ 2

y + γ τp

kτp/γ − 1
cy f

)
(exp (−k�x/γ ẋ0) − 1)

+ 2ẋ2
0

k2τ 3
p

γ (kτp/γ − 1)
(exp(−�x/τpẋ0) − 1). (A18)

In the limit of slow but finite driving, Eq. (A18) gives Eq. (13)
of the main text. Once again, it can be shown that in the limit
of infinitely fast process Eq. (A18) reproduces the variance of
distribution pins, Eq. (9) of the main text.

APPENDIX B: FLUCTUTATION-DISSIPATION
RATIO-BASED EFFECTIVE TEMPERATURE

The calculation outlined in this section generalizes that
presented in Sec. IV of Ref. [12] for a single athermal AOUP
in a harmonic potential. To simplify the notation, in this sec-
tion we set the potential minimum at x0 = 0.

Following Ref. [35] we define a frequency-dependent
fluctuation-dissipation ratio-based effective temperature

T FDR
eff (ω) = ωReC(ω)

χ ′′(ω)
, (B1)

where ReC(ω) is the real part of the one-sided Fourier
transform of the particle’s position auto-correlation function,
ReC(ω) = Re

∫ ∞
0 eiωt 〈x(t )x(0)〉, and χ ′′(ω) is the imaginary

part of the one-sided Fourier transform of the response
function, χ ′′(ω) = Im

∫ ∞
0 eiωt R(t ), where R(t ) describes

the change of the particle’s position due to an external
force.
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To calculate the position auto-correlation function we start
from equations of motion, Eqs. (3) and (4) of the main
text, and derive the following set of coupled equations for
〈x(t )x(0)〉 and 〈 f (t )x(0)〉,

γ ∂t 〈x(t )x(0)〉 = −k〈x(t )x(0)〉 + 〈 f (t )x(0)〉, (B2)

τp∂t 〈 f (t )x(0)〉 = −〈 f (t )x(0)〉. (B3)

Since thermal noise is uncorrelated with the initial position of
the particle, the above equations have the same form as those
in Sec. IV B of Ref. [12].

The presence of the thermal noise influences the initial
conditions for Eqs. (B2) and (B3),

〈x(0)x(0)〉 ≡ 〈x2〉 = T

k
+ Ta

k(kτp/γ + 1)
, (B4)

〈 f (0)x(0)〉 ≡ 〈 f x〉 = k〈x2〉 − T = Ta

kτp/γ + 1
. (B5)

Equations of motion, (B2) and (B3), with initial conditions,
(B4) and (B5), lead to the following expression for the posi-
tion auto-correlation function,

〈x(t )x(0)〉 = Ta/k

(kτp/γ )2 − 1
((kτp/γ )e−t/τp − e−kt/γ )

+ (T/k)e−kt/γ . (B6)

To evaluate the response function, we add to Eq. (3) of
the main text a weak, time-dependent external force F ext(t )
and then derive coupled equations of motion for the resulting
change of the average position of the particle and of the self-
propulsion:

γ ∂tδ〈x(t )〉 = δ〈 f (t )〉 − kδ〈x(t )〉 + F ext(t ) (B7)

τp∂tδ〈 f (t )〉 = −δ〈 f (t )〉. (B8)

The initial conditions for these equations are δ〈x(t = 0)〉 =
0 = δ〈 f (t = 0)〉.

Solving Eqs. (B7) and (B8) we get δ〈 f (t )〉 ≡ 0 and

δ〈x(t )〉 = 1

γ

∫ t

0
dt ′e−k(t−t ′ )/γ F ext(t ′). (B9)

The response function thus is given by

R(t ) = (1/γ )e−kt/γ . (B10)

Response function (B10) is the same as that derived in
Ref. [12] for an athermal AOUP.

Using Eqs. (B6) and (B10), from Eq. (B1) we get

T FDR
eff (ω) = Ta

1 + τ 2
pω2

+ T . (B11)

In the small frequency limit, T FDR
eff (ω) becomes Ta + T and

thus it coincides with the effective temperature that makes the
Jarzynski relation valid for the work distribution in a slow but
finite shift of the potential minimum. We note that Ta + T is
also the effective temperature that is obtained from the long-
time diffusion coefficient of a free thermal AOUP.

APPENDIX C: WORK DISTRIBUTION FOR SLOW BUT
FINITE INCREASE OF THE FORCE CONSTANT

Our calculation of the approximate distribution of the work
done while increasing the force constant follows a similar
calculation presented in Ref. [27], which was concerned with
a passive Brownian particle.

We consider a thermal AOUP in a harmonic potential.
To simplify the notation in this section we set the potential
minimum at x0 = 0.

We assume that at time t = 0 the force constant starts
increasing with constant rate k̇. Using Eq. (8) of the main text
we obtain the following equation of motion for the work done
while increasing the force constant,

∂tw = k̇

2
x2. (C1)

Next, we write an evolution equation that is similar to Eq. (11)
of the main text, which describes the time dependence of the
joint probability distribution for the particle’s position, self-
propulsion, and work accumulated between the initial time
and time t ,

∂t p(x, f ,w; t ) = { − γ −1∂x[−kx + f − T ∂x]

− ∂ f
[− f /τp − (

γ Ta/τ
2
p

)
∂ f

]
− (k̇x2/2)∂w

}
p(x, f ,w; t ). (C2)

The initial condition for Eq. (C2) is p(x, f ,w; t = 0) =
pss(x, f )δ(w).

We note that one of the drift coefficients in Eq. (C2)
is quadratic and thus the time-dependent distribution
p(x, f ,w; t ) does not have Gaussian form. In fact, since for a
process in which the force increases the time derivative of the
work, Eq. (C1), is always positive, p(x, f ,w; t ) = 0 for w < 0
and thus distribution p(x, f ,w; t ) cannot be a Gaussian.

However, if we introduce the characteristic function [18],

ρ(x, f , λ; t ) =
∫

dweiλw p(x, f ,w; t ), (C3)

we note that the equation of motion for ρ(x, f , λ; t ),

∂tρ(x, f , λ; t ) = { − γ −1∂x[−kx + f − T ∂x]

− ∂ f
[− f /τp − (

γ Ta/τ
2
p

)
∂ f

]
+ iλk̇x2/2

}
ρ(x, f , λ; t ), (C4)

allows for a solution that has a Gaussian form [27]. This fact
allows us to derive a closed set of equations describing the
time dependence of the characteristic function of the work
distribution,

ψ (λ; t ) =
∫

dxdf ρ(x, f , λ; t ). (C5)

We start with the equation that expresses the time derivative
of ψ (λ; t ) in terms of the generalized second moment,

∂tψ (λ; t ) = iλk̇φx2 (λ; t )/2, (C6)

where the generalized second moment φx2 (λ; t ) reads

φx2 (λ; t ) =
∫

dxdf x2ρ(x, f , λ; t ). (C7)
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The generalized second moment satisfies the following equa-
tion:

∂tφx2 (λ; t ) = 2

γ
(φx f (λ; t ) − kφx2 (λ; t )) + 2T

γ
ψ (λ; t )

+ iλk̇

2

∫
dxdf x4ρ(x, f , λ; t ), (C8)

where φx f (λ; t ) denotes the mixed generalized second mo-
ment,

φx f (λ; t ) =
∫

dxdf x f ρ(x, f , λ; t ). (C9)

To close the equations of motion we will also need φ f 2 (λ; t ):

φ f 2 (λ; t ) =
∫

dxdf f 2ρ(x, f , λ; t ). (C10)

Equations of motion for φx f (λ; t ) and φ f 2 (λ; t ) read:

∂tφx f (λ; t ) = 1

γ
φ f 2 (λ; t ) −

(
k

γ
+ 1

τp

)
φx f (λ; t )

+ iλk̇

2

∫
dxdf x3 f ρ(x, f , λ; t ), (C11)

∂tφ f 2 (λ; t ) = − 2

τp
φ f 2 (λ; t ) + 2γ Ta

τ 2
p

ψ (λ; t )

+ iλk̇

2

∫
dxdf x2 f 2ρ(x, f , λ; t ). (C12)

As noted above, equation of motion for ρ(x, f , λ; t ) allows for
a solution that has a Gaussian form. However, due to the last
term at the right-hand-side of Eq. (C4), this Gaussian distri-
bution is not normalized. The un-normalized Gaussian form
of ρ(x, f , λ; t ) allows us to express higher-order moments in
terms of generalized second moments,∫

dxdf x4ρ(x, f , λ; t ) = 3φ2
x2 (λ; t )

ψ (λ; t )
, (C13)∫

dxdf x3 f ρ(x, f , λ; t ) = 3φx2 (λ; t )φx f (λ; t )

ψ (λ; t )
, (C14)

∫
dxdf x2 f 2ρ(x, f , λ; t ) = φx2 (λ; t )φ f 2 (λ; t )

ψ (λ; t )
+ 2φ2

x f (λ; t )

ψ (λ; t )
.

(C15)

Using closures (C13)–(C15) in the equations of motion for
the generalized moments we get the following closed set of
equations:

∂tφx2 (λ; t ) = 2

γ
(φx f (λ; t ) − kφx2 (λ; t )) + 2T

γ
ψ (λ; t )

+ 3iλk̇

2

φ2
x2 (λ; t )

ψ (λ; t )
, (C16)

∂tφx f (λ; t ) = 1

γ
φ f 2 (λ; t ) −

(
k

γ
+ 1

τp

)
φx f (λ; t )

+ 3iλk̇

2

φx f (λ; t )φx2 (λ; t )

ψ (λ; t )
, (C17)

∂tφ f 2 (λ; t ) = − 2

τp
φ f 2 (λ; t ) + 2γ Ta

τ 2
p

ψ (λ; t )

+ iλk̇

2

φx2 (λ; t )φ f 2 (λ; t )

ψ (λ; t )
+ iλk̇

φ2
x f (λ; t )

ψ (λ; t )
.

(C18)

Next, following Ref. [27] we assume constant rate of
change of the force constant, k̇ = const and expand general-
ized second moments in powers of k̇,

φx2 (λ; t ) = φ
(0)
x2 (λ; t ) + k̇φ

(1)
x2 (λ; t ) + . . . , (C19)

φx f (λ; t ) = φ
(0)
x f (λ; t ) + k̇φ

(1)
x f (λ; t ) + . . . , (C20)

φx2 (λ; t ) = φ
(0)
f 2 (λ; t ) + k̇φ

(1)
f 2 (λ; t ) + . . . . (C21)

We substitute expansions (C19)–(C21) into the equations of
motion. We also assume that the time derivatives are of order
k̇. In this way we get the following set of equations for the
zeroth order terms:

0 = 2

γ

(
φ

(0)
x f (λ; t ) − kφ

(0)
x2 (λ; t )

) + 2T

γ
ψ (λ; t ), (C22)

0 = 1

γ
φ

(0)
f 2 (λ; t ) −

(
k

γ
+ 1

τp

)
φ

(0)
x f (λ; t ), (C23)

0 = − 2

τp
φ

(0)
f 2 (λ; t ) + 2γ Ta

τ 2
p

ψ (λ; t ). (C24)

Solving these equations we get the following result for
φ

(0)
x2 (λ; t ):

φ
(0)
x2 (λ; t ) = T

k
ψ (λ; t ) + Ta

k(kτp/γ + 1)
ψ (λ; t ). (C25)

We use result (C25) in Eq. (C6) and get the following result
for ψ (λ; t ):

ψ (λ; t ) = exp

{
iλ

2

[
(T + Ta) ln

k(t )

k(0)

−Ta ln
k(t )τp/γ + 1

k(0)τp/γ + 1

]}
. (C26)

Equation (C26) means that the work distribution is a delta
function centered at the quasistatic work given by Eq. (17)
of the main text.

Next, we consider terms of order k̇ in the equations of
motion. After some manipulations we get

φ
(1)
x2 (λ; t ) =

[
γ T

2k3
+ γ Ta(2(kτp/γ )2 + 3kτp/γ + 1)

2k3(kτp/γ + 1)3

]
ψ (λ; t )

+ iλ

[
γ T 2

2k3
+ γ T Ta(2kτp/γ + 1)

k3(kτp/γ + 1)2

+ γ T 2
a ((kτp/γ )2 + 3kτp/γ + 1)

2k3(kτp/γ + 1)3

]
ψ (λ; t ).

(C27)
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Using the right-hand-side of Eq. (C27) in Eq. (C6) we see that
at the first order in k̇ the work distribution is a Gaussian with
the first cumulants given by expressions (20) and (21) of the
main text.

In closing we note that the Gaussian form of the work
distribution is only an approximation, since the true distribu-
tion vanishes for w < 0 and therefore cannot have Gaussian
form.
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