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Inertial active ratchet: Simulation versus theory
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We present the inertial active dynamics of an Ornstein-Uhlenbeck particle in a piecewise sawtooth ratchet
potential. Using the Langevin simulation and matrix continued fraction method (MCFM), the particle transport,
steady-state diffusion, and coherence in transport are investigated in different parameter regimes of the model.
Spatial asymmetry is found to be a key criterion for the possibility of directed transport in the ratchet. The MCFM
results for net particle current of overdamped dynamics of the particle agree well with the simulation results. The
simulated particle trajectories for the inertial dynamics and the corresponding position and velocity distribution
functions reveal that the system passes through an activity-induced transition in the transport from the running
phase to the locked phase of the dynamics. This is further corroborated by the mean square displacement (MSD)
calculations, where the MSD gets suppressed with increase in the persistent duration of activity or self-propulsion
in the medium and finally approaches zero for a very large value of self propulsion time. The nonmonotonic
behavior of the particle current and Péclet number with self-propulsion time confirms that the particle transport
and its coherence can be enhanced or reduced by fine tuning the persistent duration of activity. Moreover, for
intermediate ranges of self-propulsion time as well as mass of the particle, even though the particle current shows
a pronounced unusual maximum with mass, there is no enhancement in the Péclet number, instead the Péclet
number decreases with mass, confirming the degradation of coherence in transport.
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I. INTRODUCTION

Noise is omnipresent and is an indispensable part of nature,
which plays an important role in the dynamics of systems
operating at microscopic length scale [1,2]. A system that gen-
erates an unidirectional transport out of a noisy environment
utilizing nonequilibrium condition and spatial (or temporal)
asymmetry is referred as a Brownian ratchet [3–5]. However,
in recent days, there is an immense interest in active ratchets,
which is a growing area of research because of its enormous
applications in the fabrication of different types of nanorobots,
artificial swimmers, and other self-driven systems [6]. Ac-
tive ratchets are understood through the use of active matter
systems consisting of self propelled units [7–13]. Such self-
propelled units are known as active particles, and they have the
ability to self-propel on their own by consuming energy from
the environment. Hence, they are inherently driven away from
equilibrium, and the nonequilibrium condition is the intrinsic
property of such systems [6,14,15]. Examples of such systems
range from the microscopic to macroscopic length scale such
as unicellular organisms like motile bacteria [16,17], self-
motile Janus particles [18,19], micro and nanorobots [20,21],
hexbugs [22], flocking of birds [23], school of fishes [24],
etc. The most commonly used models for studying the dy-
namical behavior in such active systems are active Brownian
particle (ABP) model [25–28], active Ornstein-Uhlenbeck
particle(AOUP) model [29–31], and run-and-tumble particle
model [32,33].
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Unidirectional transport in active ratchets are experimen-
tally realized even in the absence of an external bias unlike
passive Brownian ratchets [7,10,11]. When self-propelled par-
ticles are placed in an asymmetric potential, the particles on
an average can travel to the gentler side of the potential giving
rise to unidirectional transport with a nonzero net particle
flux [10,11,13]. The rectification effect of active matter in a
periodic structure was first observed for run-and-tumble bac-
teria moving through funnel-shaped barriers [9]. Thereafter,
the rectification effect in active matter is studied using both
theoretical and numerical approaches for different types of
systems [8,10,11,34–49]. To name a few, from the simulation
results of the dynamics of active Janus particles in an asym-
metric channel, it is confirmed that the rectification can be
orders of magnitude stronger than that of ordinary thermal
ratchets [35]. Similarly, in Ref. [36], it is reported that the
spatially modulated self-propelled velocity can also induce
directed transport [36]. The emergence of the active ratcheting
effect for run-and-tumble particles in an asymmetric piece-
wise periodic potential is reported in Ref. [8]. Rectification
of twitching bacteria through two dimensional (2D) narrow
channel is investigated numerically using both tug-of-war
model and run-and-tumble model [37]. The phenomena of
current reversal is observed for inertial active dynamics of par-
ticles (using the ABP model) in a sawtooth ratchet potential
for certain regimes of parameter space [38–40]. In most of
these studies, the rectification effect in asymmetric periodic
structures is found to be a general feature of active matter
[36,41–49].

Despite such rigorous works on active ratchets using dif-
ferent models, the study of rectification effect especially
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FIG. 1. Schematic of the ratchet potential [Eq. (4)].

employing AOUP model is only reported in a few litera-
ture. For instance, the underdamped dynamics of a Brownian
particle driven by Ornstein-Uhlenbeck (OU) noise in a peri-
odic asymmetric potential is studied in Ref. [50] using both
Langevin simulation and analytical approaches, such as gener-
alized unified colored noise approximation method (UCNA),
path integral approach, and numerical matrix continued frac-
tion method (MCF) methods. Their main finding is the current
reversal with variation of noise correlation time as well as
mass of the particle. Similarly, the overdamped dynamics of
a particle in a correlation ratchet, driven by both additive
Gaussian white and OU noise is studied both numerically
using the MCF method and analytically using the UCNA
method in Ref. [51]. Here, the authors have also observed
the current reversal phenomena at a particular range of noise
color, but for an appropriately chosen shape of the ratchet
potential.

In this paper, using both Langevin simulation and the MCF
method, we examine the transport behavior of an inertial
active OU particle in a piecewise sawtooth ratchet potential,
which is largely unexplored. We simulate both underdamped
and overdamped dynamics of the particle and obtain the
particle trajectory, steady-state distribution functions, parti-
cle current, diffusion coefficient, and Péclet number as a
function of parameters of the model. The obtained average
current of the overdamped dynamics of the particle using
MCF method is in good agreement with the simulation re-
sult. Furthermore, it matches with the simulated underdamped
particle current in highly viscous regime as expected. The
system is found to pass through an activity controlled tran-
sition in transport from the running phase to the locked
phase of the dynamics. The transport properties and co-
herence in transport are investigated in various parameter
regimes. Moreover, the current reversal phenomena is not
observed in any of the parameter regimes of the model, unlike
Refs. [50,51].

II. MODEL AND METHOD

We consider the motion of an inertial active Ornstein-
Uhlenbeck particle of mass m through a ratchet potential. The
dynamics of the particle is given by the Langevin’s equation of
motion [28,50,52–54],

mẍ = −γ ẋ − V ′(x) + ξ (t ), (1)

with x being the position coordinate and v = ẋ as the velocity
coordinate of the particle. Here, γ is the viscous coefficient
of the medium, and V (x) is the confining ratchet potential,
which is periodic in nature with periodicity λ. ξ (t ) is the
exponentially correlated noise with strength C, which follows

the Ornstein-Uhlenbeck process [30] as

tcξ̇ (t ) = −ξ (t ) +
√

2C η(t ). (2)

Here, η(t ) is the δ correlated Gaussian white noise, which
satisfies the properties 〈η(t )〉 = 0 and 〈η(t )η(s)〉 = δ(t − s).
We set C to be unity throughout our paper. The angular bracket
〈· · · 〉 denotes the ensemble average over noise. The statistical
properties of the Ornstein-Uhlenbeck noise ξ (t ) is given by

〈ξ (t )〉 = 0, 〈ξ (t )ξ (s)〉 = C

tc
exp

(
−|t − s|

tc

)
, (3)

where tc represents the noise correlation time. It is the time up
to which the particle self-propels in the ratchet and, hence,
activity persists in the medium for a time interval of tc. A
finite tc notably quantifies the presence of activity or corre-
lation in the medium, that decays exponentially with tc. For a
nonzero tc value, the system is inherently driven away from
equilibrium [55]. However, in the passive limit (tc → 0 limit)
of our model, we consider the strength of noise C to be γ kBT
(fluctuation-dissipation relation) in order for the system to ap-
proach the typical thermal equilibrium limit of the dynamics
at temperature T [56,57]. The potential V (x) that appears in
Eq. (1) has the form

V (x) =
{ Q

λ1
x, x � λ1,

Q
λ2

(λ − x), λ1 < x � λ.
(4)

Here, Q is the potential height and λ = λ1 + λ2 is the pe-
riodicity of the ratchet potential (see Fig. 1). Equation (4)
represents a sawtooth potential which is symmetric when
λ1 = λ2. Therefore, we introduce an asymmetric parameter
� such that � = λ1 − λ2.

In this paper, we are mainly interested in the particle trans-
port, associated dispersive spread or diffusion, and coherence
in transport of the particle. The particle transport can be quan-
tified by measuring an essential quantity, known as particle
current. As per the geometry of the ratchet potential, the
motion of the particle is along the x direction and, hence, the
average particle current in the stationary state can be defined
as [3,58]

〈 j〉 = lim
t→∞

〈
x(t ) − x(0)

t

〉
. (5)

Similarly, the diffusive spread or diffusion can be quantified
by measuring the diffusion coefficient D about the mean posi-
tion of particle, which is given by [59]

D = lim
t→∞

〈x2〉 − 〈x〉2

2t
. (6)

Here, 〈x2〉 − 〈x〉2 represents the mean square displacement
(MSD) of the particle. The transport of the particle in such an
asymmetric potential and stochastic environment depends on
the diffusive spread and the mean velocity of the particle. The
effectiveness or coherence in the transport can be quantified
by measuring a dimensionless parameter called Péclet number
Pe, which is defined as

Pe = 〈 j〉λ
D

. (7)
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We have set the periodicity of the potential λ as unity through-
out this paper.

III. RESULTS AND DISCUSSION

The Fokker-Planck equation corresponding to the dynam-
ics in Eq. (1) for the probability density function P(x, v, ξ ; t )
is given by

∂P

∂t
= − v

∂P

∂x
+ ∂

∂v

(
γ v

m
+ V ′(x)

m
− ξ (t )

m

)
P

+ ∂

∂ξ

(
ξ

tc
+ C

t2
c

∂

∂ξ

)
P.

(8)

It is not possible to obtain the exact analytical solution of
Eq. (8) even for the steady-state because of the nonlinearity
in the gradient of the potential function V (x). However, the
steady-state solution is possible for P(x, v, ξ ; t ) with the help
of numerical approximation schemes. In order to investigate
the transport of the particle, one can solve the dynamics either
by directly simulating Eq. (1) or by employing the MCF
method to Eq. (8) for the approximate steady-state solution
of P(x, v, ξ ).

For the overdamped dynamics of the particle, the inertial
term in Eq. (1) is neglected, and the corresponding proba-
bility density function P(x, ξ ; t ) satisfies the Fokker-Planck
equation [51,60],

∂P

∂t
= ∂

∂x

(
V ′(x)

γ
− ξ

γ

)
P + ∂

∂ξ

(
ξ

tc
+ C

tc

∂

∂ξ

)
P. (9)

In the stationary state or steady-state limit, the probability
density function P(x, ξ ; t ) satisfies

∂P

∂t
= 0. (10)

In order to find the approximate solution of Eq. (10) for the
stationary state probability distribution function P(x, ξ ), it can
be expanded in complete sets of functions in both variables x
and ξ using a set of Hermite functions. Since the potential is
periodic in nature, P(x, ξ ) can take the form [51]

P(x, ξ ) = φ0(ξ )
∞∑

p=0

∞∑
μ=−∞

cμ
p e2π iμx/λφp(ξ ). (11)

Here, the prefactor φ0(ξ ) is introduced for the simplification
of mathematical calculations and φp(ξ ) is the set of Hermite
functions given by

φp(ξ ) = 1√
α2p p!

√
π

e( −ξ2

2α2 )Hp

(
ξ

α

)
, (12)

with α as the scaling parameter considered as α =
√

2D
tc

and

Hp(x) is the Hermite polynomial. For p = 0, Eq. (12) yields
φ0(ξ ) as

φ0(ξ ) = 1√
α
√

π
e( −ξ2

2α2 )
. (13)

Since the potential V (x) is periodic in nature, the force exerted
by the potential, f (x) = −V ′(x) can be expanded in terms of

Fourier series as

f (x) =
∞∑

l=−∞
fl e

2π ilx/λ. (14)

Substituting Eq. (11) in Eq. (10) and using Eqs. (12) and (14),
we obtain a tridiagonal vector recurrence relation in terms of
expansion coefficients cμ

p as

Q−
p cp−1 + Qpcp + Q+

p cp+1 = 0, (15)

with

Q−
p =

√
pC

tc
B, (16)

Qp = A − p

tc
I, (17)

and

Q+
p =

√
(p + 1)C

tc
B. (18)

Here, cp is a column matrix consisting of the elements
c0

p, c1
p, and c2

p · · · cμ
p . The elements of matrices A and B are

given by

[An,m] = 2π in

γ λ
fn−m, (19)

[Bn,m] = −2π im

γ λ
δn,m, (20)

with I being the identity matrix. The vector recurrence relation
in Eq. (15) can be solved numerically using the MCF method
as described in Ref. [60]. For this purpose, we introduce the
matrix Sp such that

cp+1 = Spcp. (21)

Now, substituting Eq. (21) in Eq. (15), we obtain

Q−
p cp−1 + (Qp + Q+

p Sp)cp = 0. (22)

Further solving Eq. (22), we obtain the matrix Sp as the matrix
continued fraction,

Sp = −(Qp+1 + Q+
p+1Sp+1)−1Q−

p+1. (23)

For p = 0, Eq. (22) takes the form

(Q0 + Q+
0 S0)c0 = 0. (24)

Normalization of the steady-state probability distribution
P(x, ξ ), ∫ λ

0
dx

∫ ∞

−∞
dξ P(x, ξ ) = 1, (25)

yields

c0
0 = 1

λ
. (26)

Using this arbitrary component c0
0 in Eqs. (24) and (21),

we have numerically evaluated all the components of cp. In
order to find the average particle current, the Fokker-Planck
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equation [Eq. (9)] can be written in the form of a continuity
equation as

∂P(x, ξ ; t )

∂t
= −∂ρx(x, ξ ; t )

∂x
− ∂ρξ (x, ξ ; t )

∂ξ
, (27)

where ρx(x, ξ ; t ) and ρξ (x, ξ ; t ) are the probability currents in
the x and ξ directions, respectively. Next, comparing Eq. (27)
with Eq. (9), we get

ρx(x, ξ ; t ) =
(

f (x)

γ
− ξ

γ

)
P(x, ξ ; t ). (28)

Hence, the average stationary current in the x direction over a
period can be calculated as

〈 j〉 = 1

λ

∫ λ

0
dx

∫ ∞

−∞
dξ ρ (st )

x (x, ξ )

= 1

γ

⎡
⎣−

∞∑
μ=−∞

fμc−μ
0 + C

tc
c0

1

⎤
⎦. (29)

Now, substituting the components c−μ
0 and c0

1 of the col-
umn matrix cp, we have numerically evaluated the average
particle current 〈 j〉.

Proceeding in the same way as for the overdamped case
described above, one can solve Eq. (8) for the steady-state
probability distribution P(x, v; ξ ) of the underdamped dynam-
ics of the particle and find out the average particle current. The
approximate steady-state solution of Eq. (8) can take the form

P(x, v, ξ )

= φ0(ξ )ψ0(v)
∞∑

r=0

∞∑
p=0

∞∑
μ=−∞

cμ
p,re2π iμx/λφp(ξ )ψr (v).

(30)

Here, ψr (v) is the Hermite function given by

ψr (v) = 1√
β2rr!

√
π

e
( −v2

2β2 )
Hr

(
v

β

)
, (31)

with β being a scaling parameter. Following the same method
discussed earlier, we get the recursion relation in terms of cμ

p,r ,

Ap,rcp,r−2 + Bp,rcp,r−1 + �p,r cp,r + Ep,rcp,r+1

+Zp,rcp−1,r−1 + �p,rcp+1,r−1 = 0. (32)

Here, A, B, �, E , Z , and � are matrices whose elements are
given by

[Aμ,ν]p,r = − γ

m

√
(r − 1)r δμ,ν,

[Bμ,ν]p,r =
√

2r

βm
fμ−ν − iνkβ

√
r√

2
δμ,ν,

[�μ,ν]p,r = −
(

γ r

m
+ p

tc

)
δμ,ν,

[Eμ,ν]p,r = − iνkβ
√

r + 1√
2

δμ,ν,

[Zμ,ν]p,r = α
√

r p

mβ
δμ,ν,

and

[�μ,ν]p,r = α

mβ

√
r(p + 1) δμ,ν,

respectively. cp,r is a column matrix given as

cp,r = [ · · · c−1
p,rc0

p,rc1
p,r · · · ]T

.

By numerically solving Eq. (32) and using the column matrix
cp,r , one can compute the steady-state probability distribution
and the average current.

We have also simulated the dynamics [Eq. (1)] using
Heun’s method algorithm. Since we have considered an one-
dimensional ratchet potential, the transport of the particle
is along the x direction of the potential V (x). The periodic
boundary condition is imposed along the x axis with periodic-
ity of the potential V (x + λ) = V (x). The physical quantities
of interest are evaluated by integrating the equation of mo-
tion [Eq. (1)] using a second order modified Euler’s scheme
(Heun’s method). The Ornstein-Uhlenbeck noise ξ (t ) is im-
plemented in the dynamics using the Fox method approach
as described in Ref. [61]. An integral time step of 10−3 is
considered in the simulation, and the total integration is taken
over 105 time steps. The initial transients of 104 time steps
are ignored in order for the system to attain steady state. The
average values are obtained over 104 realizations.

The simulation results of particle trajectories, position, and
velocity distribution functions of the particle for different
values of tc are shown in Fig. 2. For a very small value of tc,
the particle is merely influenced by the presence of potential
barriers and distributed uniformly throughout the potential as
shown in the position distribution plot of Fig. 2(d). The ve-
locity distribution is Gaussian [see Fig. 2(a)] since the tc → 0
limit is the white noise limit. The trajectory of the particle
[see Fig. 2(g)] does not show any signature of the presence of
potential trap as expected. In the steady state, the magnitude
of the noise correlation of the OU process [Eq. (3)] varies
inversely with tc such that 〈ξ 2(t )〉 = C

tc
. Hence, for a very

small value of tc, even though the noise correlation persists for
a very small interval of time, the intensity of the correlation
is very high. As a result, the magnitude of random kicks on
the particle is very large. Due to this, the particle does not
feel the presence of the potential barrier and moves freely in
both forward and backward directions of the ratchet potential,
resulting an uniform distribution of the particles in the tc → 0
limit. This is expected as in the tc → 0 limit, the OU noise
becomes white noise. In this limit, the system behaves as if it
is in the running state.

With a further increase in tc, the magnitude of the noise
correlation decreases, and at the same time the duration of
its persistence increases. The particle starts getting more and
more confined at the potential minima and feels the influence
of the barriers in both forward and backward directions of
the ratchet potential. This is very well reflected from the
position distribution of the particle in Fig. 2(e) with maxi-
mum probability of finding the particle in one of the potential
minima. Due to the presence of asymmetry in the potential,
the particle on an average makes more jumps towards the
forward direction as compared to the backward direction of
the potential. This can also be seen from the trajectory plotted
in Fig. 2(h) where there are sudden jumps and stable regions
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FIG. 2. (a)–(c) Velocity distribution P(v) as a function of v for different values of tc. (d)–(f) Position distribution P(x) as a function of x for
different values of tc. The black solid line represents the corresponding sawtooth potential. (g)–(i) Particle trajectories are plotted for different
values of tc. The common parameters taken are m = 1.0, � = 0.9, Q = 0.5, C = 1, and γ = 1.0.

indicating the presence of potential being felt by the particle.
As a result, the velocity distribution becomes non-Gaussian
with exponential tails in both the directions [see Fig. 2(b)].
In this regime, the value of 〈ξ 2(t )〉 is such that the particle
becomes capable of overcoming the potential barrier in the
direction with gentler slope of the potential. Hence, on aver-
age, a nonzero particle current is expected. For a very large
tc, the magnitude of the noise correlation [Eq. (3)] becomes
very small, and the correlation persists for longer interval
of time. Hence, the magnitude of the random kicks are very
small and are not strong enough to make the particle escape
from the potential minimum [see Figs. 2(f) and 2(i)]. This
is the reason for which the velocity distribution approaches
a δ function centered at zero [Fig. 2(c)] for a very large tc
value. In this limit, the system behaves as if it is trapped or
in the locked state. Thus, with tc, the system passes through
a transition from the running state to the locked state of the
particle transport.

Next, we have simulated the steady-state particle current
〈 j〉 and diffusion coefficient D for different values of �, tc,
and Q. The 2D plots of 〈 j〉 and D as a function of � and tc
are shown in Figs. 3(a) and 3(c), respectively. Similarly, we
have shown the 2D plots of 〈 j〉 and D as a function of � and
Q in Figs. 3(b) and 3(d), respectively. From these plots, it is
observed that for a given spatial asymmetry in the potential,
〈 j〉 shows a nonmonotonic behavior with both tc and Q values.
Furthermore, the maximum current is found to be sensitive to
the spatial asymmetry of the potential, and it increases with
increase in the asymmetry parameter � whereas, diffusion
shows decreasing behavior with both tc and Q.

The plots of 〈 j〉, D, and Pe as a function tc are presented
in Figs. 4(a)–4(c), respectively for different values of m. For a
given mass of the particle, 〈 j〉 shows a nonmonotonic behavior
with tc. It starts from zero and increases with tc, attains the

maximum value for an intermediate range of tc, and finally
approaches back to zero value for larger tc. With an increase
in m, the critical value of tc at which the current starts to flow,
shifts towards the right. This suggests that for larger m, higher
tc is required to have a net current in the ratchet. At the same
time, the maximum current gets suppressed with an increase
in m and shifts towards the larger tc value. This implies that
for larger mass, the noise correlation in the dynamics has to
persist for longer interval of time to obtain maximum current.
On the other hand, D shows a decaying behavior with tc as

FIG. 3. (a) Two-dimensional plot of 〈 j〉 as a function of � and tc.
(b) Two-dimensional plot of 〈 j〉 as a function of � and Q. (c) Two-
dimensional plot of D as a function of � and tc. (d) Two-dimensional
plot of D as a function of � and Q. The common parameters in
(a) and (c) are m = 1, C = 1, Q = 0.5, and γ = 1 and in (b) and
(d) are m = 1, C = 1, tc = 1, and γ = 1.
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FIG. 4. 〈 j〉, D, and Pe as a function of tc for different values of m
are shown in (a)–(c), respectively. The simulation results (OD sim)
for 〈 j〉, D, and Pe and the MCFM calculation results only for 〈 j〉
(OD MCFM) are also plotted as a function of tc for the overdamped
case. MSD versus t is shown in (d) for different values of tc and for
m = 0.5. The inset of (d) shows the exponent β versus t . The other
common parameters are γ = 1, � = 0.9, C = 1, and Q = 0.5.

in Fig. 4(b). For very small value of tc, D has maximum
value which persists as long as there is no net current in the
ratchet. At the critical tc, at which the current starts to flow,
D also decays before approaching zero as expected. It is seen
that the tc at which the current has the maximum value, the
diffusion shows a minima type feature as anticipated. Further-
more, diffusion in the lower tc limit gets suppressed with mass
of the particle. As the effectiveness of the transport can be
understood by analyzing the behavior of the Péclet number,
we have presented Pe with tc in Fig. 4(c). Pe follows the
same behavior as that of 〈 j〉, confirming a coherent or reliable
transport in the intermediate range of tc.

In order to further understand the diffusive behavior of
the transport, we have calculated the MSD, 〈x2〉 − 〈x〉2 and
plotted as a function of t in Fig. 4(d) for different values of
tc. For a particular tc, in the lower time regime, MSD is found
to be proportional to t4, hence, the transport is superdiffusive.
On the other hand, in the long time regime, the transport is
diffusive in nature as the MSD is proportional to t . With an
increase in tc, the MSD gets suppressed and approaches zero
for very large tc values, reflecting the trapping of the particle
for longer persistence of noise correlation in the dynamics.
To have a better clarity of the dependence of MSD with
time, we introduce a parameter β such that MSD ∝ tβ . The
variation of β with time is shown in the inset of Fig. 4(d).
In the lower time regime, β is found to be 4, which confirms
the superdiffusive transport of the particle at short timescale.
In the long time limit, β is one, which reflects the as usual
steady-state diffusive behavior of the particle. On the other
hand, 〈x2〉 shows different features. In the lower time limit,
it is ballistic, i.e., 〈x2〉 ∝ t2, irrespective of the persistence
duration of noise correlation in the dynamics. In the long time
limit or at the stationary state, 〈x2〉 depends on the correlation

FIG. 5. Two-dimensional plots of (a) 〈 j〉 and (b) D as a func-
tion of tc and m. The other common parameters are: γ = 1, � =
0.9 ,C = 1, and Q = 0.5.

time. In this state, 〈x2〉 is diffusive (i.e., 〈x2〉 ∝ t) for the lower
tc limit, ballistic (i.e., 〈x2〉 ∝ t2) for the intermediate tc limit,
and nondiffusive (i.e., independent of t) for the larger tc limit.
The different behavior of 〈x2〉 and MSD in the steady state are
due to the nonzero value of 〈x〉 as it is proportional to time.

In Figs. 5(a) and 5(b), we depict the 2D plots of 〈 j〉 and D,
respectively, as a function of tc and m. In the low tc limit, the
current shows a monotonically decreasing behavior whereas
in the intermediate regime of tc, it shows a nonmonotonic
behavior with m. Similarly, the diffusion coefficient shows a
decreasing behavior in the low tc regime and increasing behav-
ior in the intermediate tc regime with m. In order to understand
this unusual behavior of 〈 j〉 with m in the intermediate range
of tc, we have plotted 〈 j〉, D, and Pe vs m in Fig. 6 for different
values of � and at two different tc values. It is observed that
the current increases with m and reaches a maximum value
in the intermediate range of m, and this maximum value in-
creases with the increase in asymmetry of the potential. With

FIG. 6. 〈 j〉, D, and Pe as a function of m with tc = 1 for different
values of � in (a), (c), and (e) and for tc = 5 in (b), (d), and (f),
respectively. The other common parameters are γ = 1, Q = 0.5, and
C = 1.
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FIG. 7. The simulation results of 〈 j〉 versus tc both for over-
damped (OD sim) and underdamped (UD sim) (with m = 0.5) cases
along with the MCFM calculation (OD MCFM) for the overdamped
case are presented in (a)–(d) for different values of γ . The other
common parameters are � = 0.9, C = 1, and Q = 0.5.

a further increase in the tc value, even though the magnitude
of current decreases, it shows a pronounced maximum as a
function of m [see Fig. 6(b)]. D shows roughly a minimum
exactly around the same point where the current shows a max-
imum. It starts increasing as a function of m from the point
where current starts decreasing and finally shows a maximum
at which the current approaches zero as expected. Although
〈 j〉 as a function of m shows a well defined maximum, Pe
does not follow the same behavior, rather it decreases with the
increase in m. This reflects the degradation of the coherence
in the particle transport.

Finally, the simulation results of 〈 j〉 as a function of tc
for both overdamped dynamics (excluding the inertia term)
and underdamped dynamics (with inertia) for different values
of γ are presented in Fig. 7. The MCF method calculation
results for the overdamped dynamics of the particle are also
plotted for a comparison. The overdamped current is always
larger than that of the underdamped current as expected.
For all values of γ , the MCF method results for 〈 j〉 of
overdamped dynamics of the particle are in good agreement
with the simulation results. Furthermore, the MCF method
results of overdamped case approach the simulation results
for 〈 j〉 of underdamped case only for very large value of
γ as anticipated. Most importantly, we do not see current
reversal in any of the parameter regimes of either overdamped
or underdamped dynamics of our model unlike inertial
dynamics of active noninteracting particles in the sawtooth
ratchet potential [38].

IV. SUMMARY

To summarize, we have studied the inertial active dynamics
of an Orntsein-Uhlenbeck particle in a piecewise sawtooth
ratchet potential. In particular, we have investigated the par-
ticle transport and coherence in transport with parameters of
the model using both the MCF method and the Langevin
simulations. The main findings of our paper are as follows.
The analytical results for the average particle current of over-
damped dynamics of the particle using the MCF method agree
well with the simulation results. The MCF method results
of average current of overdamped dynamics of the particle
approaches the simulated particle current of inertial dynamics
only when γ becomes very large as expected. It is observed
that the system exhibits a transition in transport from running
phase to the locked phase, that is controlled by the duration
of self-propulsion of the particle or persistent duration of
activity in the medium. The nature of particle current and
Péclet number are found to be nonmonotonic with the self-
propulsion time. They first increase, manifest a maximum,
then decrease as the self-propulsion time increases and ap-
proach zero value for very large value of self-propulsion time.
These observations suggest that the net particle transport and
the coherence in transport can be controlled (enhanced or
reduced) by fine tuning the persistent duration of activity in
the medium. Moreover, the behavior of current also implies
the entry of the particle from running phase to the locked
phase of transport.

Furthermore, for an intermediate range of persistence of
activity, the particle current shows a maximum as a function
of mass of the particle, which is quite unusual and the abso-
lute value of this maximum is quite sensitive to the potential
asymmetry. Surprisingly, it is observed that even though the
particle current increases with mass in certain regime of the
parameter space, the Péclet number does not follow the same
trend. Instead it decreases with increase in mass of the parti-
cle, confirming the degradation of reliability or coherence of
transport. Moreover, we do not see the phenomena of current
reversal in any of the parameter regimes of our model unlike
Refs. [7,38,39]. We believe that the results obtained in our
model can be experimentally realized in some active matter
systems in the regime of the high Reynolds number. Also, we
anticipate that our results for inertial active dynamics can pro-
vide a scheme for novel rectification device of active matter
systems. It would be further interesting to extend this model
for investigating the collective behavior and making use of the
rectified motion in terms of stochastic energetic parameters.

ACKNOWLEDGMENT

M.S. acknowledges start up grant from the Faculty
Recharge Program (FRP-56055) of UGC, Government of In-
dia for financial support.

[1] A. Einstein, Zur theorie der brownschen bewegung, Ann. Phys.
(NY) 324, 371 (1906).

[2] D. S. Lemons and A. Gythiel, Paul Langevin’s 1908 paper

“On the Theory of Brownian Motion” [“Sur la théorie du
mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530
(1908)], Am. J. Phys. 65, 1079 (1997).

054601-7

https://doi.org/10.1002/andp.19063240208
https://doi.org/10.1119/1.18725


M. MUHSIN AND M. SAHOO PHYSICAL REVIEW E 107, 054601 (2023)

[3] P. Reimann, Brownian motors: Noisy transport far from equi-
librium, Phys. Rep. 361, 57 (2002).

[4] R. D. Astumian, Thermodynamics and kinetics of a brownian
motor, Science 276, 917 (1997).

[5] M. O. Magnasco, Forced Thermal Ratchets, Phys. Rev. Lett. 71,
1477 (1993).

[6] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G.
Volpe, and G. Volpe, Active particles in complex and crowded
environments, Rev. Mod. Phys. 88, 045006 (2016).

[7] C. O. Reichhardt and C. Reichhardt, Ratchet effects in active
matter systems, Annu. Rev. Condens. Matter Phys. 8, 51 (2017).

[8] L. Angelani, A. Costanzo, and R. Di Leonardo, Active ratchets,
Europhys. Lett. 96, 68002 (2011).

[9] P. Galajda, J. Keymer, P. Chaikin, and R. Austin, A wall of
funnels concentrates swimming bacteria, J. Bacteriol. 189, 8704
(2007).

[10] A. Kaiser, A. Peshkov, A. Sokolov, B. ten Hagen, H. Löwen,
and I. S. Aranson, Transport Powered by Bacterial Turbulence,
Phys. Rev. Lett. 112, 158101 (2014).

[11] N. Koumakis, A. Lepore, C. Maggi, and R. Di Leonardo, Tar-
geted delivery of colloids by swimming bacteria, Nat. Commun.
4, 2588 (2013).

[12] A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, and D.
Bartolo, Emergence of macroscopic directed motion in popula-
tions of motile colloids, Nature (London) 503, 95 (2013).

[13] F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R.
Eichhorn, G. Volpe, H. Löwen, and C. Bechinger, Circular Mo-
tion of Asymmetric Self-Propelling Particles, Phys. Rev. Lett.
110, 198302 (2013).

[14] G. Gompper, R. G. Winkler, T. Speck, A. Solon, C. Nardini, F.
Peruani, H. Löwen, R. Golestanian, U. B. Kaupp, L. Alvarez, T.
Kiørboe, E. Lauga, W. C. K. Poon, A. DeSimone, S. Muiños-
Landin, A. Fischer, N. A. Söker, F. Cichos, R. Kapral, P.
Gaspard et al., The 2020 motile active matter roadmap, J. Phys.:
Condens. Matter 32, 193001 (2020).

[15] G. De Magistris and D. Marenduzzo, An introduction to the
physics of active matter, Physica A 418, 65 (2015).

[16] H. C. Berg and D. A. Brown, Chemotaxis in Escherichia coli
analysed by three-dimensional tracking, Nature (London) 239,
500 (1972).

[17] C. Jones, M. Gomez, R. M. Muoio, A. Vidal, R. A. Mcknight,
N. D. Brubaker, and W. W. Ahmed, Stochastic force dynamics
of the model microswimmer chlamydomonasreinhardt ii: Ac-
tive forces and energetics, Phys. Rev. E 103, 032403 (2021).

[18] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R.
Vafabakhsh, and R. Golestanian, Self-Motile Colloidal Parti-
cles: From Directed Propulsion to Random Walk, Phys. Rev.
Lett. 99, 048102 (2007).

[19] S. A. Mallory, C. Valeriani, and A. Cacciuto, An active ap-
proach to colloidal self-assembly, Annu. Rev. Phys. Chem. 69,
59 (2018).

[20] C. Scholz, M. Engel, and T. Pöschel, Rotating robots move
collectively and self-organize, Nat. Commun. 9, 1 (2018).

[21] S. Palagi and P. Fischer, Bioinspired microrobots, Nat. Rev.
Mater. 3, 113 (2018).

[22] O. Dauchot and V. Démery, Dynamics of a Self-Propelled
Particle in a Harmonic Trap, Phys. Rev. Lett. 122, 068002
(2019).

[23] A. Cavagna, L. Del Castello, I. Giardina, T. Grigera, A. Jelic, S.
Melillo, T. Mora, L. Parisi, E. Silvestri, M. Viale et al., Flocking

and turning: A new model for self-organized collective motion,
J. Stat. Phys. 158, 601 (2015).

[24] J. Jhawar, R. G. Morris, U. Amith-Kumar, M. Danny Raj, T.
Rogers, H. Rajendran, and V. Guttal, Noise-induced schooling
of fish, Nat. Phys. 16, 488 (2020).

[25] B. ten Hagen, S. van Teeffelen, and H. Lowen, Non-gaussian
behaviour of a self-propelled particle on a substrate, Condens.
Matter Phys. 12, 725 (2009).

[26] B. ten Hagen, S. van Teeffelen, and H. Löwen, Brownian mo-
tion of a self-propelled particle, J. Phys.: Condens. Matter 23,
194119 (2011).

[27] K. Malakar, A. Das, A. Kundu, K. V. Kumar, and A. Dhar,
Steady state of an active brownian particle in a two-dimensional
harmonic trap, Phys. Rev. E 101, 022610 (2020).

[28] H. Löwen, Inertial effects of self-propelled particles: From ac-
tive brownian to active langevin motion, J. Chem. Phys. 152,
040901 (2020).

[29] B. Lehle and J. Peinke, Analyzing a stochastic process driven
by ornstein-uhlenbeck noise, Phys. Rev. E 97, 012113 (2018).

[30] L. L. Bonilla, Active ornstein-uhlenbeck particles, Phys. Rev. E
100, 022601 (2019).

[31] D. Martin, J. O’Byrne, M. E. Cates, É. Fodor, C. Nardini,
J. Tailleur, and F. van Wijland, Statistical mechanics of ac-
tive ornstein-uhlenbeck particles, Phys. Rev. E 103, 032607
(2021).

[32] M. E. Cates, Diffusive transport without detailed balance in
motile bacteria: Does microbiology need statistical physics?
Rep. Prog. Phys. 75, 042601 (2012).

[33] M. E. Cates and J. Tailleur, When are active brownian parti-
cles and run-and-tumble particles equivalent? consequences for
motility-induced phase separation, Europhys. Lett. 101, 20010
(2013).

[34] N. Koumakis, C. Maggi, and R. Di Leonardo, Directed transport
of active particles over asymmetric energy barriers, Soft Matter
10, 5695 (2014).

[35] P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, Self-
Propelled Janus Particles in a Ratchet: Numerical Simulations,
Phys. Rev. Lett. 110, 268301 (2013).

[36] A. Pototsky, A. M. Hahn, and H. Stark, Rectification of self-
propelled particles by symmetric barriers, Phys. Rev. E 87,
042124 (2013).

[37] K. Bisht and R. Marathe, Rectification of twitching bacteria
through narrow channels: A numerical simulations study, Phys.
Rev. E 101, 042409 (2020).

[38] B.-Q. Ai and F.-G. Li, Transport of underdamped active parti-
cles in ratchet potentials, Soft Matter 13, 2536 (2017).

[39] G.-h. Xu and B.-q. Ai, Rotation reversal of a ratchet gear pow-
ered by active particles, Soft Matter 17, 7124 (2021).

[40] M. Hatatani, Y. Okamoto, D. Yamamoto, and A. Shioi, Re-
versed spin of a ratchet motor on a vibrating water bed, Sci.
Rep. 12, 14141 (2022).

[41] F. Q. Potiguar, G. A. Farias, and W. P. Ferreira, Self-propelled
particle transport in regular arrays of rigid asymmetric obsta-
cles, Phys. Rev. E 90, 012307 (2014).

[42] M. B. Wan, C. J. Olson Reichhardt, Z. Nussinov, and C.
Reichhardt, Rectification of Swimming Bacteria and Self-
Driven Particle Systems by Arrays of Asymmetric Barriers,
Phys. Rev. Lett. 101, 018102 (2008).

[43] M. Mijalkov and G. Volpe, Sorting of chiral microswimmers,
Soft Matter 9, 6376 (2013).

054601-8

https://doi.org/10.1016/S0370-1573(01)00081-3
https://doi.org/10.1126/science.276.5314.917
https://doi.org/10.1103/PhysRevLett.71.1477
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1146/annurev-conmatphys-031016-025522
https://doi.org/10.1209/0295-5075/96/68002
https://doi.org/10.1128/JB.01033-07
https://doi.org/10.1103/PhysRevLett.112.158101
https://doi.org/10.1038/ncomms3588
https://doi.org/10.1038/nature12673
https://doi.org/10.1103/PhysRevLett.110.198302
https://doi.org/10.1088/1361-648X/ab6348
https://doi.org/10.1016/j.physa.2014.06.061
https://doi.org/10.1038/239500a0
https://doi.org/10.1103/PhysRevE.103.032403
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1146/annurev-physchem-050317-021237
https://doi.org/10.1038/s41467-017-02088-w
https://doi.org/10.1038/s41578-018-0016-9
https://doi.org/10.1103/PhysRevLett.122.068002
https://doi.org/10.1007/s10955-014-1119-3
https://doi.org/10.1038/s41567-020-0787-y
https://doi.org/10.5488/CMP.12.4.725
https://doi.org/10.1088/0953-8984/23/19/194119
https://doi.org/10.1103/PhysRevE.101.022610
https://doi.org/10.1063/1.5134455
https://doi.org/10.1103/PhysRevE.97.012113
https://doi.org/10.1103/PhysRevE.100.022601
https://doi.org/10.1103/PhysRevE.103.032607
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1039/C4SM00665H
https://doi.org/10.1103/PhysRevLett.110.268301
https://doi.org/10.1103/PhysRevE.87.042124
https://doi.org/10.1103/PhysRevE.101.042409
https://doi.org/10.1039/C7SM00405B
https://doi.org/10.1039/D1SM00761K
https://doi.org/10.1038/s41598-022-18423-1
https://doi.org/10.1103/PhysRevE.90.012307
https://doi.org/10.1103/PhysRevLett.101.018102
https://doi.org/10.1039/c3sm27923e


INERTIAL ACTIVE RATCHET: SIMULATION VERSUS … PHYSICAL REVIEW E 107, 054601 (2023)

[44] L. Angelani, R. Di Leonardo, and G. Ruocco, Self-Starting
Micromotors in a Bacterial Bath, Phys. Rev. Lett. 102, 048104
(2009).

[45] D. McDermott, C. J. Olson Reichhardt, and C. Reichhardt, Col-
lective ratchet effects and reversals for active matter particles
on quasi-one-dimensional asymmetric substrates, Soft Matter
12, 8606 (2016).

[46] Cs. Sándor, A. Libál, C. Reichhardt, and C. J. Olson Reichhardt,
Collective transport for active matter run-and-tumble disk sys-
tems on a traveling-wave substrate, Phys. Rev. E 95, 012607
(2017).

[47] G. Lambert, D. Liao, and R. H. Austin, Collective Escape of
Chemotactic Swimmers through Microscopic Ratchets, Phys.
Rev. Lett. 104, 168102 (2010).

[48] J. A. Drocco, C. J. Olson Reichhardt, and C. Reichhardt,
Bidirectional sorting of flocking particles in the presence of
asymmetric barriers, Phys. Rev. E 85, 056102 (2012).

[49] Y.-f. He, B.-q. Ai, C.-x. Dai, C. Song, R.-q. Wang, W.-t. Sun,
F.-c. Liu, and Y. Feng, Experimental Demonstration of a Dusty
Plasma Ratchet Rectification and Its Reversal, Phys. Rev. Lett.
124, 075001 (2020).

[50] B. Lindner, L. Schimansky-Geier, P. Reimann, P. Hänggi, and
M. Nagaoka, Inertia ratchets: A numerical study versus theory,
Phys. Rev. E 59, 1417 (1999).

[51] R. Bartussek, P. Reimann, and P. Hänggi, Precise Numerics
versus Theory for Correlation Ratchets, Phys. Rev. Lett. 76,
1166 (1996).

[52] A. Noushad, S. Shajahan, and M. Sahoo, Velocity auto corre-
lation function of a confined brownian particle, Eur. Phys. J. B
94, 202 (2021).

[53] M. Muhsin, M. Sahoo, and A. Saha, Orbital magnetism of an
active particle in viscoelastic suspension, Phys. Rev. E 104,
034613 (2021).

[54] M. Muhsin and M. Sahoo, Inertial active ornstein-uhlenbeck
particle in the presence of a magnetic field, Phys. Rev. E 106,
014605 (2022).

[55] J. Tailleur and M. E. Cates, Sedimentation, trapping, and recti-
fication of dilute bacteria, Europhys. Lett. 86, 60002 (2009).

[56] E. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco, and
F. van Wijland, How Far from Equilibrium Is Active Matter?
Phys. Rev. Lett. 117, 038103 (2016).

[57] D. Mandal, K. Klymko, and M. R. DeWeese, Entropy Produc-
tion and Fluctuation Theorems for Active Matter, Phys. Rev.
Lett. 119, 258001 (2017).

[58] B.-q. Ai, Directed transport driven by the transverse wall vibra-
tion, J. Chem. Phys. 131, 054111 (2009).

[59] B. Lindner and E. M. Nicola, Diffusion in different models
of active brownian motion, Eur. Phys. J.: Spec. Top. 157, 43
(2008).

[60] H. Risken, The Fokker-Planck Equation, 3rd ed., Springer Se-
ries in Synergetics (Springer, Berlin, Heidelberg, 1996).

[61] R. F. Fox, I. R. Gatland, R. Roy, and G. Vemuri, Fast, accurate
algorithm for numerical simulation of exponentially correlated
colored noise, Phys. Rev. A 38, 5938 (1988).

054601-9

https://doi.org/10.1103/PhysRevLett.102.048104
https://doi.org/10.1039/C6SM01394E
https://doi.org/10.1103/PhysRevE.95.012607
https://doi.org/10.1103/PhysRevLett.104.168102
https://doi.org/10.1103/PhysRevE.85.056102
https://doi.org/10.1103/PhysRevLett.124.075001
https://doi.org/10.1103/PhysRevE.59.1417
https://doi.org/10.1103/PhysRevLett.76.1166
https://doi.org/10.1140/epjb/s10051-021-00217-5
https://doi.org/10.1103/PhysRevE.104.034613
https://doi.org/10.1103/PhysRevE.106.014605
https://doi.org/10.1209/0295-5075/86/60002
https://doi.org/10.1103/PhysRevLett.117.038103
https://doi.org/10.1103/PhysRevLett.119.258001
https://doi.org/10.1063/1.3200923
https://doi.org/10.1140/epjst/e2008-00629-7
https://doi.org/10.1103/PhysRevA.38.5938

