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Discordant alternans, the spatially out-of-phase alternation of the durations of propagating action potentials in
the heart, has been linked to the onset of fibrillation, a major cardiac rhythm disorder. The sizes of the regions,
or domains, within which these alternations are synchronized are critical in this link. However, computer models
employing standard gap junction-based coupling between cells have been unable to reproduce simultaneously
the small domain sizes and rapid action potential propagation speeds seen in experiments. Here we use
computational methods to show that rapid wave speeds and small domain sizes are possible when a more
detailed model of intercellular coupling that accounts for so-called ephaptic effects is used. We provide evidence
that the smaller domain sizes are possible, because different coupling strengths can exist on the wavefronts,
for which both ephaptic and gap-junction coupling are involved, in contrast to the wavebacks, where only
gap-junction coupling plays an active role. The differences in coupling strength are due to the high density
of fast-inward (sodium) channels known to localize on the ends of cardiac cells, which are only active (and
thus engage ephaptic coupling) during wavefront propagation. Thus, our results suggest that this distribution
of fast-inward channels, as well as other factors responsible for the critical involvement of ephaptic coupling
in wave propagation, including intercellular cleft spacing, play important roles in increasing the vulnerability
of the heart to life-threatening tachyarrhythmias. Our results, combined with the absence of short-wavelength
discordant alternans domains in standard gap-junction-dominated coupling models, also provide evidence that
both gap-junction and ephaptic coupling are critical in wavefront propagation and waveback dynamics.
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I. INTRODUCTION

Ventricular fibrillation is a dangerous and lethal rhythm
disorder of the heart. A spatiotemporal phenomenon called
discordant alternans, first experimentally observed [1] and
then described theoretically [2,3], may be an important cause
of this disorder [4–6]. Electrical alternans is a complex
emerging temporal pattern of electrical waves in the heart
whose morphology alternates from one beat to the next, due
to a period-doubling bifurcation at the cell level, generally
arising during fast heart rates or short basic cycle lengths
(BCLs) [7,8]. In discordant alternans, this temporal pattern
develops spatially into regions that are out of phase with one
another, with one or more regions exhibiting a long-short-long
action potential duration (APD) pattern, while adjacent
regions exhibit a short-long-short APD pattern [1]. As
a result, large APD gradients can form in space, which
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provides a substrate susceptible to the formation of cardiac
arrhythmias. However, the relationship between discordant
alternans and arrhythmias has proven difficult to study
computationally, because computer models of discordant
alternans using the standard cable equation tend to yield
out-of-phase regions, or domains, too large to fit within the
heart (i.e., several centimeters in size), in particular in the
presence of physiologically realistic conduction velocities
[2,9–13], whereas in experiment domains have been shown to
occur with much smaller sizes (i.e., on the order of 1 cm or
smaller) [6,13–19] even when conduction velocities are over
150 cm/s [20]. A recent experimental-computational study
from one of us highlighted this apparent inconsistency [17].

Another discrepancy, which we hypothesize is related
to differences in experimental and simulated discordant
alternans domain sizes (as described below), is the value of
gap-junction resistance. Experimental measurements have
found a wide range of values for the gap-junction resistance,
typically in the tens to hundreds of megaohms (a few to
low hundreds of nanosiemens) [21–32], yet common values
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for resistances used in simulations employing physical units
are one to two orders of magnitude lower [33–39]. Many
simulation studies represent cardiac tissue as a continuous
spatial domain via the cable equation and thus do not specif-
ically define discrete cells and the associated gap-junction
resistances in physical units, but rather define cell-cell
coupling through use of a diffusion coefficient D. However,
a comparison of coupling term coefficients in the discretized
reaction-diffusion partial differential equation (D/�x2) and
the discrete cell representation (1/(RgCt )) also suggests that
the diffusion coefficients typically used (on the order of
0.001 cm2/ms) correspond to gap-junction resistances lower
than experimental measurements. Here �x is the spatial dis-
cretization, which is typically (though not always) the length
of a cell, Rg is the gap-junction resistance, and Ct is the total
membrane capacitance. (Note that both coefficients have units
of inverse time and thus define time constants associated with
the strength of the gap-junction-mediated cell-cell coupling.)

In both cases, the lower gap-junction resistance or higher
diffusion coefficient values are generally chosen in simu-
lations to match experimental observations of the action
potential wave speed, which is typically at least in the 50–
60 cm/s range. However, these same values also result in
smaller APD gradients in simulations [40] and thus larger
spatial domains during discordant alternans [2,9–13]. That is,
simulations using resistances or diffusion coefficient values
which allow realistic wave propagation speeds are generally
unable to produce discordant alternans domains of realistic
size. Thus, the two discrepancies appear to be related. This is
the fundamental paradox we address in this study: How can
both fast conduction velocity and the steep repolarization gra-
dients apparently necessary for small domains be maintained
in the same tissue?

We highlight that these inconsistencies are not just prob-
lematic for our ability to model wave propagation in the
heart; further, they reflect fundamental inconsistencies with
our current understanding of the interaction between cell-cell
coupling, wave propagation, and alternans pattern formation.
In a companion paper (Ref. [41]), we provide a plausible
explanation for these discrepancies. In this paper, we describe
these ideas in greater detail, and also explore additional prop-
erties of the mechanisms involved. We posit that the paradox
is resolved by accounting for an additional cell-cell cou-
pling mechanism, so-called ephaptic coupling, as previously
described by several previous studies [33,42–54]. In brief,
ephaptic coupling occurs due to the high density of sodium
channels clustered at the cell-cell junctions and the narrow
intercellular cleft space between cells. During wavefront prop-
agation, activation of sodium channels in an upstream or
prejunctional cell produces a fast-inward current that hyper-
polarizes the narrow cleft space between coupled cells. This in
turn increases the transmembrane potential of the downstream
or postjunctional cell. For sufficient cleft hyperpolarization,
this can activate sodium channels on the downstream cell.
This coupling mechanism occurs in parallel with current di-
rectly passing between cells through gap junctions.

Many prior studies, including our own, have demonstrated
that this ephaptic-coupling mechanism strongly influences
cardiac conduction, thus tying the latter to tissue structural
properties such as the width of the intercellular cleft space

and the fraction of sodium channels near the cleft, in addition
to the gap-junction resistance [33,43,47,51,54,55]. Indeed,
even if the intercellular gap-junction resistance is much higher
than the value commonly used in simulations, near-normal
action potential wave propagation speeds are still possible
through ephaptic coupling, as has been demonstrated by
Kucera et al. [33].

In contrast, on the trailing edge of the action potential,
the sodium channels are inactive under normal conditions, so
ephaptic coupling is also absent and coupling between cells
is mediated solely by conventional gap-junction resistance.
Thus, the dynamics of the propagating action potential can
be different on the leading and trailing edges of the wave.
We note that no prior studies have addressed how the interac-
tion between ephaptic and gap-junction coupling can impact
spatial gradients that arise during the rapid rates that produce
alternans.

This “decoupling” between the mechanisms involved in
wavefront and waveback dynamics allows us to advance
the following hypothesis: Tissue characterized by high gap-
junction resistance (tens to hundreds of megaohms) and strong
ephaptic effects, as created by a combination of optimal cleft
spacing and a high density of sodium channels on the ends of
cells, admits the possibility of the simultaneous presence of
rapidly propagating action potential waves and small discor-
dant alternans domain sizes. Specifically, both strong ephaptic
effects and gap junctions participate during the wavefront to
permit rapid wave propagation while at the same time the
high gap-junction resistivity reduces cell-cell coupling on the
waveback, allowing steep APD spatial gradients, which facil-
itates the development of small discordant alternans domain
sizes.

II. METHODS

To test our hypothesis, we constructed a computer model
of a one-dimensional fiber, which employs a simplified ver-
sion of the circuit previously used by Kucera et al. [33] and
us [43,52,56] to model gap-junction and ephaptic-coupling
effects. As shown in Fig. 1, the intracellular space of each
cell is discretized into three nodes such that the intracellular
resistance is modeled by two resistors Ri in each cell. The cleft
region between cells is represented by one node, to which all
the ephaptic-related components (shown in red in Fig. 1) are
connected.

To define the passive components in this circuit, we fol-
lowed the geometrically based procedure described by Kucera
et al. Accordingly, we first chose both the intracellular and
cleft resistivities ρi and ρcl, respectively, to be 150 � cm
and the capacitance per unit membrane surface area cm to be
1.0 µF/cm2. The values of the resistances Ri = ρi�x/(2πr2)
and Rr = ρcl/(8πwcl ) and capacitances Cm = cmAm and Ccl =
cmAcl were then calculated assuming a cylindrical cell shape
of length �x = 100 µm and radius r = 11 µm, where Acl =
πr2 and Am = 2πr�x are the areas of the end and lateral
surface of each cell, respectively, with cells arranged end-
to-end to form the fiber, and assuming the cleft region is a
disk-shaped region between each pair of cells, with the same
radius as the cells and width wcl, which varied in our simu-
lations from 2 to 60 nm [50,55]. The value of gap-junction
resistance Rg was varied from 3.95 M� to 395 M� (equiva-
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FIG. 1. Circuit used to model a one-dimensional fiber containing gap-junction and ephaptic intercellular coupling. Black circuit elements
are those typically used in standard monodomain models of one-dimensional fibers. Red elements model ephaptic coupling. Blue dashed boxes
indicate the locations of cells within this circuit description of the fiber.

lently, the gap-junction conductance varied from 253 nS down
to 2.53 nS).

The remaining components appearing in the circuit, Im

and Icl, were then defined using a modified version of the
three-variable Echebarria-Karma ionic model [57]. Here Im

and Icl are the ionic currents flowing across the membrane
at the lateral and cleft surfaces, respectively, as depicted in
Fig. 1. Importantly, this minimal model is well established
in the investigation of cellular and tissue-scale alternans dy-
namics [58,59]. In the model, the transmembrane voltage
dynamics are described in terms of a normalized unitless volt-
age u = (V − Vrest )/(Vact − Vrest ), where Vact = 15 mV and
Vrest = −85 mV are the fully activated and resting-state mem-
brane potentials, respectively, and normalized current, with
units of inverse time,

Js
fi = σ s

fihm∞(u)(u − 1.3)/τfi, (1)

Js
si = f d∞(u)(u − 1.4)/τsi, (2)

Js
so = [1 − exp(−4u)]/τso, (3)

where normalized fast-inward (Js
fi), slow-inward (Js

si), and
slow-outward (Js

so) currents broadly correspond to sodium,
calcium, and potassium currents, respectively. Here the super-
script s (s = cl or m) denotes currents on either the cleft or
lateral membrane surface, respectively (as shown in Fig. 1).
The parameter σ s

fi is used to vary the relative surface densi-
ties of the fast-inward current between these two membrane
surfaces (additional details below). The sum of these ionic
currents (in units of μA) is then given by

Is = (
Js

fi + Js
si + Js

so

)
cm(Vact − Vrest )As. (4)

Evolution of the gating variables, fast-inward inactivation
gate h, and slow-inward inactivation gate f for each mem-
brane current were governed by the rate equations

dh/dt = [h∞(u) − h]/τh(u), (5)

df /dt = [ f∞(u) − f ]/τ f (u). (6)

The steady-steady fast-inward activation m∞, fast-inward in-
activation h∞, slow-inward activation d∞, and slow-inward
inactivation f∞ functions were defined piecewise such that,
for u � 0,

m∞(u) = (u/0.2)p/[1 + (u/0.2)p], (7)

h∞(u) = 1/[1 + (u/0.1)6], (8)

d∞(u) = (u/0.4)4/[1 + (u/0.4)4], (9)

f∞(u) = 1/[1 + (u/0.1)4], (10)

while for u < 0 we defined m∞(u) = 0, h∞(u) = 1, d∞(u) =
0, and f∞(u) = 1, respectively. The voltage-dependent time
constants were given by

τh(u) = τh1 + τh2 exp[−20(u − 0.1)2], (11)

τ f (u) = τ f2 + (
τ f1 − τ f2

)
u3. (12)

We note that in this model with normalized currents, the
inverse of the current time constants (τfi, τsi, and τso) cor-
respond to current conductances. To increase the maximum
possible APD to values typically seen in discordant alter-
nans experiments (around 200 ms in canines), we increased
all the timescale parameters appearing in [57] that are in-
volved in determining the APD by a factor of 1.5 such
that τso = 1.5×15.0, τsi = 1.5×4.1, τh1 = 1.5×4.8, τ f 1 =
1.5×100, τ f 2 = 1.5×30, and τh2 = 1.5×6 (in units of mil-
liseconds). For similar reasons of matching action potential
wave velocity [also known as the conduction velocity (CV)]
to 50–60 cm/s, we increased the fast-inward current conduc-
tance by increasing the inverse of the fast-inward (sodium)
time constant τ−1

fi to values between 3.0 and 5.0 ms−1 (from
a baseline value of 1.25 ms−1). This larger fast-inward cur-
rent triggered automaticity under some circumstances, so we
increased the value of p from 6 to 8. This had the effect of
decreasing the subthreshold fast-inward current, suppressing
automaticity, while increasing the current above the threshold,
thus leaving the CV roughly unchanged.

To compare the patterns of classical action potential (AP)
wave propagation, which is principally mediated by gap-
junction coupling, to AP propagation mediated by both
ephaptic and gap-junction coupling, we included two new
parameters σ cl

fi and σ m
fi in Eq. (1), which allowed us to mod-

ify the surface density of fast-inward (sodium) channels on
cleft-facing membranes relative to the corresponding den-
sity on lateral membranes. To study gap-junction-dominated
wave propagation, we simply set σ cl

fi = σ m
fi = 1 (i.e., uniform

distribution of fast-inward channels). In contrast, ephaptic-
coupling-mediated wave propagation requires a high density
of sodium channels on the ends compared to the lateral
surface, which has been demonstrated by several my-
ocyte microscopy studies [55,60–62]. Accordingly, to study
ephaptic-mediated propagation, we modified the fast-inward
currents by defining σ cl

fi to be much larger than σ m
fi (described

further below). Note that for all cases we assumed a uniform
distribution for both slow-inward and slow-outward currents,
based on recent evidence of potassium [63–66] and calcium
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FIG. 2. Wavefront and waveback arrival times (nearly straight green and distinctly curved red traces, respectively) vs arrival location x
along the fiber for (a) the GJ system, (b) the EC1 system, and (c) the EC2 system. Waves were launched from the left end of the system
at regular intervals. The pacing interval was 207 ms. Data are shown approximately 120 s into the simulations, well after initial transient
behavior has dissipated. (d)–(f) APD(x) vs x for the last two complete waves shown in (a)–(c) (the last wave is shown by the solid trace and
the penultimate wave by the dashed trace). The wavefront and waveback arrival times were defined to be the times the membrane potential V
ascended or descended to the level of −65 mV, respectively. The APD was defined to be the difference between these two times.

[67] channels also being present at the cell ends, in addition
to lateral membranes.

To advance the circuit equations from one time step to the
next, we solved the equations obtained by applying Kirch-
hoff’s current law to each node in the electric circuit. In
solving these equations, we evaluated the currents flowing
through the resistors at the future time step (i.e., backward Eu-
ler), while currents through the nonlinear ion channel currents
Im and Icl were evaluated at the present time step (forward
Euler). This allowed us to use a time step of 0.01 ms while
still maintaining numerical stability. This time step was still
small enough to accurately advance the nonlinear ion channel
currents. Additional details of the circuit time-stepping algo-
rithm appear in Appendix A. The gating variables h and f
were also advanced using the standard forward Euler method.
Time steps both an order of magnitude larger and smaller were
tried to ensure that the time step of 0.01 ms was sufficient to
model, in particular, the action potential wave velocity, with
reasonable accuracy. The system consisted of 320 cells, yield-
ing a system length L of 3.2 cm. The MATLAB programming
language (Mathworks, Inc.) was used for all computations.

III. RESULTS

We first demonstrated that our model produces the same
long length scale pattern of discordant alternans others have
seen for conditions for which wave propagation is mediated
by standard gap-junction coupling [2,9–13]. With uniform
fast-inward ionic current density (i.e., σ m

fi = σ cl
fi = 1), a

relatively low gap-junction resistance Rg = 3.95 M�, a fast-
inward conductance τ−1

fi of 3.0 ms−1, and a cleft width wcl of
26 nm, we obtained a maximum wave velocity of 56.7 cm/s
(i.e., in the limit of infinite previous diastolic interval). We

refer to this system as the GJ system, to reflect the fact that
conduction in this case is primarily mediated by gap-junction
coupling. When waves were launched from the left end of the
fiber (at x = 0 cm), at regular intervals of 207 ms, a classic
discordant alternans pattern quickly developed, as illustrated
by the pattern of the wavefronts (green) and wavebacks (red)
in Fig. 2(a). By time t = 120 s, we found that, apart from an
overall slow drift towards the pacing end of the system (x =
0), a discordant alternans pattern was established. Portions of
two discordant alternans domains [i.e., regions in which the
long-short-long-short patterns of APDs or diastolic intervals
(DIs) are in phase] are evident, separated by a gradual transi-
tion region close to 1.0 cm wide, as shown in Fig. 2(d).

Next we considered the regime characterized by wave
propagation that is mediated by ephaptic coupling, with
gap-junction coupling playing a secondary role. Many prior
studies have shown that a high cleft-localized surface den-
sity of fast-inward current is required for ephaptic coupling
[33,43,48,51]. We implemented this condition by redistribut-
ing most (90%) of the fast-inward channels to the ends of
the cells by setting σ cl

fi = 0.9(r + �x)/r and σ m
fi = 0.1(r +

�x)/�x, with this distribution estimated from patch clamp
current recordings from the cell middle and ends [68]. This
kept the total number of fast-inward channels unchanged
while effectively increasing the ratio of the surface density
of these ion channels on the cell ends to the density on the
lateral surface from 1.0 to 81.0. To maintain a comparable
conduction velocity in the presence of ephaptic coupling,
we increased the gap-junction resistances 100-fold (to Rg =
395.0 M�), which is more comparable to values observed in
experiment [21–32].

To verify that we were indeed in the ephaptic-coupling-
mediated wave propagation regime, we ran several simula-
tions in which a single wave was launched at t = 0 and x = 0
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FIG. 3. Currents flowing through the gap-junction resistor Rg

from left to right in Fig. 1 (blue dashed line) and through the radial
resistor Rr to the ground (red solid line) in between cells 194 and 195
during wavefront propagation, in (a) the GJ system and (b) the EC2
system.

with initially no refractoriness present anywhere on the fiber
(h = f = 1.0 at t = 0 in all cells). Figure 3 shows the currents
flowing through the gap-junction and radial resistors Rg and
Rr , at a point far from either end of the fiber, as the wave
passed through this point (i.e., during the wavefront). Two
representative cases are shown. For the GJ system described
above, we see in Fig. 3(a) that the current through the gap
junction dominates, illustrating that wavefront propagation
is mediated by gap-junction coupling via the resistor Rg in
this system. In contrast, for a case with prominent ephaptic
coupling, in which most of the fast-inward channels are re-
located to the ends of the cells and Rg is increased 100-fold,
as described above, we see in Fig. 3(b) that the gap-junction
current is very small while the current through Rr is large.
(The specific system used here was the EC2 system, which
is defined below.) This is consistent with the description of
ephaptic-coupled wave propagation from Kucera et al., in
which firing of the cell on the upstream or prejunctional side
of the cleft region creates a substantial voltage drop across
the Rr resistor which hyperpolarizes the cleft space, promot-
ing the firing of the downstream cell through activation of
the downstream or postjunctional fast-inward current. In this
case, the radial current shown in Fig. 3(b) created a negative
potential in the cleft of −38 mV through Ohm’s law. Since
the downstream cell was still at the resting potential of −85
mV, the downstream fast-inward channels were raised to a
potential of −47 mV, which was above the firing threshold.

We also examined these two currents on the wavebacks of
the propagating waves (not shown). We found that the radial
currents were negligible in both systems (less than 10−4 nA in
absolute value in both). In contrast, the gap-junction current
was non-negligible in both systems and approximately 100
times larger in the GJ system compared with EC2, consistent
with the 100-times-smaller value of Rg. Thus, intercell cou-
pling on the waveback is mediated primarily by gap junctions
in both systems.

We note that the arrival times shown in Fig. 3 are com-
parable, being approximately 34 ms and approximately 37.5
ms for the GJ and EC2 systems, respectively, indicating that
the wave velocities in the two systems are commensurate. To
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FIG. 4. Action potential wave velocities vs cleft width wcl for
different strengths of the fast-inward current, as characterized by τ−1

fi
(3.75 ms−1, weakest, and 5.00 ms−1 strongest), for the case of Rg =
395 M� and 90% of fast-inward current channels localized on the
ends of the cells.

assess how wave velocities depended on key parameters for
ephaptic coupling, we calculated velocities for cleft widths wcl

varying from 2 to 60 nm for several values of the fast-inward
channel conductivity τ−1

fi (Fig. 4). We found a substantial
bump (or inverted U shape) in velocity as a function of wcl

for all values of τ−1
fi (Fig. 4), again consistent with ephaptic-

coupled wave propagation, as first described by Kucera et al.
[33]. For a wide cleft width wcl, the voltage drops across
the Rr resistors were insufficient to promote firing of the
downstream cell and thus wave propagation was mediated
solely by gap junctions and was thus much slower. As the
cleft width decreased, the mechanism of earlier activation
of the fast-inward current on the downstream cell, termed
self-activation [33,54], was engaged, resulting in faster wave
velocity (the right side of the bump. For very narrow wcl,
the cleft hyperpolarization became so substantial that the fast-
inward current driving force was reduced, which reduced the
overall fast-inward current and thus slowed wave velocity,
a phenomenon termed self-attenuation [33] (the left side of
the bump). The peak of the curves occurred for a cleft width
for which self-activation and self-attenuation were balanced
in such a manner as to promote the fastest wave propaga-
tion. We note that the conduction velocities observed in the
bump region (50–70 cm/s) are comparable to those in the GJ
system.

We next ran long (150 s) simulations for several of the
cases in the bump region, for wcl between 12 and 26 nm
and τ−1

fi between 3.75 and 5.00 ms−1. We found two distinct
types of behavior. Two systems, which we will call EC1 and
EC2, were chosen to illustrate these two behavior types. The
locations of these two systems in parameter space are shown
as asterisks in Fig. 4. These two systems were selected be-
cause they had restitution functions that are very similar to
those of the GJ system; thus differences should be primarily
due to the differences in the intercell coupling mechanism. A
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FIG. 5. (a) Conduction velocity and (b) APD restitution func-
tions for the three systems, GJ (green line), EC1 (blue line), and EC2
(red line), for a cycle length (BCL) of 207 ms. Nonlinear regres-
sion was performed to construct the curves shown in both panels,
assuming functions of the form f (DI) = β1 − β2 exp(−DI/β3) in
both cases. Additionally, scatterplot data from the three simulations
are shown in (b). Data for the GJ and EC1 simulations are hidden
underneath the EC2 data. The black dots show the location of the
steady-state points in each plot: (a) (DI, CV) and (b) (DI, APD). The
line APD = BCL − DI is also shown in (b).

comparison of the restitution functions of these three systems
is shown in Fig. 5. In Fig. 5(a) we see that the three systems
have similar maximum velocities of 55–57 cm/s. The EC1
and EC2 systems have velocity restitution functions that are
slightly steeper than the GJ system, for short DIs. The APD
restitution functions for all three systems are virtually identi-
cal [Fig. 5(b)]. Additionally, alternans formation in all three
systems exhibited a nearly identical rate dependence: 1:1 be-

havior when paced at intervals above 215 ms, 2:2 behavior in
the form of discordant alternans for pacing intervals between
199 and 215 ms, and 2:1 behavior (i.e., every other pacing
stimulus fails to generate a wave) for pacing intervals below
199 ms.

Although these three systems had very similar velocity and
APD restitution functions and rate dependence for the forma-
tion of alternans, the characteristics of discordant alternans
spatial patterns, when they developed, were quite different.
For the EC1 system (with parameters τ−1

fi = 5.00 ms−1 and
wcl = 12 nm), three small-amplitude discordant alternans do-
mains formed once the pacing interval fell below 216 ms. The
amplitude grew rapidly as the pacing interval was shortened.
Also, nodes in the discordant alternans pattern, that is, the
boundary between domains, sharpened rapidly with decreas-
ing pacing interval. The pattern of wavefront and waveback
arrival times for a pacing cycle length of 207 ms is shown in
Fig. 2(b). This pattern gave rise to an APD alternans ampli-
tude pattern that was a nearly constant amplitude over most
of the extent of each domain, as shown in Fig. 2(e), with
transitions between domains occurring over comparatively
short distances (i.e., the nodal width was relatively narrow
compared to the GJ system). Additionally, as the pacing cycle
length was decreased, the number of domains present on the
fiber moderately increased, while the domain size moderately
decreased, with almost five domains at a cycle length of 201
ms [Figs. 6(a) and 6(b), blue trace].

In the EC2 system (τ−1
fi = 3.75 ms−1 and wcl = 26 nm),

discordant alternans again appeared, starting at a cycle length
of 215 ms, with four domains present and steep transitions

FIG. 6. Key discordant alternans domain parameters vs pacing cycle length. A description of the calculations of (a) the number of domains
Ndomains, (b) the domain size ldomain, (d) the APD coupling length ξ , and (e) the node width lnode is provided in Appendix B. The theoretical
domain size in (c) is calculated from the formula (2π/

√
3)(2ξ 2
)1/3 (see the text).

054407-6



ROLE OF EPHAPTIC COUPLING IN DISCORDANT … PHYSICAL REVIEW E 107, 054407 (2023)

soon developing in the space between domains. Figures 2(c)
and 2(f) show these features for a pacing cycle length of
207 ms. Thus, both systems incorporating ephaptic coupling
present with a larger number of smaller alternans domains
and much smaller node widths compared to the GJ system.
For both the EC1 and EC2 systems, smaller domains were
also associated with larger voltage spatial gradients during
repolarization. For the GJ system, the maximum |dV/dx|,
calculated during repolarization, was 134 mV/cm, while for
the EC1 and EC2 systems, this maximum gradient was 1429
and 1413 mV/cm, respectively.

However, in contrast with the EC1 system, which exhibited
a modest dependence of the various domain properties on
cycle length, in the EC2 system, the number of domains in-
creased quite dramatically as the cycle length was decreased,
with over 16 domains present for a pacing cycle length of
201 ms [cf. Fig. 6(a), red EC2 trace], with a corresponding
decrease of the domain size down to about 0.1 cm, as shown
in Fig. 6(b).

Importantly, the domain sizes in both the EC1 and EC2
systems were quite small (comparable to or much smaller
than 1.0 cm), in sharp contrast to the GJ system, whose
domain sizes were in the range of 2–3 cm in length for all
cycle lengths, as shown in Fig. 6(b). These cases also show
that, for ephaptic-coupling-mediated waves, the APD can vary
quite sharply over short distances, allowing steep boundaries
to exist between discordant alternans domains [compare, for
example, Figs. 2(e) and 2(f) to Fig. 2(d)], which in turn facil-
itates the development of potentially many more domains of
much smaller width in a tissue of given size.

It is worth mentioning that, while large transients associ-
ated with initial conditions (e.g., very long or short APDs and
DIs) dissipate very rapidly, within the first second, certain
subtler features evolve over a much longer period of time.
Specifically, throughout the simulations, discordant alternans
nodes were observed to enter slowly from the distal end of
the system (x = 3.2 cm), travel across the system, and exit at
the proximal end (x = 0). Even after t = 150 ms, the rates of
entrance and exit of these nodes were not quite the same; this
equilibration takes place over a much longer period of time.
Since this process occurs over a much longer timescale, we
do not believe it affects the conclusions of this study.

We next describe several additional length scales of the
GJ, EC1, and EC2 regimes, which specifically highlight how
incorporation of ephaptic coupling can support short spatial
scale length changes in APD. First, we used nonlinear multi-
ple regression to calculate two characteristic length scales w

(not to be confused with wcl) and ξ , defined from the assumed
relationship

APD(x) = a(DI(x)) − w
d

dx
a(DI(x)) + ξ 2 d2

dx2
a(DI(x)),

(13)

where a(DI) is the APD restitution function we obtain when
the preceding DI is independent of x [e.g., Fig. 5(b)]. As
originally described by Echebarria and Karma [69], ξ repre-
sents the characteristic length scale over which the APD can
respond to spatial variations in DI, while the w(da/dx) term
is an adjustment due to the breaking of ±x symmetry caused
by the directionality and finite speed of wave propagation.

FIG. 7. Spread of the simulation data about the presumed re-
lationship expressed by Eq. (13), due to the APD’s nonuniformity
in x, for the EC2 system, with BCL = 207 ms. (a) Scatterplot of
δAPD ≡ APD(x) − a(DI(x)) vs da(DI(x))/dx and d2a(DI(x))/dx2

(in turquoise blue). The plane shown is the least-squares fit to
the scatterplot data, obtained using the method described in Ap-
pendix B 3. Also shown are the scatterplot data and least-squares
fit from (a) plotted vs (b) da(DI(x))/dx and (c) d2a(DI(x))/dx, with
dependence on the other derivative subtracted out. Also included are
the scatterplots (in blue) of the (d) wave velocity and (e) APD, vs DI.
Red curves are the fitted APD and velocity restitution functions.

We expect a relationship of this type to exist, because adja-
cent cells with different APDs must necessarily have different
membrane potentials on the trailing edge of their respective
action potentials. Gap-junction current would then tend to
flow from cells with longer APDs to those with shorter APDs,
which tends to shorten the former and lengthen the latter.
The membrane potential is thus subject to a diffusion process,
accounting for the second derivative appearing in Eq. (13).
Additional details appear in [69].

We explored the hypothesized relationship given by
Eq. (13) by creating scatterplots of δAPD(x), defined to be
APD(x) − a(DI(x)), vs d (a(DI))/dx and d2(a(DI))/dx2, us-
ing simulation data. The results are shown in Figs. 7(a)–7(c).
We can think of δAPD(x) as representing the departure of
measured APDs from the values we would have obtained in
the absence of spatial variations of the preceding DI(x) and
neighboring APDs. We then fitted a plane to the data, as shown
in Fig. 7(a). To define the plane, we used the Newton-Raphson
method to solve a multiple nonlinear regression problem in
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which the five parameters were β1, β2, β3, w, and ξ 2. We
assumed the APD had the functional form defined by Eq. (13),
where a(DI) is in the form

a(DI) = β1 − β2 exp(−DI/β3). (14)

Scatterplot data used in the regression were obtained from a
simulation for a given cycle length, excluding data close to
the ends of the fiber and data from the first several waves of
the simulation. Additional details about the method appears in
Appendix B 3.

From Fig. 7(c) we see that the assumption of a linear
relationship between δAPD and d2(a(DI))/dx2 is a good one;
a strong linear relationship is seen to exist. On the other hand,
we found that the linear contribution of the first derivative
is actually small compared to its dependence on the square
of d (a(DI))/dx, as suggested by the parabolic shape of the
spread of points in Fig. 7(b). This is due in part to the large
amplitude of the alternans pattern, as suggested by the spread
of data along the fitted APD and conduction velocity restitu-
tion functions [Figs. 7(d) and 7(e)]. However, we also found
that, even when the cycle length is close to the bifurcation
point (BCL = 215 ms) and the alternans amplitude is rela-
tively small, the square term is still comparable to the linear
term. At any rate, the spread of data seen in Fig. 7(b) is seen
to be largely unaccounted for by the least-squares fit, with
the opposite being true in Fig. 7(c), suggesting that ξ is the
relevant length scale for describing the departure of the APD
due to its dependence on x.

We calculated ξ for several different cycle lengths for all
three of our three cases (GJ, EC1, and EC2), with the results
shown in Fig. 6(d). We see that the relative sizes of ξ are
roughly proportional to the nodal widths (i.e., the width of the
transition region between domains) shown in Fig. 6(e). This
suggests that the comparatively narrow nodal widths we ob-
serve for the EC1 and EC2 systems, compared to the GJ sys-
tem, may be related to the characteristic diffusion lengths ξ .

Our calculation of the simulation values of ξ allowed
us to compare the domain sizes from our simulations with
theoretical predictions based on the work of Echebarria
and Karma [69]. The latter predicts the domain size to be
(2π/

√
3)(2ξ 2
)1/3, where 
 = c2(DI)/(2c′(DI)) and c(DI)

is the conduction velocity restitution relationship. We found
that simulations and theoretical predictions agree surprisingly
well, as can be seen by comparing Figs. 6(b) and 6(c), given
that the theory is linear, whereas virtually all our simulations
are in the nonlinear regime, with respect to both alternans am-
plitude and distance from the bifurcation point. In particular,
we have seen that, even for low-amplitude alternans, quadratic
terms in the alternans amplitude are apparently important, as
suggested by Fig. 7(b). Critically, both simulations and theory
predict that domain size is at least twofold to threefold larger
in the GJ system, compared with EC1 and EC2.

As a final demonstration that the ability of the APD and
membrane potential to vary over very short distances is a
fundamental property of the EC1 and EC2 systems, in con-
trast to the GJ system, we performed a simple numerical
experiment. We started all three systems with the same initial

conditions

h(x, t = 0) =
{

0.55 if x � 1.6 cm
0.50 if x > 1.6 cm,

(15)

f (x, t = 0) =
{

0.82 if x � 1.6 cm
0.80 if x > 1.6 cm.

(16)

Thus, the left half of each system was initialized with uniform
gating variable values that were slightly different from the
right half, with an abrupt transition between two halves, at
x = 1.6 cm. The entire fiber was then activated simultane-
ously by raising the membrane potential Vm to 15 mV in all
cells at once. The results are shown in Fig. 8. As shown in
Figs. 8(a)–8(c), the end of the action potential was essentially
constant in each half of each system, except in the vicinity
of the boundary between the two halves. Zooming in on this
transition, we see in Figs. 8(d)–8(f) that the membrane po-
tential gradient is much sharper in the two ephaptic-coupled
systems EC1 and EC2 [Figs. 8(e) and 8(f)] than in the GJ
system [Fig. 8(d)].

IV. DISCUSSION

Discordant alternans is potentially an important contribut-
ing factor in the onset of dangerous rapid rhythms in the
heart, such as ventricular tachycardia and ventricular fibrilla-
tion. Attempts to study discordant alternans using computer
simulation have been hampered, however, by difficulties in
matching key properties of discordant alternans in simulations
to their experimental counterparts. Importantly, these difficul-
ties appear to be rooted in a fundamental problem with our
understanding of the theory of how discordant alternans arises
in cardiac tissue. The most perplexing of these difficulties
centers on the size of discordant alternans domains. While
the relatively small domain size seen in experiments can be
obtained in simulations using standard models of gap-junction
coupling, the high gap-junction resistances needed to obtain
such domain sizes also slows down the wave conduction
velocities to values well below those seen in experiments.
Thus, to state the difficulties succinctly, using a standard tissue
model that only incorporates cell-cell coupling through gap
junctions, it is difficult to simulate realistic action potential
wave speeds and small discordant alternans domain sizes un-
der the same conditions.

To resolve this problem, we hypothesized that, when dis-
cordant alternans is present, both ephaptic and gap-junction
coupling participate in the mechanism by which action poten-
tial wavefronts travel from one cell to the next. Further, we
posited that, in contrast to the coupling mechanism involved
on the wavefront, the coupling on the trailing edge of the wave
(i.e., waveback) is dictated solely by gap-junction coupling.
In this scenario, wavefront and waveback dynamics no longer
depend on the same coupling mechanism. We suggest that
this makes possible the simultaneous presence of rapid wave
propagation speeds and small discordant alternans domain
sizes, since the former is determined by wavefront dynam-
ics, while the latter is governed by APD spatial coupling, in
which waveback dynamics clearly plays a key role. We have
found (Fig. 4), as others have [33,43,48,51,55], that ephaptic
coupling on the wavefront can indeed produce rapid wave
speeds for conditions with high gap-junction resistances that
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FIG. 8. Plots of Vm of a single action potential excited simultaneously at all points on the fiber at time t = 0, but with slightly different
initial conditions in each half of the fiber: h = 0.55 and f = 0.82 for x � 1.6 cm, and h = 0.50 and f = 0.80 for x > 1.6 cm, for (a) the GJ
system, (b) the EC1 system, and (c) the EC2 system. (d)–(f) Close-up of the location of the waveback (in red) for the conditions in (a)–(c) near
the center of the fiber.

are consistent with the range of resistances measured exper-
imentally [21–31]. Thus, we expected that, while ephaptic
coupling mediated the fast velocity of the wavefront, low gap-
junction conductivity would simultaneously decrease intercell
coupling on the waveback, allowing APD to vary over short
length scales, making small discordant alternans domain size
possible.

To test these ideas, we first simulated tissue with com-
paratively low gap-junction resistance so that gap-junction
coupling would dominate the dynamics on both the wave-
front and waveback (the GJ system), to establish a baseline
scenario. The result was wave propagation at physiologically
realistic speeds (56.7 cm/s), but nonphysiologically large dis-
cordant alternans domains appeared [about 2.5 cm, as shown
in Figs. 2(a) and 6(b)]. We then incorporated two changes
motivated by experimental measurements and observations
of gap-junction and sodium channel properties in myocytes
[21–31,55,60]: We increased the gap-junction resistances by
a factor of 100 and we redistributed most of the sodium
channels (the fast-inward current) to the ends of the cells.
These changes supported the ephaptic-coupling mechanism
on the wavefront (but not on the waveback), as Fig. 3 shows.
We found the wave speed to be nearly the same as the GJ
system (approximately 57 cm/s), but the spatial patterning
of discordant alternans was drastically different. Following
transients from the initial conditions, incorporating these
ephaptic-coupling effects resulted in discordant alternans do-
main sizes on the order of 1 cm in length, and sometimes
substantially less than 1 cm in the EC2 system, for the shorter
pacing cycle lengths [Fig. 6(b)]. Thus, incorporating ephaptic-

coupling results in the domain sizes typically 3 times, and
sometimes as much as 8 times, smaller than those seen in
gap-junction-only coupling.

Even when the ephaptic-coupled systems tended towards
producing larger domains (although still small compared to
the gap-junction-dominated cases), as we saw in some of the
EC1 simulations, we still found that the transition region be-
tween domains was much sharper than in the GJ system, again
suggesting that the APD spatial coupling is much weaker in
ephaptic-coupled systems. To provide further evidence for
this, we directly tested the two ephaptic-coupling systems
EC1 and EC2 to see if they could support sharp transitions in
APD, by triggering an action potential simultaneously across
the entire tissue with initial conditions that would lead to
a sharp, abrupt spatial transition in APD if the cells were
not coupled. Compared to the GJ system, the EC1 and EC2
systems exhibited transitions in APD that were much sharper
and were confined to a spatial region ten times smaller than
the transition region produced in the GJ system (Fig. 8).

While this study predicts that ephaptic coupling is nec-
essary to support both fast wave propagation and steep
repolarization gradients, this more broadly provides further
support that ephaptic coupling is an important and critical
mechanism of coupling under normal conditions. Importantly,
we note that while our EC1 and EC2 systems included
gap-junction resistances 100-fold higher than the GJ system,
all the resistance values considered in this study (3.95–395
M�) are within the range of experimental measurements
[21–31]. Specifically, in the scenarios in this paper, gap-
junction resistance does not need to be low (e.g., 395 k�)
to allow propagation speeds comparable to those seen in
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experiments (50–60 cm/s), consistent with measurements of
gap-junction resistances that are much higher (3.95–395 M�).
Other studies [33,43,47,51,55] have also demonstrated that
low gap-junction resistance is not necessary for rapid (ap-
proximately 50 cm/s) action potential wave propagation. This
leaves open two possibilities. (i) If gap-junction resistance is
normally low, then it may be that wave propagation occurs
through gap-junction connectivity, but ephaptic coupling may
be responsible for rapid wave propagation in pathological
remodeling in which gap-junction resistance is high. (ii) Al-
ternatively, if gap-junction resistance is normally high, then
it may be the case that rapid wave propagation is always
mediated by both ephaptic and gap-junction coupling, with
gap-junction coupling playing a supportive but still essential
role. While other ionic, cellular, and tissue properties not
considered in our modeling approach may also be important,
our study provides strong evidence for ephaptic coupling as
an important and necessary factor in the regulation of cardiac
conduction.

We note that our study is not without limitations. In par-
ticular, our simulations use a minimal model of ion channel
kinetics, which enabled the investigation of a wide range
of parameters for cycle length, cleft width, gap-junction re-
sistance, and fast-inward current conductance. Such a large
parameter study would be highly computationally expen-
sive using a more detailed biophysical model, due to the
small numerical integration time step required for the sub-
cellular discretization used in the tissue model. However,
the key role of ephaptic coupling in this study is the sup-
port of a mechanism underlying wavefront and waveback
independence and this manifests because of the biphasic
or inverted U-shaped curve in the CV vs cleft width rela-
tionship (Fig. 4). Importantly, such a relationship has been
previously shown by us [43,52] and others [33,42,54] for
more detailed sodium current models, including Hodgkin-
Huxley and Markov chain-based models, suggesting that the
minimal model is appropriate for such investigation. Fur-
ther, robust presentation of alternans spatial patterns in the
minimal model [58,59] suggests it is ideal for our cur-
rent study. Nonetheless, future work is needed to investigate
alternans spatial patterns in additional ionic models and
conditions.
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APPENDIX A: FINITE-DIFFERENCE SCHEME
OF KIRCHOFF’S CURRENT LAW

The nodal voltages on each node of our system circuit were
updated using a combination of the forward and backward
Euler methods. Taking the node in the cleft region as an
example (i.e., the node in the center of Fig. 1), we wrote
Kirchhoff’s current law (that is, the sum of currents leaving
a node is zero) as

− Icl(ul , hl , fl ) − Icl(ur, hr, fr )

+Ccl
d (Vcl − Vl )

dt
+ Ccl

d (Vcl − Vr )

dt
+ Vcl

Rr
= 0,

where Vcl is the cleft nodal voltage, Vl and Vr are the nodal
voltages on the nodes closest to the cleft in the cells to the
left and right, and ul , hl , fl and ur, hr, fr are the dynamical
variables associated with the ion currents flowing into the cleft
node from the cells on the left and right, respectively. We then
applied a finite-difference scheme to the equation above as

− Icl
(
un

l , hn
l , f n

l

) − In
cl

(
un

r , hn
r , f n

r

)

+Ccl
V n+1

cl − V n+1
l − V n

cl + V n
l

�t

+Ccl
V n+1

cl − V n+1
r − V n

cl + V n
r

�t
+ V n+1

cl

Rr
= 0,

where the superscripts n and n + 1 refer to the values at the
nth and (n + 1)st time steps, respectively. Finite-difference
schemes at other nodes were applied to the equations at other
nodes in the same manner, with the nodal voltages associated
with the resistors evaluated at the future time step n + 1, while
the dynamical variables u, h, and f associated with the ion
channel currents were evaluated at the current time step n. Use
of future rather than present voltages on the resistors allowed
us to take much larger time steps, since the fastest timescales
were associated with voltage diffusion through the resistive
components of the system.

To advance these equations from one time step to the next,
that is, from time step n to time step n + 1, we wrote the
collection of all terms evaluated at the future [(n + 1)st] time
step as a sparse matrix A multiplied onto a vector x of all
the dynamical variables evaluated at this future time step. The
resulting vector was set equal to the vector containing all the
remaining terms b (i.e., the terms evaluated at the present
time step n). This matrix equation A ∗ x = b was then solved
using MATLAB’s mldivide method, written in the code as
x = A \ b.

To facilitate construction of the matrices and vectors in this
formulation, we used an object-oriented approach, in which
components (i.e., the resistors, capacitors, and nonlinear cur-
rent elements) were added to the matrix A and vector b one at
a time, which we found to be much simpler than adding the
Kirchhoff current law equation for each node to A and b one at
a time. However, the two approaches are equivalent and result
in the same set of equations.

054407-10



ROLE OF EPHAPTIC COUPLING IN DISCORDANT … PHYSICAL REVIEW E 107, 054407 (2023)

APPENDIX B: CALCULATION OF CHARACTERISTIC
DISCORDANT ALTERNANS DOMAIN PARAMETERS

1. Number and size of discordant alternans domains

The number of discordant alternans domains was calcu-
lated by taking the average over 200 waves of the number
of rotations the point (APD(x), (dAPD/dx)(x)) made around
the point (〈APD〉, 〈dAPD/dx〉) in (APD, dAPD/dx) space
and then multiplying by 2. Data close to either end of the fiber
were not used, to avoid effects from the boundaries. These 200
waves were taken from near the end of the simulation (e.g.,
waves 477–676 out of a simulation containing 726 waves,
when BCL = 207 ms). Specifically, for each of these 200
waves, we calculated

θ j = tan−1 APD(x j ) − 〈APD〉
(dAPD/dx)(x j ) − 〈dAPD/dx〉 , (B1)

�θ j = θ j − θ j−1, (B2)

Ndomains = 1

π

Nx−20∑
j=20

�θ j, (B3)

ldomain = (Nx − 39)�x/Ndomains, (B4)

where 〈APD〉 and 〈dAPD/dx〉 are the means of APD j and
(dAPD/dx) j over the grid points used, 20 � j � Nx − 20,
where Nx = 320; x j = ( j − 1)�x is the coordinate of grid
point j; and tan−1 evaluates to the angle consistent with a
smoothly increasing winding number (i.e., no jumps). Here
Ndomains and ldomain were used to plot the number of discordant
alternans domains and their average length, respectively, vs
cycle length, in Figs. 6(a) and 6(b).

2. Domain node width

As is clear from Fig. 2, the width of the transition region
between domains varies considerably across the different sys-
tems we studied. To form a quantitative measure of the width
of this transition region, we first found the maximum and
minimum APDs in each wave and divided the difference of
these APDs by the largest APD gradient in that wave. Data
within 20 grid points of each end of the fiber were excluded
when determining these minimum and maximum quantities.
We then averaged this quantity over all the waves to obtain
our measure of the transition region typical for this system and
pacing interval, which we called the nodal width. Specifically,
we defined the nodal width to be

lnode = 1

Nwaves

Nwaves∑
n=1

max j (APD j ) − min j (APD j )

max j (|(dAPD/dx) j |) .

Here the number of waves Nwaves excluded the first 50 and last
50 waves in the simulation, for a total of 627 waves when the

BCL was 207 ms. Figure 6(e) shows lnode vs BCL for the three
systems, GJ, EC1, and EC2.

3. Calculation of ξ and w

To calculate ξ and w, we assume, as Echebarria and Karma
did [69], that the APD(x) at a given location x is its value
a(DI(x)) given by the restitution function a(DI) plus a correc-
tion due to variations in APD in neighboring cells, which falls
off with distance. Thus, we assume

APD(x) =
∫ ∞

−∞
a(DI(x − η))G(η)dη,

where G(η), defined so that
∫

G(η)dη = 1, is a function that
describes the interaction of the APDs as a function of distance
η. Expanding a(DI(x − η)) as a Taylor series in η around x,
we see that

APD(x) ≈ a(DI(x)) − d

dx
[a(DI(x))]

∫
ηG(η)dη

+1

2

d2

dx2
[a(DI(x))]

∫
η2G(η)dη.

Identifying

w =
∫

ηG(η)dη,

ξ 2 = 1

2

∫
η2G(η)dη,

we obtain Eq. (13). Note that ξ is a measure of the width of
G(η) and thus is a measure of the characteristic length scale
over which APD coupling takes place, while w is a measure
of the ±η asymmetry of G(η). Now, assuming that a(DI) has
a standard exponential shape

a(DI) = β1 − β2 exp(−DI/β3),

we find we can write Eq. (13) as

APD = β1 − β2eγ DI[1 + γ DI′w̃ + γ 2(DI′)2ξ 2 + γ DI′′ξ 2],

(B5)

where γ = −1/β3, w̃ = −w, and DI′ and DI′′ are the first and
second derivatives of DI, respectively, with respect to x. Using
simulation data for APD, DI, DI′, and DI′′, we first conducted
nonlinear multiple regression on Eq. (B5) with ξ 2 = 0 and
w̃ = 0, yielding preliminary values for β1, β2, and γ , the
parameters for a(DI). We then used the Newton-Raphson
method to solve the full regression problem, using as the
initial guess these three parameters, together with w̃ = 0 and
ξ 2 = 0. Convergence to the values for all five parameters β1,
β2, γ , w̃, and ξ 2, which provided the least-squares fit, was
usually obtained with only three iterations. The final values of
β1, β2, and γ were always very close to those used in the initial
guess for the full problem. The remaining parameters could
then be immediately calculated: w = −w̃ and β3 = −1/γ .
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