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Morphological instability of solid tumors in a nutrient-deficient environment
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A phenomenological reaction-diffusion model that includes a nutrient-regulated growth rate of tumor cells is
proposed to investigate the morphological instability of solid tumors during the avascular growth. We find that
the surface instability could be induced more easily when tumor cells are placed in a harsher nutrient-deficient
environment, while the instability is suppressed for tumor cells in a nutrient-rich environment due to the nutrient-
regulated proliferation. In addition, the surface instability is shown to be influenced by the growth moving speed
of tumor rims. Our analysis reveals that a larger growth movement of the tumor front results in a closer proximity
of tumor cells to a nutrient-rich region, which tends to inhibit the surface instability. A nourished length that
represents the proximity is defined to illustrate its close relation to the surface instability.

DOI: 10.1103/PhysRevE.107.054405

I. INTRODUCTION

Abnormal tumor cells have been shown, both in vivo and
in vitro, to often exhibit different degrees of surface undula-
tions during growth. The surface undulations could develop
to break into surrounding tissues and potentially increase the
invasiveness of tumor cells [1–3]. Therefore, the irregular
surface morphology of tumors serves as a crucial prognos-
tic factor for cancers [4,5]. Although angiogenesis has been
shown to play an important role in inducing the complex
morphology of solid tumors, it has been reported that the
formation of irregular surfaces is also observed for tumors
during avascular growth [6–9]. And antiangiogenic therapy,
that reduces the nutrient and oxygen supply to the tumor cells,
is shown experimentally to promote the surface instability
which further causes tumor fragmentation and invasion [6,10].
This phenomenon is partly attributed to inhomogeneous spa-
tial gradients of nutrients due to local hypoxia as a result
of the treatment [6]. Nevertheless, in this paper, we show
that, for avascular tumor growth, not only the morphologi-
cal instability of tumors can be induced for tumors initially
surrounding by a homogeneous microenvironment, but also
the instability becomes stronger as the tumor is placed in a
harsher environment.

To better understand the surface instability of avascu-
lar tumors, mathematical models from different perspec-
tives, such as pressure-driven cell motion [6,7,11–22], and
reaction-diffusion models [1,17–19,23–35] are developed. For
instance, Greenspan [11,12] described the expansion of a
tumor as a result of the internal pressure difference induced
by the birth and death of cells. As the pressure gradient is
large enough to overcome the surface tension of a tumor, a
small undulation on the tumor surface will be enhanced. The
prediction agrees with the experiment results [36]. In contrast,
Chatelain et al. and Ben Amar et al. [17,18] adopted the excess
Cauchy stress to characterize cell-to-cell interaction between
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tumor cells. They showed analytically and numerically that
a stronger repulsive Cauchy stress can trigger tumor surface
instability. Also, Cristini et al. and Frieboes et al. [6,7] showed
that the morphological instability would occur when the spa-
tial gradient of the tumor velocity, which is induced by the
heterogeneity of nutrient, is large enough to overcome the
surface tension of spheroidal tumor surfaces, undulations on
surfaces will be enhanced and subspheroids are formed. The
results are consistent with experimental observations. In addi-
tion, Castro et al. [34] developed a chemotactically directed
tumor growth reaction-diffusion model, which successfully
reproduced the invasive patterns of human U87 brain tumor
cells. The result of it showed that the driving force of the
instability is the gradient of chemoattractant density, which
drives the motion of tumor cells. As the gradient is large
enough to surpass surface tension, tumor surface instability
would be enhanced. Recently, cellular Potts modeling, which
has been employed to study developmental biology from a
cell-based perspective, has also been applied to simulate the
growth, invasion, and evolution of avascular tumors [37–43].
For example, Turner and Sherratt [43] used the cellular Potts
model to examine the influence of inter-cellular adhesions on
the tumor invasion. They showed that tumor invasion depends
not only on the cell-cell adhesion but also on the cell-medium
adhesion. In addition, phase-field-like models are also de-
veloped to simulate and to investigate cancer invasion, the
influence of angiogenesis, and the morphological instability
of glioblastoma [44–50]. For example, Macklin et al. and
Frieboes et al. [22,49] carried out phase-field-like simulations
to systematically analyze the impact of the microenvironment
on the morphology of solid tumors and discovered that tumor
fragmentation is strongly correlated to nutrient deficiency and
heterogeneity. It is clear that the morphology of the tumor is
strongly influenced by the surrounding microenvironment.

In this paper, we propose a phenomenological reaction-
diffusion model, that includes a nutrient-regulated growth rate
for tumor cells, to describe the avascular growth of solid tumor
cells. Our results indicate that the surface instability of solid
tumors may be correlated to the availability of nutrients. The
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instability would be suppressed when tumor cells are in con-
tact with a nutrient-rich environment. However, the instability
would be more pronounced when tumor cells are placed in
a harsher environment until the nutrient density is too low
for tumor cells to survive. In the present model, the driving
force of the instability is closely related to the diffusion of the
nutrient field close to the tumor front, which is different from
the instability mechanism shown in the sharp interface models
that employ a constant nutrient concentration condition at the
interface [11,17,18]. Furthermore, the growth moving speed
of the tumor front is shown to affect the surface instability
as well, but the front speed alone does not serve as a good
indicator for the instability. We find that the proximity of the
tumor front to the nutrient-rich region is critical to the onset
of the instability, and a nourished length is defined to illustrate
its close relation to the surface instability.

This paper is organized as follows: In Sec. II, a model
for avascular growth of solid tumor cells is introduced, and
the connection between the pressure-driven cell motion and
the diffusive motion of cells employed in the present model
is drawn. In Sec. III, we present a perturbative calculation
on the steady moving planar front of tumor cells to examine
the stability of the tumor surface. With the unperturbed front
solution obtained by the shooting method, the eigenfunctions
of perturbations with various wave numbers and the corre-
sponding growth rate are readily solved using a linear stability
analysis. We find that the instability is highly correlated to
the availability of nutrients in the microenvironment as well
as the front propagation speed. Moreover, a nourished length
is defined to examine the proximity of the tumor cells to the
nutrient-rich region, which is shown to be crucial to the onset
of the instability.

II. MODEL FOR NUTRIENT-REGULATED AVASCULAR
SOLID TUMOR GROWTH

In the early stage of solid tumor development, tumors
undergo an avascular growth phase in which the growth of
tumors solely depends on surrounding nutrients and there are
no blood vessels involved. Given the fact that the cell prolif-
eration is highly responsive to the availability of nutrients in
the environment, the proliferation rate of solid tumors is com-
monly assumed to be proportional to the local nutrient density
in mathematical models [6,7,12–14,16–19,34,51,52]. How-
ever, it is shown in EMT6/Ro mouse mammary tumor cells
that the increase of the cell proliferation rate slows down as
the nutrient density increases due to limited consumption and
metabolism, and eventually the proliferation rate saturates to
a constant rate [53,54]. A similar dependence is also observed
for the glucose consumption rate of 9l rat brain multicell
tumor spheroids [55]. Therefore, to investigate morphological
instability of solid tumors subject to the nutrient-regulated
growth, a set of reaction-diffusion equation describing the
growth of tumors and consumption of nutrients is formulated
as follows:

∂n

∂t
= Dn∇2n + aA(u)n − γ n − Mn(n − α)(n − β ), (1)

∂u

∂t
= Du∇2u − bnA(u), (2)

where n and u are the tumor cell density and the nutrient
density, respectively. The nutrient-regulated growth rate aA(u)
is approximated by a shifted hyperbolic tangent function with
a growth coefficient a. The growth function A(u) is

A(u) = tanh

(
u − ū

W

)
− A0, (3)

where the constant A0 is determined accordingly by requiring
A(0) = 0 since one expects a vanishing growth rate when
there is no nutrient. The constants ū and W further charac-
terize the nutrient threshold and sensitivity for tumor growth.
And γ is the apoptosis rate of tumor cells. In addition, we
employ a simple cubic function n(n − α)(n − β ) in the tumor
cells evolution equation so that there exists two stable fixed
points which correspond to a finite tumor cells state and a
vanishing tumor state [56–62]. For simplicity, we set α = β/2
which gives a symmetric cubic function with respect to its
inflection point at α. The coefficient M is directly associated
with the efforts one has to make to go from one stable fixed
point to the other in nearby region. Therefore, M is closely
related to the surface energy of tumor cells or the cell-cell
adhesion energy. However, for nutrients, since the growth of
tumor cells is proportional to the nutrient consumption, the
local nutrient consumption rate is then bnA(u) where b is
a proportionality constant. Last, simple diffusion terms with
corresponding diffusion coefficients Dn and Du are used to
describe the tumor cell movement and nutrient diffusion.

The justification of employing a diffusion description of
tumor cell movement is the following. In contrast to the
reaction-diffusion description of avascular tumor growth, the
tumor cell movement is known to be driven by the pres-
sure gradient of cells [6,7,12–22]. The velocity of tumor
cell movement �v obeys Darcy’s law �v = −μ∇P, where μ

is the mobility of tumor cells and P is the pressure of
cells. Consider the solid property of tumor cells, one expects
the pressure variation is related to the density variation by
dP = Kdn/n where K is the bulk modulus of tumor cells.
Assume a homogeneous bulk modulus and mobility of tu-
mor cells, the velocity of tumor cells can be rewritten as
�v = −(μK/n)∇n. The local rate of change in n is the nega-
tive divergence of the cell density flux −∇ · (n�v) = μK∇2n
which justifies the above-mentioned diffusion description of
cell movement. In fact, based on empirical data of human
brain tumor, the product of μK ranges from 1.03 × 10−8

to 1.9 × 10−8 cm2/s [7,63–66] while the estimated diffusion
coefficient is about 1.5 × 10−8 cm2/s [31]. In general, the dif-
fusion coefficient of tumors ranges from 10−9 to 10−7 cm2/s
depending on the type of tumors [31,67,68].

To further make contact with empirical data, certain
parameters adopted in this work are based on reported
experiments. For example, it is reported that the dif-
fusion coefficient of brain tumors in gray matters and
white matters are Dn = 1.5 × 10−8 cm2/s, and Dn = 7.5 ×
10−8 cm2/s, respectively [67,68]. Take the diffusion coef-
ficient of glucose in the cell culture medium to be Du =
6.7 × 10−7 cm2/s [1,33,69,70], one obtains Du/Dn = 8.9–
44.7. In addition, the proliferation rate and apoptosis rate
of brain tumors are about 1 day−1 and 0.26–0.38 day−1,
respectively [7,33]; the estimated consumption rate is of the
order of 10−7 (g/cm3)/min [33]. The dimensionless forms of

054405-2



MORPHOLOGICAL INSTABILITY OF SOLID TUMORS IN … PHYSICAL REVIEW E 107, 054405 (2023)

FIG. 1. Time evolution of (a) tumor cell density in η space, (b) nutrient density in η space, (c) tumor cell density in real space, and
(d) nutrient density in real space. A constant nutrient density and a Gaussian shape planer tumor cell density are set initially. The simulation
results are obtained with parameters (C0, a, γ , M, Du, ū) = (8, 1, 0.4, 4.2, 10, 2).

Eqs. (1) and (2) are obtained by the following substitutions:
t̃ = βbt/W , ∇̃ = √

DnW/(bβ )∇, ũ = u/W , M̃ = MβW/b,
ã = aW/(bβ ), γ̃ = γW/(bβ ), D̃u = Du/Dn, ˜̄u = ū/W , Ã0 =
− tanh( ˜̄u), ñ = n/β. Henceforth, we only handle dimension-
less quantities and the tilde sign is dropped for simplicity. The
dimensionless equations become

∂n

∂t
= ∇2n + anA(u) − γ n − Mn(n − 1/2)(n − 1), (4)

∂u

∂t
= Du∇2u − nA(u), (5)

where A(u) = tanh(u − ū) − A0. With the aforementioned
empirical data, we take Du = 10, γ = 0.4, a = 1, and M is
set to be 4.2 in general.

The morphology of tumor growth is in general complex
and sensitively depends on the spatial distribution of nutrients.
For avascular tumor growth, the tumor consumes surrounding
nutrients and grows toward the source of nutrients. As nutri-
ents are consumed by tumor cells at the surface, less nutrients
are diffused into the tumor which makes tumor cells away
from the surface hard to survive and forms necrosis. Hence,
to quantitatively investigate how the nutrient-regulated prolif-
eration of cells alone affects the morphological instability of
solid tumor surfaces, a planar solid tumor front in contact with

a fixed nutrient source far away from tumor cells is considered
in this paper. The morphological instability of solid tumors
is investigated by examining small perturbations in cell and
nutrient densities perpendicular to the surface normal on the
steady planar tumor front.

III. STEADY PLANAR FRONTS AND ITS STABILITY

To examine the morphological instability of planar solid
tumors, the system is set up as follows. The normal of the
tumor surface is chosen to be aligned in the x direction and
a constant nutrient density C0 is set up at x = ±∞, that is,
u(x = ±∞) = C0. For a planar tumor initially sits at x = 0,
two fronts of the tumor consume nutrients and grow toward
x = +∞ and x = −∞, respectively; see Fig. 1. Once the
tumor becomes too thick, since nutrients are consumed greatly
by the tumor cells near the surface, the nutrient density away
from the surface becomes too low to sustain the survival
of tumor cells. A necrotic region forms accordingly at the
center, and steady tumor fronts moving at a constant speed are
expected. The morphological instability of the tumor surface
is investigated by examining small perturbations in cell and
nutrient densities along the y and z directions on the planar
steady tumor fronts. However, due to the rotational symmetry
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FIG. 2. Shooting solutions of (a) tumor cell density and (b) nutrient density for boundary nutrient density at C0 = 6 and C0 = 9,
respectively. The shooting results are obtained for (a, γ , M, Du, ū) = (1, 0.4, 4.2, 10, 2).

around the x axis of the system, one only has to consider
perturbations in one direction. Therefore, a two-dimensional
system with a periodic boundary condition in the y direction
and a fixed nutrient density at ±∞ in the x direction is em-
ployed in the following discussion.

A. Nontrivial solution of planar steady propagating front

To obtain the steady propagating planar front solution
moving with a constant speed, one simply looks for a one-
dimensional nontrivial steady propagating solution of Eqs. (4)
and (5) subject to the boundary conditions: u(x = ±∞) = C0

and n(x = ±∞) = 0. For numerical solutions and simula-
tions, the infinite domain is handled by mapping the x space
to a finite domain with the transformation, η = tanh(x/x̄),
where the parameter x̄ is set to be 400 such that steady
front profiles not far away from the origin are well re-
solved with a total 4096 grid points. The second derivative
is transformed accordingly, we get ∂2/∂x2 = (1 − η2)/x̄2 L̂,
where L̂ ≡ ∂/∂η[(1 − η2)∂/∂η] and its eigenfunctions are the
Legendre polynomials. Therefore, accurate numerical solu-
tions and simulations are obtained by projecting cell and
nutrient density profiles onto the Legendre polynomial basis
using Gauss-Legendre quadrature. Figure 1 shows the numer-
ical simulation of evolution of a tumor clump initially in a
homogeneous nutrient-rich environment. The tumor splits into
two fronts which eventually reach the steady state moving at a
constant speed. Analytically, the steady propagating front and
its speed are determined by a shooting method. That is, to look
for the steady states of Eqs. (4) and (5) in the inertial frame
that moves with the same speed of the planar tumor. Assume
the speed of the tumor front to be v, Eqs. (4) and (5) expressed
in terms of the moving frame coordinates, ζ = x − vt and
τ = t , are

∂n

∂τ
= v

∂n

∂ζ
+ ∂2n

∂ζ 2
+ anA(u) − γ n − Mn(n − 1/2)(n − 1),

(6)
∂u

∂τ
= v

∂u

∂ζ
+ Du

∂2u

∂ζ 2
− nA(u). (7)

The steady states and the propagating speed v are obtained by
requiring ∂n/∂τ = 0 and ∂u/∂τ = 0 with the given bound-

ary condition and asymptotics. The asymptotic forms for n
and u can be readily obtained by solving the steady state of
the above equations linearized around the boundary values.
That is, let n = δn and u = C0 + δu, and the linearized equa-
tions are

∂

∂ζ

⎛
⎜⎜⎜⎜⎝

δn

∂δn/∂ζ

δu

∂δu/∂ζ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

M/2 + γ − A(C0) −v 0 0

0 0 0 1

A(C0)/Du 0 0 −v/Du

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

δn

∂δn/∂ζ

δu

∂δu/∂ζ

⎞
⎟⎟⎟⎟⎠. (8)

For large values of ζ , one readily obtains nasym =
δn1 e−h1ζ and uasym − C0 = δu1 e−h1ζ + δu2 e−h2ζ , where h1 =
v/2 +

√
v2/4 + M/2 + γ − aA(C0) and h2 = v/Du, and δn1,

δu1, δu2 are components of corresponding eigenvectors. The
shooting solutions of the tumor and nutrient densities (n0, u0)
are plotted in Fig. 2 for various values of C0. It is shown
that the cell density is not uniform across the tumor rim since
the proliferation rate depends on the local nutrient density. In
addition. the tumor density profile appears to be larger and
thicker when in contact with a nutrient-richer environment as
expected, since more nutrients are accessible to tumor cells
away from the front surface. The propagating speed of the
tumor also increases when in contact with a nutrient-richer
environment, since the proliferation rate of cells increases
with nutrient density. For the planar tumor, we obtain v =
1.452 and v = 1.764 for C0 = 6 and C0 = 9, respectively.
It is worth noting that there exists a threshold value of C0

below which the environment is too harsh and no nontrivial
solution can be found. In addition to the shooting method, the
steady moving front profile can be obtained alternatively by
evolving Eqs. (6) and (7) with different speeds until the profile
no longer changes and moves. With the steady planar tumor
front and nutrient density profiles as the unperturbed states,
the stability of perturbations in cell and nutrient densities is
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examined to shed light on the mechanism behind the morpho-
logical instability of the tumor front.

B. Stability of planar solid tumor fronts

To investigate the morphological instability of planar solid
tumors, small perturbations in tumor cell density n1 and nu-
trient density u1 are applied to the unperturbed steady state
(u0, n0) in the moving frame such that n(ζ , y) = n0(ζ ) +
n1(ζ , y) and u(ζ , y) = u0(ζ ) + u1(ζ , y). Note that perturba-
tions only depend on ζ and y due to the rotational symmetry of
the planar front. To examine the stability of the planar tumor
front against perturbations of a different wave number k, the
perturbations are assumed to have the following form:(

n1

u1

)
=

(
n̄1k (ζ )

ū1k (ζ )

)
eλkt eiky, (9)

where n̄1k (ζ ) and ū1k (ζ ) are eigenfunctions which correspond
to the largest growth rate of the perturbation λk . By substitut-
ing the ansatz into Eqs. (6) and (7) and retaining only linear
terms of perturbations, we get

∂n1

∂τ
= v

∂n1

∂ζ
− k2n1 + ∂2n1

∂ζ 2
+ ∂F1

∂n

∣∣∣∣
(n0,u0 )

n1 + ∂F1

∂u

∣∣∣∣
(n0,u0 )

u1,

(10)
∂u1

∂τ
= v

∂u1

∂ζ
− Duk2u1 + Du

∂2u1

∂ζ 2
+ ∂F2

∂n

∣∣∣∣
(n0,u0 )

n1

+ ∂F2

∂u

∣∣∣∣
(n0,u0 )

u1, (11)

where F1(n, u) ≡ anA(u) − γ n − Mn(n − 1/2)(n − 1) and
F2(n, u) ≡ −nA(u). Numerically, n̄1k (ζ ), ū1k (ζ ), and λk are
obtained by evolving the above equations while rescaling n1

and u1 constantly to a small number until shape-preserving
solutions are reached. The growth rate λk is measured after the
transient period by calculating (∂n1/∂τ )/n1 for nonvanishing
n1. Figure 3 shows an example of eigenfunctions for which
k = 0.042 and λk = 0.0116. The variation of tumor cells oc-
curs in the region that is very close to the tumor surface, and
the anticorrelation between n1 and u1 near the tumor surface
reflects the fact that more tumor cells consume more nutrients.
Furthermore, a dip in n1 away from the tumor front is a direct
result of insufficient nutrients due to more nutrients being
consumed by tumor cells at the front surface.

For perturbations of different wave numbers, the stabil-
ity of a planar tumor front is examined by evaluating the
corresponding λk . For a fixed value of C0, short wavelength
perturbations is shown to be suppressed while the stability
of long wavelength perturbations depends on the value of C0;
see Fig. 4. The suppression of short wavelength perturbations
is due to the tumor surface energy which reflects the nature
of cell-cell adhesion, which will be discussed in detail later.
However, for long wavelength perturbation, the instability is
driven by the difference in the proliferation rate of cells at
peaks and troughs along the wave. The difference in the prolif-
eration rate comes from the difference in the contact nutrient
density, which also results in the difference in the cell density
at peaks and troughs. Once the difference is established, more
cells at peaks consume more nutrients which leaves less nutri-

FIG. 3. Snapshot of the unperturbed steady states and the shape-
preserving eigenfunctions of small perturbations. The blue dotted
line and the yellow dashed line represent the unperturbed steady state
of tumor cell density and nutrient density, respectively. The black
solid line and the red dash-dotted line represent the shape-preserving
eigenfunctions of n1 and u1 multiplied by 106, respectively.
The results are obtained with parameters (C0, a, γ , M, Du, ū) =
(6.0, 1, 0.4, 4.2, 10, 2) and k = 0.042. The growth rate of the per-
turbation is λk = 0.0116.

ents for cells at troughs, which further enhances the difference
in the proliferation rate; hence, the instability occurs. The
morphological instability of planar tumor fronts as discussed
here, therefore, depends on the competition between the stabi-
lizing surface tension and the destabilizing nutrient-regulated
proliferation rate. However, since the proliferation rate of cells
saturates in a nutrient-rich environment, the difference in the
proliferation rate for cells at peaks and troughs decreases
which makes the planar tumor surface stable. Figure 4 plots
the dispersion relation for perturbations on planar tumors
placed in environments with different nutrient densities at the
boundary. For C0 = 6, the nutrients are sufficient for tumor

FIG. 4. Dispersion relation for various boundary nutrient densi-
ties ranging from C0 = 6 to C0 = 9. The symbols show the growth
rate of the perturbation from the simulation results of Eqs. (6)
and (7). The dotted lines show the linear analysis of Eqs. (10)
and (11) for the boundary nutrient densities C0 = 6, 7, 8, 9 from
top to bottom, respectively. The results are obtained with parameters
(a, γ , M, Du, ū) = (1, 0.4, 4.2, 10, 2).
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to survive, but the nutrient density is relatively low so that
the proliferation rate of cells is quite sensitive to the local
nutrient density, which is in favor of the instability. As C0

increases, the proliferation rate of cells shifts closer toward
the saturated value, which makes the proliferation rate less
sensitive to the nutrient density and the planar tumor front
becomes relatively stable. The growth rate of the perturba-
tion of a given wave number is also measured from direct
numerical simulations of Eqs. (6) and (7) in two dimensions.
Simulation results are in quantitatively good agreement with
the linear stability analysis as shown in Fig. 4. Numerical
simulations further show that, as the perturbation grows, the
instability, in time, leads up to the breakup of tumor fronts
and fragmented tumors. The fragmentation of solid tumors
increases its contact surface to nutrients that boosts the overall
growth of tumors, which is consistent with the previous results
reported in Refs. [6,7,22,50].

It is worth noting that the instability is more pronounced
as the surrounding nutrient density decreases, and the solid
tumor eventually dies when the surrounding nutrient den-
sity is below a threshold. As solid tumors are placed in
a harsher environment, the nutrient-dependent growth itself
would empower solid tumors more easily with the capability
of breaking up into small tumor clumps. Our results suggest
that a nutrient-dependent growth rate could be the key factor
that improves the odds for tumor survival by tumor fragmen-
tations when the solid tumor is situated in a nutrient-deficient
environment.

As discussed above, the morphological instability of tumor
fronts also depends on its surface energy which is directly
related to the cell-cell adhesion. Quantitatively, the surface
energy of solid tumor fronts can be determined by examining
the restoring force for perturbations of large wave numbers.
In the limit of large wave numbers, the dispersion curves
are well fitted by a quadratic relation, λk = −σk2, which
implies a local growth mechanism of tumor cells at peaks and
troughs [71]. And σ is proportional to the surface energy of
the tumor front. The surface energy of planar tumor fronts
is shown to depend on the surrounding nutrient density C0

at infinity; see Fig. 5. This dependence arises from different
steady tumor front profile which varies with C0. See Fig. 2
for examples. By assuming a constant cell-cell adhesion, the
surface energy simply depends on the tumor density profile
across the tumor rim. In Fig. 5, the surface energy is shown
to be approximately proportional to the total number of cells
per unit surface area defined as nrim = ∫

rim ndx, where the
integration is performed across the tumor front. Therefore,
tumors in a nutrient-richer environment form thicker rims
and hence higher surface energies are expected, which also
suppresses the morphological instability.

In addition to the surrounding nutrient density C0 at in-
finity, we examine how the growth coefficient a affects the
morphological instability. The growth coefficient a varies
from different types of solid tumor cells, and a faster tumor
velocity is usually associated with a larger growth coefficient.
As discussed above, for a fixed growth coefficient a, three
possible scenarios for tumor growth are found, namely, dying
out of tumors at low C0, breakups of tumors at sufficient but
low C0, and steady moving tumor fronts in the nutrient-rich
environment. A phase diagram of tumor growth as a function

FIG. 5. σ and the total number of cells per unit surface area
nrim for various boundary nutrient densities. The results show that
the surface energy is approximately proportional to the total number
of cells per unit surface area. Results are obtained with parameters
(a, γ , M, Du, ū) = (1, 0.4, 4.2, 10, 2).

of the growth coefficient a and the surrounding nutrient den-
sity C0 is plotted in Fig. 6.

Interestingly, our results show that the morphological in-
stability of tumor surfaces is suppressed when the growth
coefficient a increases. However, for a given nutrient density,
a larger growth coefficient would effectively enlarge the dif-
ference in proliferation rate between tumor cells at perturbing
peaks and troughs, which should in principle enhance the
instability but not suppress it. Previous studies report that
the morphological instability is influenced by the front speed,
but how the propagating speed affects the instability is inclu-
sive [7,17,18,34]. To explicitly examine the relation between
front speed and the instability, Fig. 7(a) plots the front speed
for different growth coefficients a as well as different bound-
ary nutrient densities C0. For a given C0, the instability is
shown to be suppressed as the front speed increases, which
is consistent with the observation that the instability is sup-
pressed with increasing growth coefficient a. However, the
onset speed of the instability, below which the tumors start to

FIG. 6. Phase diagram for the avascular solid tumor growth. Red
squares represent the phase of dying out of tumor cells. Blue circles
and green triangles are breakups of tumors and steady moving tumor
fronts, respectively. The phase diagram is obtained for parameters
(γ , M, Du, ū) = (0.4, 4.2, 10, 2).
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FIG. 7. (a) Front speed of different growth coefficients for different boundary nutrient density values. The boundary nutrient densities
are C0 = 7, 8, and 9 for the red dashed line, green dotted line, and blue dash-dotted line, respectively. Empty circles represent the state
breakups of tumors, and filled triangles represent the state of steady moving tumor fronts, and the same representation is used in panels (b) and
(d). (b) Net flux of nutrient CR of different boundary nutrient density values for different growth coefficients. Different colors and line styles
represent different growth coefficients a. Taking C0 = 9, for instance, the coefficients are (0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25) from
bottom to top, respectively. The black dotted horizontal line shows the threshold of CR above which systems prefer steady moving tumor fronts.
(c) Illustration of the definition of nourished length w. The simulation is obtained with parameters C0 = 9 and a = 1. The red circle is the
position where front tumor density n reaches ten percent of its maximum value, and the green square is the position where the growth function
A(u) decreases to ninety percent of its maximum value. (d) Nourished length w of different front speeds for different boundary nutrient density
values. The boundary nutrient values are C0 = 6, 7, 8, and 9 for the red solid line, blue dashed line, green dash-dotted line, and purple dotted
line, respectively. The results of these four figures are obtained with parameters (γ , M, Du, ū) = (0.4, 4.2, 10, 2).

break up, clearly depends on the value of C0. To gain a more
quantitative understanding of the morphological instability,
the net flux of nutrients in and out of the planar tumor is
calculated since this quantity indicates whether tumors find
itself in a nutrient-rich environment or not. The net flux of
nutrient, CR, can be obtained by integrating Eq. (7) from the
ζ = 0 to ζ = ∞ across a steady planar tumor profile. That is,

CR = v

∫ ∞

0

∂u

∂ζ
dζ = v(C0 − u0) =

∫ ∞

0
nA(u)dζ , (12)

where u0 is the nutrient density deep in the necrosis region at
ζ = 0. The net flux of nutrient, CR, also equals to the nutrients
being consumed by tumor cells per unit area as evident in
the last equality. The onset of the instability is shown to be
well characterized by the proposed quantity CR, see Fig. 7(b).
There seems to exist a threshold of CR above which tumor cells
at the front surface are in contact with high nutrient density
which diminishes the difference in the proliferation rate if
perturbations are applied.

Since whether the tumor cells at the front surface can
access sufficient nutrients is crucial for the morphological
instability, a nourished length w, defined as the coordinate
difference between the position where front tumor density n
reaches ten percent of its maximum value and the position
where the growth function A(u) decreases to ninety percent
of its maximum value, is employed to examine the instability.
Figure 7(c) illustrates an example of defining the nourished
length w, and how the nourished length w varies with the
tumor front speed v and surrounding nutrient density C0 is
plotted in Fig. 7(d). For a given C0, the nourished length is
shown to be positively correlated with the front speed since
faster moving tumor fronts invade further into the nutrient-
rich environment. Therefore, the instability is expected to
be further diminished as the tumor front moves faster that
is qualitatively consistent with previous results reported in
Refs. [17,18].

It is clear that the nourished length depends on not only the
tumor front speed but also on the types of nutrients such as
oxygen, glucose, etc. Previous experimental results suggest
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FIG. 8. (a) Dispersion relation for various diffusion coefficients ranging from Du = 5 to Du = 10. The symbols show the growth rate of
the perturbation from the simulation results of Eqs. (6) and (7). The dotted lines show the linear analysis of Eqs. (10) and (11) for diffusion
coefficients Du = 10, 7, 5 from top to bottom, respectively. (b) Nourished length w of different diffusion coefficients. Empty circles are the
state of breakups of tumors, and filled triangles represent the state of steady moving tumor fronts. Both results are obtained with parameters
(C0, a, γ , M, ū) = (7, 1, 0.4, 4.2, 2).

that the nutrient diffusion coefficient is crucial to the mor-
phological instability of the tumor [33,34]. For our model,
the stability of planar tumor fronts in contact with nutrients
with different diffusion coefficients is shown in Fig. 8(a).
It shows that the morphological instability of tumor fronts
can be induced more easily when tumors are placed in nu-
trients which are more diffusive. The results agree with the
numerical investigation of human U87 brain tumor cells and
Glioblastoma multiforme in which tumors are shown to be
less invasive when nutrients are less diffusive [33,34]. This
phenomenon can be understood from the perspective of the
nutrient diffusion length. Since the diffusion length is propor-
tional to

√
Du, a less diffusive nutrient supply would have a

rather sharply changing nutrient density profile near the tumor
surface. Therefore, the tumor cells at the front surface are able
to get closer to the nutrient-rich region when the tumor is in
contact with a less diffusive nutrient supply; see Fig. 8(b).
The nourished length increases as the diffusion coefficient
of nutrients is reduced, which suppresses the morphological
instability of tumor surfaces.

IV. SUMMARY AND DISCUSSION

In this paper, we investigate how the proliferation rate
of tumor cells and the microenvironment affect the morpho-
logical instability of the avascular tumor growth. A set of
reaction-diffusion equations for the tumor cell density and the
nutrient density is proposed to describe the spatiotemporal
growth of cells and distribution of nutrients which are main
determinants for the surface instability. Based on experimental
observations, the nutrient-dependent proliferation rate is as-
sumed to be positively correlated to the local nutrient density
when the nutrient density is low, and to saturate to a constant
value when the nutrient density is high. It gives rise to three
possible scenarios for the tumor growth, namely, dying out of
tumors when it is subject to insufficient nutrients, breakups
of tumors when it is subject to low but sufficient nutrients,
and steady moving tumor fonts without breaking up when it is
subject to high nutrients.

To better understand this phenomenon analytically, a linear
stability analysis of perturbations applied to steady moving
planar tumor fronts is employed. We find that, in the current
model, the surface instability is driven by the difference in the
proliferation rate of cells along the undulated surface, and is
stabilized by the surface tension of tumor fronts. When the
surrounding nutrient density is high, the difference in the pro-
liferation rate of cells is minimal due to the saturating behavior
of the proliferation rate at high nutrient density. Hence, pertur-
bations decay and one observes steady moving planar tumor
fronts. When the surrounding nutrient density is reduced, con-
sumption of nutrients by tumor cells at the perturbing peaks
on the surface would have a more pronounced influence on the
local nutrient density at the perturbing troughs, which enlarges
the difference in the proliferation rate, and hence the insta-
bility occurs. The instability eventually leads to breakups of
tumor rims and fragmentations of tumors. By doing so, tumor
cells gain more access to the nutrients, due to the increase in
its overall surface area, to better its survival odds. The sur-
face instability is shown to be stronger when the surrounding
nutrient density is further reduced until the nutrient density
is too low for tumors to survive. It appears that the nutrient-
dependent proliferation nature alone could help tumors to
develop a smart strategy of splitting up when facing a harsh
environment.

In addition to the surrounding nutrient density, we investi-
gate the relation between the tumor front speed and the surface
instability. We find that the instability would be more sup-
pressed when the tumor front moves faster, which is consistent
with reported experiments. However, we show that the front
speed alone is not a good indicator for the instability to occur.
As discussed above, since the instability is closely related to
the proliferation rate of tumor cells at the surface, the nutrients
consumed by tumor cells per surface area or the proximity
between tumor front surface and nutrient-rich region would
be better indicators. By defining a nourished length w which
represents the depth of tumor cells at the front surface into the
nutrient-rich region, the instability is shown to be suppressed
as w increases as expected. Furthermore, the effects of nutri-
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ents with different diffusivity on the instability is discussed.
Nutrients with different diffusivity result in different nutrient
density distribution near the tumor surface, and the distribu-
tion is clearly crucial to the surface instability. We find that the
instability is less pronounced as the nutrient diffusivity is re-
duced. It is because the nutrient density profile drops faster for
nutrients with small diffusivity, and hence a larger nourished
length.

In this study, the proposed model is used to investigate
the morphological instability of planar tumor fronts due to
the nutrient-dependent proliferation rate. It is of interest
to extend the current discussion to explore the morpho-
logical instability for tumors with curved surfaces, that is,

tumor spheroids. Also, the formation of fragmented tumors
in the later stage of avascular tumor growth can be stud-
ied numerically with the proposed model, which might be
relevant to the beginning of aggressive neoplasia and tumor
invasion [3,4,18].
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