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Purkinje cells exhibit a reduction of the mean firing rate at intermediate-noise intensities, which is somewhat
reminiscent of the response enhancement known as “stochastic resonance” (SR). Although the comparison
with the stochastic resonance ends here, the current phenomenon has been given the name “inverse stochastic
resonance” (ISR). Recent research has demonstrated that the ISR effect, like its close relative “nonstandard SR”
[or, more correctly, noise-induced activity amplification (NIAA)], has been shown to stem from the weak-noise
quenching of the initial distribution, in bistable regimes where the metastable state has a larger attraction basin
than the global minimum. To understand the underlying mechanism of the ISR and NIAA phenomena, we study
the probability distribution function of a one-dimensional system subjected to a bistable potential that has the
property of symmetry, i.e., if we change the sign of one of its parameters, we can obtain both phenomena with
the same properties in the depth of the wells and the width of their basins of attraction subjected to Gaussian
white noise with variable intensity. Previous work has shown that one can theoretically determine the probability
distribution function using the convex sum between the behavior at small and high noise intensities. To determine
the probability distribution function more precisely, we resort to the “weighted ensemble Brownian dynamics
simulation” model, which provides an accurate estimate of the probability distribution function for both low and
high noise intensities and, most importantly, for the transition of both behaviors. In this way, on the one hand, we
show that both phenomena emerge from a metastable system where, in the case of ISR, the global minimum of
the system is in a state of lower activity, while in the case of NIAA, the global minimum is in a state of increased
activity, the importance of which does not depend on the width of the basins of attraction. On the other hand,
we see that quantifiers such as Fisher information, statistical complexity, and especially Shannon entropy fail to
distinguish them, but they show the existence of the mentioned phenomena. Thus, noise management may well
be a mechanism by which Purkinje cells find an efficient way to transmit information in the cerebral cortex.
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I. INTRODUCTION

During sleep, anesthesia, and quiet wakefulness, brain
activity oscillates between decreasing and increasing states
[1,2]. This behavior is observed as low-frequency activ-
ity (0.5–1.0 Hz) with large-amplitude delta waves [1]. The
frequency of communication between the two states varies
widely in conscious and anesthetized animals in vivo, and in
both cases is known as bistability in a fraction of Purkinje
cells [1].

Purkinje cells are a type of gamma-aminobutyric acid
(GABA)-ergic neurons that produce most of the output of
the cerebral cortex, the outer layer of the cerebellum, and
are found in the cerebral cortex of all vertebrates. Each cell
has a single axon that sends impulses to the region of the
brain that controls movement and plays an important role in
motor control and learning [1,2]. They are the only cells that
transmit signals from the cerebellar cortex while receiving
impulses from hundreds of thousands of cells, in addition
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to having a high rate of action potential production and
intrinsic bistability [1]. Therefore, it is important to under-
stand how Purkinje cells handle information during bistability
behavior [3].

In recent years, various research has suggested that noise
may have a significant impact on neuronal dynamics [4–9]; for
instance, moderate noise can raise inputs closer to a threshold
and thereby induce the neuron to fire an action potential. On
the other hand, a very high noise level does not help to create
an action potential since it passes the potential barrier [5–9].

More recently, unusual behavior characterized by a mini-
mization of the average spiking activity for an optimal amount
of noise has been reported, which has prompted several the-
oretical studies [3,10–14]. This phenomenon was recently
discovered in neuronal populations using biophysically realis-
tic [15] models and various network coupling strategies [16].

Previously, part of the physics and engineering scientific
community studied various implications of noise, where it
fulfilled the role of building and enriching the stochastic
dynamics of nonlinear systems [17–19]. The occurrence of
this phenomenon is subject to the specifics of the nonlin-
ear potential to which the system is subjected. To illustrate,
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consider a particle that can move through a bistable potential
subjected to an external stochastic force. Depending on its
initial state, the particle is in one of the minima where, if the
intensity of the force causes the behavior of alternation from
one of the minima to the other, it is called stochastic resonance
(SR) [20–24]. If these minima now have different activi-
ties and the transition from a low-activity to a high-activity
minimum takes place, a so-called noise-induced activity am-
plification (NIAA), also known as a nonstandard stochastic
resonance, is generated [25]. However, if the opposite occurs,
i.e., a transition from a state of greater to a state of lesser
activity, this is referred to as inverse stochastic resonance
(ISR) [26].

Although the aforementioned nomenclature was adopted
by the neuroscientific community, it is just an analogy that
aids in comprehending the significance of noise in brain
systems. One of the first experimental evidence of ISR is
an in vitro preparation of Purkinje brain cells [3], which
demonstrates that ISR allows cells to operate in “alterna-
tive functional regimes” (all-or-none toggle or the linear
filter mode). Furthermore, ISR is thought to be crucial
in computational mechanisms that need less firing activity
without pharmacological inhibitory neuromodulation (or, al-
ternatively, when other computational mechanisms require
bursts of on-off activity). The NIAA phenomenon, on the
other hand, is far more challenging to separate from ISR, yet it
turns out to be merely one facet of the mechanism that causes
ISR. Both phenomena are currently very active research topics
[27–30].

Recently, a model that explains the development of the ISR
behavior has been published, and it contains certain significant
components that earlier studies have identified as the cause
of noise-induced activity amplification [26]. In particular, as
there is a distribution of the initial conditions, the coexistence
of a stable resting equilibrium and a stable spiking limit cy-
cle (i.e., oscillatory state coexists) in neuron dynamics. This
demonstrates how the essence of ISR differs from SR, where
the initial conditions are irrelevant [7,11]. The procedures em-
ployed to identify the occurrence of ISR and NIAA, however,
are important.

The behavior of a bistable oscillatory system can be re-
duced to a model of firing rate equations, i.e., the number of
spikes fired per unit time [31], whose dynamics is controlled
by a function of nonequilibrium potential (NEP) (see, e.g.,
Refs. [32–34]), so that the bistability between a limit cycle
and a quiescent state is reduced to a bistability between two
fixed points in such rate models, one of which corresponds to
a high firing rate and the other to a very small or zero firing
rate. The model proposed in [26] assumes a single variable x
representing the activity of the system, subject to a potential
with two local minima—a “down” or low-activity state and an
“up” or high-activity state—where the down state is globally
stable but has a sensibly narrower basin of attraction than the
metastable up state.

Knowledge of the nature of ISR and NIAA behavior can
provide locally optimal information about the input and output
sets of Purkinje cells. Therefore, in this article, we discuss
whether the relationship between the lengths of the basins
of attraction between the rising and falling states affects the
formation of the ISR and NIAA behavior, using the symmetry

TABLE I. Parameter sets leading to regimes displaying the
phenomenon.

ISR NIAA

a 2 2
b 2.999 −2.999
c 1.4 1.4
d −3.496 3.496
x0 0.435 −0.435

feature underlying the asymmetric potential function in [26].
Furthermore, on the one hand, although NIAA behavior is
little studied in the literature, in this paper we deepen its anal-
ysis and show that it is a behavior with certain characteristics
similar to ISR. We also show that the mean firing rate exhibits
the same characteristic behavior of both phenomena.

On the other hand, we extend the analysis of these phe-
nomena by studying the behavior of the quantities provided by
information theory, which allows us to have multiple quanti-
fiers, i.e., measures that can characterize a particular property
of the probability distribution function associated with a time
series related to a physical observation such as the activity x
of Purkinje cells. Specifically, we use three quantifiers: The
Shannon entropy, which gives us an idea of how disordered
the system is; the Fisher information, which gives us an idea of
how much information the system provides; and the statistical
complexity, which tells us how complex the system is. In order
to apply these quantifiers, one needs to know the probability
distribution function for which analytical approximations are
available in the small- and high-noise limits, respectively [26].
We use the “weighted-ensemble Brownian dynamics simula-
tion” (WEBDS) method that allows us not only to obtain the
expression of the probability in the mentioned limits, but also
for intermediate-noise intensities.

II. METHOD

A. The potential function

Purkinje cells have the peculiarity that their axons are the
only projection from the cerebellar cortex to deeper cerebellar
structures. They have complex internal dynamics which allow
them to fire spontaneously and display bistability. Bistability
has also been observed in various cellular behaviors [35], and
to understand it we consider a one-dimensional system such
that their state or activity can be described by means of a
variable x(t ) whose dynamics is given by

dx

dt
= −∂ϕ(x)

∂x
, (1)

where the potential ϕ(x) belongs to a class of familiar models
in chemical kinetics [36–38], which was also used in [26], and
has the form

ϕ(x) := a arctan[b(x + x0)] + c(x + x0)2 + d (x + x0). (2)

Different combinations of the parameters of the potential
ϕ(x) show different bistable behavior, of which we highlight
the combinations of the parameters from Table I shown in
Fig. 1. Both scenarios exhibit a bistable behavior with two
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FIG. 1. Potential ϕ(x) for the ISR (red line) and NIAA (blue line)
cases for the parameter values according to Table I. In both curves,
they have a potential with two local minima: A “down” or low-
activity state and an “up” or high-activity state. Each minimum has
an attraction basin, �xdown and �xup, and potential barrier, �ϕdown

and �ϕup, corresponding to the state down and up, respectively. Note
that the stable and metastable minima have the same values in the
potential for ISR and the one for NIAA.

minima that can be observed in both cases, i.e., a global
(larger �ϕ) and a metastable (lower �ϕ) minimum. In par-
ticular, for the red potential, these minima are in a state of
low (�ϕdown) and high (�ϕup) activity, respectively, while for
the blue potential, the global minimum is in a state of high
activity (�ϕup) and the metastable minimum is in a state of
low activity (�ϕdown).

The symmetry is what we highlight in terms of the potential
when we contrast the parameters b, d , and x0, which allows us
to obtain the same magnitudes for each minimum in both �ϕ

and �x, that is, red �ϕdown = blue �ϕup and red �ϕup = blue
�ϕdown, with the particularity �xdown=�xup for both poten-
tials. Thanks to this property, we can find different behaviors
of the potential for different variants of the phenomenon by
varying only the parameter c, which gives us three variants
for the size of the basins: �xdown > �xup, �xdown = �xup,
and �xdown < �xup. As we can see in Fig. 2, for c = 1.5, the
black lines allow us to see �xdown > �xup for the ISR case and
�xdown < �xup for the NIAA case; for c = 1.3, the orange
lines show �xdown < �xup for ISR and �xdown > �xup for
NIAA; and for the case c = 1.4, the same graph is reproduced
as in Fig. 1, where the basins are �xdown = �xup.

To study the dynamics of the potential ϕ, we will consider
the behavior of this system under the action of a noise source
whose time evolution is described by the one-dimensional
Langevin equation,

dx

dt
= −∂ϕ(x)

∂x
+ η(t ). (3)

We assume here that the noise has the form of an additive
Gaussian term η(t ) with zero mean 〈η(t )〉 = 0 and autocorre-
lation 〈η(t )η(t ′)〉 = 2Dδ(t − t ′).
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FIG. 2. ISR behavior (main graph) and NIAA (inset) for three
values of the parameter c, which represent three relationships be-
tween the basins, which are �xdown > �xup for the black line,
�xdown = �xup for the red line, and �xdown < �xup for the orange
line, in the ISR case, as opposed to the NIAA case, which are
�xdown > �xup for the orange line, �xdown = �xup for the blue line,
and �xdown < �xup for the black line. The different ISR and NIAA
potentials are symmetrical, i.e., they have the same magnitudes, but
the minima are reversed.

To understand the behavior of ISR, we imagine a set of par-
ticles that evolve in the potential ϕ whose dynamics evolves
according to the Langevin equation [Eq. (2)]. At first, for
noise values D very close to zero, the particles start in the
initial conditions; even if a long enough time t passes, the
particles will always be around their initial positions (small
disturbances caused by noise practically do not displace the
particles), so 〈x〉 are just the average values of the initial
positions. For moderate noise values, some of the initial con-
ditions falling into the metastable state basin of attraction
may be sufficiently perturbed to overcome the �ϕup barrier
and reach the stable minimum. But, on the other hand, the
initial conditions falling within the basin of attraction of the
stable minimum are perturbed, but not enough to overcome
the �ϕdown barrier, so it remains at that minimum. In this way,
the noise perturbations push the particles out of the metastable
state and evolve to the stable state, decreasing the value of 〈x〉.
As the noise intensity increases, the probability increases that
a particle will cross the potential barrier �ϕdown in a finite
time t and it evolves to a state of greater activity, increasing
the mean value 〈x〉.

Although the noise intensity in the NIAA case behaves as
in the ISR case at values close to zero and at high values,
at moderate values of D the particles manage to overcome
the smallest barrier, which in this case is the down state.
Thus, some of the particles reach the up state, which has a
higher potential barrier that they cannot overcome at this noise
intensity. So they remain trapped in this state, which causes
the increase of the mean activity 〈x〉.

To better interpret the behavior of the mean activity as a
function of noise intensity, we analyze Fig. 3, in which, for
low values of noise intensity (∼10−2), the perturbations are so
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FIG. 3. Mean firing 〈x〉 as a function of noise intensity D for ISR
(main image) and NIAA (inset). We can observe the characteristic
behavior of both phenomena at intermediate intensity: In the case
of ISR, a decrease in the activity 〈x〉, and in the case of NIAA, an
increase in the average activity 〈x〉. The simulations were performed
for �t = 2 × 103 in an arbitrary time unit and 1000 different initial
conditions uniformly distributed over the interval [−1.3, 1.3].

small that the particles cannot overcome any potential barrier,
which shows a behavior of x close to zero since the particles
are thrown uniformly and, on average, the same number of
particles falls into each basin. As the intensity increases, more
and more particles manage to overcome the barriers of the
metastable state, with lower activity in the ISR case and higher
activity in the NIAA case. At values of noise intensity ∼10−1,
the perturbation is strong enough so that most particles suc-
ceed in reaching the stable minimum, but it is not intense
enough to overcome the barrier, so the average of the activity
is practically the value of the stable minimum. At intensity
values >10−1, the particles can overcome this barrier so that
they reach the metastable state and thus a return to the mean
intensity value is observed. At very high intensity values, the
particles can be anywhere in the potential.

The most important thing in Fig. 3 is the characteristic
behavior of the decrease in mean activity for ISR and the
increase in mean activity for NIAA, not only when the basin
of the metastable minimum is larger than the basin of the
stable minimum, but also for three relationships of the size
of the basins of attraction, as can be seen for c = 1.3 where
�xdown < �xup for ISR and �xdown > �xup for NIAA, or
for c = 1.4, where �xdown = �xup for both ISR and NIAA,
and for c = 1.5, where �xdown > �xup for ISR and �xdown <

�xup for NIAA.
Looking at the different curves of the 〈x〉 in Fig. 3 for

values of noise intensity, two differences can be observed for
the different values of c. On the one hand, the initial difference
in the mean value of the activity ∼10−2, which is due to the
fact that for c = 1.4, the minima are practically symmetrically
arranged and show a mean behavior of the activity very close
to zero, while for c = 1.3, the basin of the metastable state
widens and shifts the location of the minimum away from

zero, causing it to be more significant in the calculation of
the mean value of the activity. The opposite happens in the
case of c = 1.5, where the basin of the metastable minimum
is smaller and the minimum moves closer to zero, which is less
relevant in the calculation of the average value of the activity.

On the other hand, the difference in the onset of decay
(ISR) or increase (NIAA) of the mean activity for stronger
values of noise intensity is due to the fact that as the value of c
decreases, the barrier of the metastable state increases, which
means that the perturbations required to overcome this barrier
must be larger.

To find a theoretical expression for the behavior of the
mean of the activity, in [26] the authors propose a convex
combination, i.e., a hyperbolic tangent function that depends
on D and is bounded by a factor D0 separating two behaviors:
Between the behavior for high values of the noise intensity,
expressed by the Fokker-Planck equation [39], which explains
the behavior for values of (D > 10−1), and between low am-
plitudes of the noise expressed by the Kramer escape rate
[40], which correctly explains the behavior for D < 10−1. In
Sec. II C, we will see that the WEBDS method not only cor-
rectly indicates both behaviors, but also the transition between
them, which makes it possible to determine the probability
distribution function (PDF) value more reliably.

B. Firing rate

We consider the firing rate as the average number of os-
cillations during a long period of time, which corresponds to
calculating the number of particles that pass from a down
state to an up state, depending on the noise intensity. Or,
analogously, we can consider a set of uncoupled neurons that
can be in an off state (down state) or an on state (up state) from
which they can oscillate, depending on the noise intensity.

To calculate the average firing rate, we first consider 104

particular instances of a network of 104 uncoupled neurons
evolving 105 arbitrary units of time under the action of the
potential ϕ(x). In Figs. 4(a) and 4(b), we see the behavior of
the average firing rate for ISR and NIAA, respectively, and
for the three combinations of the basin of attraction, where
not only are they the same characteristic behaviors found for
each phenomenon, but they also occur for the three variants of
the basins of attraction.

In the upper panel of Fig. 4, we see how the average
firing rate reflects the characteristic behavior for both ISR in
Fig. 4(a) and NIAA in Fig. 4(b). At very low values of noise
intensity (∼10−2), the neurons spend on average the same
time in the low- and high-activity state, as they are initially
normally distributed between these states. As noise intensity
increases, neurons may be deactivated for ISR or activated
for NIAA, which occurs at intensities around ∼2 × 10−2 as
a function of the value of c because, as the value of this pa-
rameter increases, the differences between �ϕdown and �ϕup

become more pronounced, so that a higher intensity is re-
quired to activate the same number of neurons. At an intensity
(5 × 10−2 < D < 1 × 10−1), the group of neurons succeeds
in completely shutting down (ISR) or turning on (NIAA).
However, at intensities above 10−1, the neurons change state
again and enter a fluctuation between the two possible states
that even exceeds the original distribution for 100.
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FIG. 4. Mean firing rate as a function of noise intensity for the
behaviors (a) ISR and (b) NIAA for different values of parameter c.
In both figures, it can be seen that the behavior of the average firing
rate follows the characteristic behavior of both phenomena and is
independent of the relationship between the basins.

C. Weighted-ensemble Brownian dynamics simulation

A very effective method for the calculation of the prob-
ability density function of Brownian particles moving in a
potential landscape was proposed in [41], where the authors
start from the weighted-ensemble Brownian dynamics sim-
ulation method but use a uniform distribution of walkers
within each subregion, so that when moving to the underly-
ing dynamics the walkers transport probability between the
subregions, which allows the calculation of low probabilities
and low rates.

We are interested in numerically finding the stationary
probability density pst (Xj ) of the particles position Mres

evenly spaced supporting points Xj in a finite part of the
physical space given by x ∈ [L−, L+]. The region of interest is
divided into M > Mres subregions of size �x = L+−L−

M , where

FIG. 5. Scheme that explains the divisions of space to calculate
the PDF. The spacing is such that x ∈ [L−, L+] is divided into a set
M such that �x = L+−L−

M with a subdivision Mres of points Xj such
that �Xres = M

Mres
�x.

the ith subregion is bounded by (xi, xi+1), i = 0, . . . , M − 1,
with xi = i�x + L−. Supporting points are given explicitly by
Xj = L− + ( j − 1/2)�Xres, j = 1, 2, . . . , Mres, with �Xres =

M
Mres

, as we can see in Fig. 5.
Following the initial setting of P(t = 0), the time evolution

of the P(t ) → P(t + h) is carried out in three steps using
integration time step h:

Redistribution. N walkers (copies of the system) are uni-
formly distributed in each subregion. Besides their individual
positions xk

i (t ), where i = 0, . . . , M − 1 denotes the particu-
lar subregion and k = 1, . . . , N the individual walkers, each
walker possesses a given amount of weight qk

i (t ). This is
simply the present probability in the ith subregion distributed
to the N walkers, which yields qk

i (t ) = pi(t )/N .
Integration. Using integration time step h, Heun’s integra-

tion model is employed with white noise. This integration step
realizes the time evolution xk

i (t ) → xk
i (t + h). Here, walkers

transport probability between the subregions. As walkers are
independent of each other, it is important to note that the
particular time evolution of each one of the N walkers is due to
different sample paths in the stochastic parts of the Langevin
equation.

Updating. Compute Pi(t ) → Pi(t + h) by summing up the
weights of all walkers that are currently located in the partic-
ular subregion.

In what follows, we name the sequence of redistribution,
integration, and updating steps as the running step. After
the number of integration time steps used for equilibration,
Ttherm, the set P(t ) (with P(t ) = [P0(t ), P1(t ), . . . , PM−1(t )])
reaches a stationary regime where the Pi(t )’s fluctuate around
their mean values 〈Pi〉. The individual 〈Pi〉 values are esti-
mated by averaging over a total amount of NT sets, P(tl ), l =
1, 2, . . . , NT , taken after the system has reached the stationary
regime. Finally, the PDF on the supporting points pst (Xj ) is
calculated by adding the adjacent 〈Pi〉 and dividing by the size
�Xres (in order to have a properly normalized PDF),

pst (Xj ) = 1

�Xres

j M
Mres

−1∑
i=( j−1) M

Mres

〈Pi〉. (4)

Due to the redistribution step, where walkers are uniformly
distributed in each subregion, statistical errors occur because
they may reach positions in a subregion that are inaccessible
or, at least, more improbable, leading to a flattening of the
probability distribution, i.e., leading to more probability in
regions of low probability. To solve this problem, the authors
show that the determination of lower time steps allows one
to sample regions far from the potential extrema, having to
comply to fulfill specific criteria for the time step h and the
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size of a subregion, �x. To satisfy the WEBDS integration
criteria, we use symmetric �x intervals (i.e., L− = −L+);
changing the parameter x0 in this way, we define the intervals
[L−, L+] for c = 1.3 with L+ = 1.17 and x0 = 0.535, c = 1.4
with L+ = 1.07 and x0 = 0.435, and c = 1.5 with L+ = 0.97
and x0 = 0.34. Consider that for the NIAA potential, the
negative value of x0 is taken into account. From now on, the
potentials with these values for the parameters x0 and �x will
be considered.

To perform the simulation, we first consider P0(xi ) = 1
M for

N = 2 walkers considering a division of the integration space
of M = 3000 with a subdivision of Mres = 200, with integra-
tion time step of h = 2D

250 , and considering a thermalization
time of Ttherm = 500

h . After this simulation time has elapsed, it
is averaged over the N samples of the distribution taken every
nav = 10 time steps. For large values of the noise intensity, the
perturbations are high so the particles can be in any state of the
system, which leads to the thermalization time being sufficient
to achieve seasonality, corresponding to a behavior similar to
that described by the Fokker-Planck equation. On the other
hand, as the noise intensity decreases, the thermalization time
increases, but for noise values (D < 10−1), the perturbations
are small, requiring a longer thermalization time to achieve
seasonality.

To better understand this process, we show Fig. 6 depicting
the behavior of −D ln P, for both ISR [Fig. 6(a)] and NIAA
[Fig. 6(b)] in two particular cases of D, for which it satisfies
the transition between the behavior between high and low
intensities, for the parameters described in Table I. In both
Figs. 6(a) and 6(b), we compare the estimates of the behavior
of the stationary probability density described by Fokker-
Planck (solid line) with the data of the WEBDS method (black
circles) and the representation of the probability calculation
for the case of 1000 particles, which follows the Langevin
behavior (squares). As can be seen in Fig. 6(a) (D = 0.089),
the three curves describe the same behavior corresponding to
strong noise, which are different from values of D = 0.055
where we enter the behavior for low noise, in which the
Fokker-Planck behavior is not representative and the proposed
WEBDS model describes Langevin behavior very well for
both phenomena.

For the case of higher values of noise intensity (D > 10−1),
the three curves follow the same behavior since seasonality
has already been achieved for the Langevin case and the per-
turbations caused by the noise are larger, so the thermalization
time specified in WEBDS is sufficient to achieve seasonal-
ity (i.e., |�ϕdown − �ϕup| is maximum). However, for lower
values of noise intensity (D < 8 × 10−2), the probability of
finding particles in the metastable minimum increases (i.e.,
|�ϕdown − �ϕup| decreases), moving away from the Fokker-
Planck behavior, as seen in Fig. 6(b). As the noise intensity
continues to decrease (D ∼ 10−2), the probability of finding
particles in the metastable minimum resembles the proba-
bility of the steady state (i.e., |�ϕdown − �ϕup| is minimal)
described by the Langevin equation, which can be reproduced
by the WEBDS method.

D. Information theory

The quantifiers provided by information theory correspond
to measurements capable of characterizing a given property of
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FIG. 6. Verification of the operation of WEBDS (black circles)
for values of noise intensity in the high-noise-intensity region (main
graph) and in the low-intensity region (inset) for the cases (a) ISR
and (b) NIAA. The squares correspond to the calculation of the
probability when considering 1000 particles subject to the Langevin
dynamics, while the solid lines correspond to the Fokker-Planck
behavior.

the probability function associated with a time series related
to a physical observation, such as the behavior of a particle
subject to a bistable potential.

1. Shannon entropy

One of the first quantifiers presented is the Shannon
entropy [42], which is used to study stochastic resonance sys-
tems [43,44] or, currently, in various fields [45,46]. Entropy
can be interpreted as a measure of the “degree of disorder” or
uncertainty of whether a system is in a particular state.
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FIG. 7. Shannon entropy vs noise intensity for the ISR (main
graph) and NIAA (inset) regimes, respectively. For both phenom-
ena and different basin size ratios, a slight increase followed by a
decrease in entropy is observed in the low-noise-intensity regime
(10−2 < D < 10−1).

Consider a discrete random variable X , the state space X
of X , and the probability density function p(x) = P(X = x)
of X . The entropy S[X ] of a discrete random variable X is
defined by

S[X ] = −
∑
x∈X

p(x) log [p(x)]. (5)

Note that Shannon entropy is a function of the distribution of
X and does not depend on the values that the variable X takes,
but rather on the probabilities. For our case, we will con-
sider the Shannon entropy in its normalized version S[X ] =
S[X ]/Smax since it has a “global character” as a quantifier of
information because it does not react to small perturbations in
the values or to the rearrangement of the components p(x).

The behavior of Shannon entropy can be seen in Fig. 7 for
three values of the parameter c when the ISR (main graph)
and NIAA (inset) requirements are satisfied with respect to
the intensity of the noise. In both cases, it can be observed
that the entropy grows as long as the barrier of the metastable
state is not overcome (D ∼ 1.3 × 10−2, D ∼ 2.1 × 10−2, and
D ∼ 3.4 × 10−2 for c = 1.3, 1.4, and 1.5, respectively), until
reaching the value of the noise intensity at which the particles
manage to escape from the metastable minimum and reach
the stable minimum, showing an ordering of the particles or a
decrease in entropy. As the noise intensity increases but is not
high enough to break out of the stable minimum, entropy in-
creases almost linearly to the point D ∼ 1.8 × 10−1. At larger
values, the entropy changes behavior and grows exponentially
until it reaches its maximum value.

Despite the fact that Shannon entropy is a measure of the
average uncertainty in the random variable, the behavior is the
same for different ratios of the size of the attraction basins as
well as for both phenomena. From now on, the representation
criteria of the ISR and NIAA behaviors are maintained in the
main graph and inset, respectively, against three values of the
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0.005
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0.015

FIG. 8. Fisher information vs noise intensity for the ISR and
NIAA regimes, respectively. Fisher’s behavior quickly tends to zero,
in contrast to the behavior of Shannon’s entropy behavior.

parameter c that allow the comparison between the basins of
attraction.

2. Fisher information

Contrary to Shannon entropy, the Fisher information mea-
sure is particularly sensitive to substantial changes in PDF
within a short region, allowing one to characterize the degree
of disorder in a system or phenomena [47]. It is defined
as [48]

F [ψ] = 4
∫

|−→∇ ψ |2 dx. (6)

The presence of the gradient is responsible for the sensitiv-
ity of this quantizer to small perturbations of the probability
density function, which is why it is called “local.”

Considering the probability function P = {pi, i =
1, . . . , N}, corresponding to a discrete random variable
X , where N is the number of possible states of the system, we
can consider the Fisher normalized discrete information [49]
given by

F [P] = F0

N−1∑
i=1

[
√

pi+1 − √
pi]

2, (7)

where F0 is a normalization constant,

F0 =

⎧⎪⎨
⎪⎩

1 if pi∗ = 1 for i∗ = 1 or
i∗ = N and pi �= 0 ∀i �= i∗,

1

2
opposite case.

(8)

Plotting the behavior of Fisher information, as seen in
Fig. 8, a rapid decay to zero is observed, with a slight increase
in the interval where the characteristic decay or increase in
ISR and NIAA phenomena occurs.
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3. Statistical complexity

Finally, we consider the statistical complexity, which is
able to quantify critical details of the dynamic processes
underlying the system under study. For this reason, it is con-
sidered as a quantifier of information theory, indicating the
“order” that systems possess [50].

Different definitions of statistical complexity are used,
mainly because they use different definitions of standard en-
tropies[50–57]. The main problem is that this ignores the fact
that we are dealing with a probability space, and therefore
it ignores the stochastic nature of the distributions [55]. To
account for the stochastic nature of the data, in this article
we choose a measure of disequilibrium based on the Jensen-
Shannon divergence DJS [56–59],

DJS (p‖q) = −1

2
(S[p] + S[q]) + S

[
p + q

2

]
. (9)

Suppose that P is the distribution of the system to be
analyzed and Pe is the equilibrium probability distribution for
the number of possible states N , then the complexity using
the Jensen-Shannon distance is known as the Martin-Plastino-
Rosso (MPR) complexity [58,59],

CMPR[P] = Q0 · DJS ( P‖Pe) · S[P], (10)

where Q0 is a normalization constant equal to the reciprocal
of the maximum possible DJS (P‖Pe) value, obtained when
one of the components of P, e.g., pj , is equal to one and the
remaining components are zero:

Q0 = −2

(
N + 1

(N + 1) − log (2N ) + log (N )

)−1

. (11)

Note that the MPR complexity is also a normalized quantifier,
0 � CMPR[P] � 1.

When plotting the behavior of statistical complexity, as
seen in Fig. 9, three different behaviors can be observed for
both ISR and NIAA for the three variations of the parameter c:
A decrease in complexity for the intensity values (D < 10−1),
followed by a slight increase coinciding with the range of
noise intensities, for which the particles are in the steady state
and do not come out, and, once the noise intensity manages to
bring them out of this state (D > 10−1), a rapid decrease.

III. RESULTS

A. Inverse stochastic resonance

In order to study the behavior of the ISR in more detail
and to gain a deeper understanding of the dynamics underly-
ing the proposed model, we examine an asymmetric bistable
potential. On the one hand, we have seen that the system is
constrained to an asymmetric bistable potential, where the
smallest activated potential is the least stable one, without
any constraint on the width of the basin of attraction, as we
can see in the main graph of Fig. 3. On the other hand, to
obtain the probability function, we use the WEBDS method,
which allows us not only to obtain the steady-state function
(D > 10−1), but also to show very well how it behaves in
the regime with a low-noise-intensity regime (D < 10−1).
Figure 6(a) shows how the model correctly represents both
behavioral regimes. In particular, in the low-intensity regime,

10 -2 10 -1 10 0
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0.3

0.4

10 -2 10 -1 10 0

0
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0.4

FIG. 9. Statistical complexity vs noise intensity for the ISR and
NIAA regimes, respectively. There is a decrease in complexity up
to values of noise intensity at which the barrier of the metastable
state is completely overcome, and an increase in complexity while
the intensity is insufficient to remove particles from the stable state.

it not only shows that the states become more similar when D
is lower, but it also manages to better express the values of the
local maximum.

B. Noise-induced activity amplification

Although the NIAA behavior is not well studied, we set out
to investigate the properties of the system that generates this
behavior in order to understand it and gain a deeper under-
standing of the underlying dynamics of the proposed model.
We have shown that it is restricted only to an asymmetric
bistable potential, where the stable state is the one with the
highest activation, without any restriction on the width of the
basin of attraction, as we can see in the inset of Fig. 3. We
have also studied the probability function using the WEBDS
method, which not only allows us to obtain this function
in the stationary regime (D > 10−1), but also shows very
well how the probability behaves in the low-noise-intensity
regime (D < 10−1). Figure 6(b) shows how the model cor-
rectly represents both behavioral regimes. In particular, in the
low-intensity regime, it not only shows that the states become
more similar when D is lower, but it also succeeds in better
expressing the values of the local maximum.

C. An information theoretic characterization of the
fundamental neurocomputational features

of ISR and NIAA

Some important aspects of brain activity, such as the ISR
and NIAA, have specific functional characteristics for under-
standing information processing in the mammalian brain. To
infer the relevance of information processing of both phenom-
ena, we explore the activity patterns taking into account subtle
measures of information: Shannon entropy, Fisher informa-
tion, and MPR statistical complexity [43,44]. Determine the
probability distribution function both for the limits of low
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and high values of noise intensity and for their transition,
and use this to estimate the emergent properties of these
different neural structures quantifying the dynamic properties
of the ISR-NIAA phenomenon. Figure 7 shows the informa-
tion of Shannon entropy vs noise intensity, observing that
for noise intensities higher than D > 10−1, an increase to the
chaotic state is typical, while for low intensity, the increase
is interrupted by an abrupt decrease in noise-intensity values
corresponding to the transition of the basin particles from
the metastable state to the stable state. In contrast, in Fig. 8,
where Fisher information is plotted against the intensity of
the noise, the decay to the possible minimum is observed
with a slight increase in the interval of the transition of the
particles to the stable state. However, this change in behavior
in this intensity interval is not seen in the behavior of the
statistical complexity (Fig. 9) since it increases smoothly up
to values close to D ∼ 10−1, where it remains stable until
it drops abruptly at values D > 10−1. The behavior of these
magnitudes is maintained for both ISR and NIAA and for the
different relations of the basin of attraction.

On the other hand, Fig. 10(a) shows the statistical com-
plexity versus Shannon entropy for different values of the
parameter c. Here the differences are between the behavior at
low-noise intensity; the complexity remains around the value
of 0.4 for the narrow entropy range [0.65, 0.75] (depending
on the parameter c), while for higher-noise intensities, a direct
decay to the state of maximum entropy and lower complexity
is observed. Figure 10(b) shows Fisher information versus
Shannon entropy, where the behavior of the entropy is more
pronounced at low-noise intensity, i.e., the Fisher information
remains practically constant, while the entropy increases due
to the transition of the particles from the metastable minimum
to the stable minimum. It also shows us that the smaller the
area of attraction, the larger the value of the Fisher informa-
tion. Finally, in Fig. 10(c), the Fisher information is plotted
versus the statistical complexity, where a strong change in the
Fisher information is observed once the maximum complexity
is reached, with the particularity that less strong decreases
are observed as the width of the basin of the metastable state
decreases.

D. Different bistabilities

Next, we study how the shape of the potential ϕ(x) affects
the ISR and NIAA phenomena. Indeed, it has been reported
that Purkinje cells can exhibit different amounts of bistability
[35], which could represent diversity both within and between
different zones of the cerebellum. Other authors suggest that
the properties of Purkinje cells could be different in various
cerebellar zones [60,61]. In addition, there is evidence that
different biophysical mechanisms could regulate Purkinje cell
bistability: For example, Bergmann glia (a neuron responsible
for integrating the different signals of the cerebellar cortex and
emitting the sole response of this system) could change the
extracellular K+ modulating Purkinje cell excitability [1].

Since there is different bistability in Purkinje cells, we
analyze the existence of both phenomena and the properties
of their behavior with the quantifiers of information theory for
different bistable combinations resulting from different values
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FIG. 10. Comparison between quantifiers: (a) statistical com-
plexity vs Shannon entropy, (b) Fisher information vs Shannon
entropy, and (c) Fisher information vs statistical complexity for the
ISR and NIAA regimes, respectively.
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FIG. 11. Different potentials: ISR (dashed red line) for the pa-
rameters a = 3.367, b = 2, c = 0.8, d = −3.337, and x0 = 0.68,
and NIAA (dashed line blue) for a = 4.367, b = −1.28, c = 0.327,
d = 2.79, and x0 = −2.1.

of the parameters of ϕ(x). In Fig. 11, we see two different
combinations of potentials, one for ISR (red dashed line) and
one for NIAA (blue dashed line). In both cases, compared to
the potentials of Fig. 1, larger differences are observed both in
the depths of the wells, �ϕdown and �ϕup, and in the widths
of the basins of attraction, �xdown and �xup.

If we start from the probability density function with
WEBDS and compute the information theory quantifiers for
these potentials, we observe the following: On the one hand,
as can be seen in Fig. 12(a), with a linear increase of entropy
up to the point where the noise intensity allows the particles to
overcome the barrier of the metastable state, causing a decay
up to the point where the noise intensity is sufficient for all
particles to reach the stable state, for higher-noise intensities,
the entropy increases its growth rate. Since the barriers of the
metastable states are larger (dashed lines), there is a decrease
in entropy at higher-noise intensities and a smaller decrease as
the difference between the depth of the minima is smaller.

On the other hand, you can see in Fig. 12(b) the behavior of
the Fisher information, where a short change in the behavior
of the intensity values can be observed, where the metastable
state is overcome, leading to changes in the growth tendency.

Finally, Fig. 12(c) shows the behavior of the statistical
complexity, which reaches its maximum value at noise in-
tensities that lie in the interval in which all particles are in
the stable state, and up to the intensity at which the particles
succeed in overcoming this state.

IV. CONCLUSIONS

Let us notice that most of the work presented here about
ISR focused on a particular type of bistability, in which an
oscillatory state coexists (limit cycle), alternating its occur-
rence in time, with a quiescent state in the presence of noise.
Recently, an explanatory model for ISR was established [26],
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FIG. 12. Comparison of information theory quantifiers as a func-
tion of noise intensity: (a) Shannon entropy, (b) Fisher information,
and (c) statistical complexity, for the potentials in Table I (solid lines)
and Fig. 11 (dashed lines) potentials for ISR (red) and NIAA (blue).
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which incorporates some key factors for the occurrence of
interesting noise-induced effects. Among them is the coex-
istence of a stable rest equilibrium and a peak limit cycle
that for the dynamics of neurons is indispensable since it is
a suitable initial condition distribution [7,11]. This highlights
the different nature of ISR with respect to SR, where initial
conditions play no role, but also the procedures used to reveal
the phenomenon are of relevance. Most of the relevant papers
visualize the ISR phenomenon by calculating the average
firing rate, which is an appropriate measure for the average ac-
tivity of the system. In fact, the behavior of such an oscillatory
system can, under appropriate assumptions, be reduced to that
of the firing rate equations [31], whose dynamics is driven by
the nonequilibrium potential, as can be found in Refs. [32,34].
That is, the bistability between a limit cycle and a rest state is
reduced to a bistability between two single points in such rate
models, one corresponding to a high firing rate and the other
to a very small or null firing rate.

In this article, we deepen the theoretical basis explaining
the occurrence of inverse stochastic resonance effects and
noise-induced activity amplification in neural systems. To this
end, we use the weighted-ensemble Brownian dynamics simu-
lation model to determine the probability distribution function
both for the limits of low and high values of noise intensity
and for intermediate-noise intensities, to show that ISR occurs
in any system whose dynamics can be interpreted as a poten-
tial function with two minima, one of which is metastable with
the highest activity and the other with the global minimum.
On the other hand, the metastable state must be less active
than the global minimum for the NIAA effect to occur, in both
cases, without the peculiarities between the sizes of the basins
of attraction. The application of this method also allows us
to obtain the probability function to analyze these phenomena
using the quantifiers provided by information theory.

In summary, the analysis of Shannon entropy as a function
of noise intensity allows us to identify the ISR and NIAA
behavior when the noise intensity decreases and the particles

manage to jump from the metastable state to the stable state,
showing that the system is provisionally ordered but continues
to be disordered when the noise intensity further increases. On
the other hand, both Fisher information and statistical com-
plexity show different behavior in the same intensity interval,
as Fisher information decreases slightly and the complexity
increases uniformly. For values of the noise intensity at which
it is possible to overcome the barrier of the stable state, the
particles can be in any part of the system, reflecting the ten-
dency toward the maximum values of the Shannon entropy
and the minimum values of the Fisher information and statis-
tical complexity.

Surprisingly, our results show that Fisher information in-
creases as the system reaches ISR and NIAA states, while
Shannon entropy decreases in a more ordered state and sta-
tistical complexity increases. In particular, we can see that for
certain values of the potential [e.g., Fig. 12(b), 0.8], the Fisher
information is larger in the case of ISR than in the case of 1.4
with NIAA, showing that the intrinsic behavior of bistability
can lead us to more efficient information transmission in cer-
tain cases. Although these results are not universal, since in
some cases the opposite case is observed, where NIAA shows
more efficient information transmission than ISR, we believe
that it is very important to take into account the bistable
nature of Purkinje cells since they could control information
transmission using ISR or NIAA, depending on the biological
process that may be associated with the emergent properties
of the system.
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