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Global excitability and network structure in the human brain
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We utilize a model of Wilson-Cowan oscillators to investigate structure-function relationships in the human
brain by means of simulations of the spontaneous dynamics of brain networks generated through human
connectome data. This allows us to establish relationships between the global excitability of such networks and
global structural network quantities for connectomes of two different sizes for a number of individual subjects.
We compare the qualitative behavior of such correlations between biological networks and shuffled networks,
the latter generated by shuffling the pairwise connectivities of the former while preserving their distribution. Our
results point towards a remarkable propensity of the brain to achieve a trade-off between low network wiring
cost and strong functionality, and highlight the unique capacity of brain network topologies to exhibit a strong
transition from an inactive state to a globally excited one.
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I. INTRODUCTION

The human brain is arguably the most complex and in-
scrutable object in the universe. Constructing a complete
theory of its workings has long been considered an imprac-
ticable pursuit, but tools such as network analysis allow us to
make considerable strides towards that end [1] by modeling
the brain as a network of neuronal elements [2] to which the
quantitative analysis of graph theory [3] may be applied, and
from which theoretical insights into the widely observed neu-
roscientific phenomena may be obtained. Such is the general
framework underlying the emerging field of network neuro-
science [4].

The networks employed in this sort of studies are con-
structed in a coarse-grained manner; the graphs typically
comprise tens or hundreds of nodes, each representing a spe-
cialized, spatially segregated anatomical brain region. Those
graphs in which the edges correspond to the anatomical fiber
connections between the different brain regions are known
as structural networks, and those in which the edges re-
flect statistical relationships based on similarity measures
between neuronal components are referred to as functional
networks [5]. The former are typically extracted from data
obtained through such noninvasive techniques as diffusion
tensor imaging, and the recent advances therein have allowed
for the comprehensive imaging and mapping of the structure
of the human brain: The human structural connectome [6–8].
Functional networks, on the other hand, are constructed by
measuring patterns of functional activity observed through
such techniques as electroencephalography (EEG) and func-
tional magnetic resonance imaging (fMRI), which shed light
on the topology of both the spontaneously emergent dynam-
ical patterns and those that manifest themselves during the
performance of tasks [9–15].

Connectomes obtained through such neuroimaging tech-
niques, be they structural or functional, are amenable to
the drawing of quantitative neuroscientific conclusions. For
instance, the identification of nodes with especially strong

contributions, known as hubs, may be achieved through a
centrality analysis [16], in which the relative importance of
different anatomical structures may be estimated by studying
their betweenness within the network [17] or by looking at the
eigenvector decomposition of the network [18,19].

Such a framework furthermore lends itself to the explo-
ration of one of the central research areas in neuroscience,
namely, the study of structure-function relationships. The
goal is to understand the emergence of complex neurody-
namics underlain by the anatomical structure of the human
brain. To that end, much of the research effort in the last
two decades [20–28] has drawn upon the theory of dynam-
ical systems, enabling the implementation and simulation of
dynamical models constrained by the anatomical network
topology [29], thereby allowing the investigation of the pro-
found relationship between structure and function. Prominent
examples of such dynamical models that, in principle, al-
low one to generate functional connectomes from structural
ones include neural mass models [30,31], oscillator mod-
els [32–36], and spin models [37–41].

We consider one such popular framework, that of Wilson-
Cowan oscillators [42], which is a biologically motivated
model for the dynamics of neuronal populations. Here, the
dynamical state of the brain may be varied by the tuning of
a single parameter, the parameter c5; upon exceeding a certain
value cT

5 , the system transitions from an inactive state, where
all activity in the network is suppressed and rapidly decays, to
a globally excited state, in which a multitude of brain regions
exhibit rich oscillatory dynamics. This phenomenon is illus-
trated with an example in Fig. 1, in which the top panel shows
the globally inactive state, wherein all initial activity is bound
to dwindle down, and the bottom panel shows the system just
beyond the transition, whereupon a preponderance of activity
suddenly manifests itself in a myriad of brain regions. The
transition value of c5 at which this phenomenon occurs, which
is found to vary across individual subjects [43], may be related
to a given brain network’s capacity for global excitation; the
lower the value of cT

5 , the more easily excitable the system is.
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FIG. 1. The dynamics of the proportion of excitatory cells firing
per unit time, for subject 111211, at (a) c5 = 12.7 and (b) c5 = 12.8.
Each line corresponds to a brain region.

In the past, the Wilson-Cowan model has been used to
reproduce the resting state fMRI activity of a simplified net-
work with 38 cortical nodes and 2 subcortical ones [20]. It
has also been used to establish a connection between neuro-
dynamics and theories of consciousness [44]. Furthermore,
in [45,46], it was found that global excitability, as repre-
sented by the value of cT

5 , predicted performance in complex

cognitive tasks such as sentence completion. Motivated by
these findings, we set out to explore the manner in which the
human brain’s propensity for global excitation is dependent
on the special architecture of the underlying networks. And
so by means of implementing the Wilson-Cowan model, we
simulated the resting state brain fluctuations within two types
of individualized structural connectomes: The first (second)
comprising 104 (84) cortical and subcortical structures, re-
ferred to henceforth as the extended (restricted) connectome.
We explored the relationship between a global functional
quantity such as cT

5 and global structural network quantities
computed for the structural connectomes, and we investigated
the manner in which the transition manifested itself and how it
differed between individuals. We also compared the behavior
of biological networks to that of randomized networks with
identical distributions of connectivities, in order to gain in-
sight into the unique properties of the former.

The remainder of this paper is organized as follows: In
Sec. II, we describe our methodology for data extraction and
analysis. We present and discuss our results in Sec. III, and
finally outline our conclusions in Sec. IV.

II. MATERIALS AND METHODS

A. Model

We employ the form of the Wilson-Cowan model used
in Ref. [45]. Underlying the Wilson-Cowan model is the
assumption that all neurological processes of interest are gov-
erned by the interaction between excitatory and inhibitory
cells. It is furthermore assumed that each subpopulation of
such cells at every brain region may be characterized by a
single variable. Defining Ei and Ii as the respective fractions
of excitatory and inhibitory cells firing per unit time in region
i, the Wilson-Cowan model reads

τ
dEi

dt
= − Ei(t ) + [SEm − Ei(t )]SE

⎡
⎣c1Ei(t ) − c2Ii(t ) + c5

∑
j

Ji jE j
(
t − τ

i j
d

) + Pi(t )

⎤
⎦ + σwi(t ) (1)

and

τ
dIi

dt
= −Ii(t ) + [SIm − Ii(t )]SI

⎡
⎣c3Ei(t ) − c4Ii(t ) + c6

∑
j

Ji j I j
(
t − τ

i j
d

)
⎤
⎦ + σvi(t ), (2)

where SE ,I (x) are sigmoid functions given by

SE ,I (x) = 1

1 + e−aE ,I (x−θE ,I )
− 1

1 + eaE ,I θE ,I
, (3)

and SEm,Im are the maxima thereof, and the constants aE ,I

and θE ,I , respectively, determine the value and position of the
maximum slope. Ji j refers to the elements of the anatomical
connectivity matrix. An external stimulation Pi(t ) may be
applied to excitatory cells. The finite distance di j between
two brain regions gives rise to the communication delay
τ

i j
d = di j/vd , where vd = 10 m/s is a typical estimate of the

signal transmission velocity (see, for instance, Ref. [47]). A
normal distribution of noise is added to the system through
the functions wi(t ) and vi(t ), with strength σ .

An intuitive understanding of the model may be acquired
by considering the second term on the right-hand sides of both
equations, which represents the respective activity in each
subpopulation, i.e., the proportion of cells which meet the
two conditions of (a) being sensitive to an excitation (not in a
refractory state) and (b) receiving at least threshold excitation
at the same time t . The probability for the former condition
is represented by the bracket multiplying the sigmoid func-
tion, and the probability for the latter condition is represented
by the sigmoid function itself. The choice of the sigmoid
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function is fundamentally based on empirical observations
of both single cell and population response curves [48,49],
but the underlying intuition is straightforward: Too small an
excitation will fail to excite any elements at all, whereas a
very large one can do no more than excite the entirety of
the population. The argument of the sigmoid function is, of
course, the excitation itself, which is enhanced by excitatory
cells, suppressed by inhibitory ones, contributed towards by
the other nodes through the structural connectivity matrix, and
potentially by a stimulation Pi(t ).

It is standard to use biologically derived values for all the
parameters in the model besides c5 and c6, which, respec-
tively, represent the excitatory and inhibitory global coupling
strengths between all brain regions in the network [50]. As
in [45], we set c6 = c5/4 based on an approximate ratio be-
tween excitatory and inhibitory coupling. Thus, c5 remains
the only free parameter and its tuning, as mentioned above,
determines the dynamical state of the brain in the model.

B. Structural data

We constrained the Wilson-Cowan dynamical model by
the structural connectivity data produced from the 1200 sub-
ject cohort of the Human Connectome Project (HCP) [51], a
database containing neural data for thousands of subjects, of
which we selected a sample for our calculations. The selection
was done on no particular basis; we simply chose the first
subjects from the 1200 subject HCP database, about which no
information was provided besides the age and gender. Both
preprocessed T1-weighted structural images and 3T dMRI
images were used in our computational fiber tracking method.
The PYTHON DIPY and NiBabel libraries were utilized to per-
form the streamline calculations using a constrained spherical
deconvolution model and probabilistic fiber tracking func-
tions, which are built in the libraries.

The product of this procedure was a set of undirected struc-
tural connectivity networks, each belonging to an individual
subject and comprising 104 nodes corresponding to cortical or
subcortical brain structures, the full list of which may be found
in Table I in the Appendix. The networks were then normal-
ized by dividing the strength of each connection by the sum of
the volumes of its two nodes, as in earlier studies [43,45] (for
a comparison with results for non-normalized connectomes,
see Fig. 8 in the Appendix.). The matrices representing the
physical distances between brain regions were obtained by
using the mapping algorithm in our code to determine the
coordinates of the nodes and then computing the distances
between them, which, in so coarse grained a parcellation of
the human brain, were simply approximated as Euclidean
distances.

In an effort to investigate the effect of the atlas that was uti-
lized, we also generated restricted connectomes for the same
set of subjects, this time with 84 brain regions. The structures
excluded from the restricted connectomes include the brain-
stem among a number of other subcortical regions, the full list
of which may be found in Table II in the Appendix. These
84 brain regions constitute the FreeSurfer Desikan-Killiany
atlas [52], which is often used in studies relying on the MRTRIX

software (see [53] for more details).
Finally, we generated, for each subject, a network with

shuffled connectivities, while preserving the overall distri-

bution of connectivities (but not the distribution of degree
centralities). This is accomplished by randomly rearranging
the entries of the original 104 × 104 matrix J below the
diagonal, while preserving their numerical values, and then
reflecting them about the diagonal to restore the symmetry
of the matrix. This allowed us to study the way in which
structure-function relationships are affected by the specific
arrangement of anatomical connectivities in the brain. To dis-
tinguish these shuffled connectomes from the ones obtained
from imaging data, we shall henceforth refer to the latter as
biological connectomes, be they extended (comprising 104
brain regions) or restricted (comprising 84 brain regions)

C. Network characteristics

A number of global structural properties were computed
for each network. The first of these is the characteristic path
length, which is a global measure of how strongly connected
a network is [54]. It is computed as the average path length
between all possible pairs of vertices,

L = 1

N (N − 1)

∑
i, j∈N,i �= j

si j, (4)

where N is the number of nodes, and si j is the shortest dis-
tance between nodes i and j (note that this graph-theoretical
distance si j is not to be confused with the physical distance
di j). In the case of weighted graphs such as our own, we com-
puted the distance between two nodes as simply the reciprocal
of the strength of the connection between them. i.e., 1/Ji j , and
the Dijkstra shortest path [55] si j was then computed for every
pair of nodes. Another closely related measure is the average
degree, i.e., the total connectivity of a given node averaged
across all nodes, given by

K = 1

N (N − 1)

∑
i, j∈N

Ji j . (5)

We also computed the spectral radius R, which is related to the
variability of the degrees of nodes [56], and is simply given by
the largest eigenvalue of the connectivity matrix. Finally, we

computed the synchronizability of the networks, given by λL
2

λL
max

,

with λL
2 and λL

max, respectively, being the second-to-smallest
and the largest eigenvalue of the Laplacian matrix L = D − J ,
which is the difference between the degree matrix and the
connectivity matrix [57]. This ratio has been shown to deter-
mine synchronizability for oscillator networks by assessing
the linear stability of the synchronous state [58]. We then
measured the correlations of all these structural quantities
with the functional quantity cT

5 in an effort to gain insight into
structure-function relationships within this framework.

We quantify the degree of hierarchical structure within net-
works by means of the global reaching centrality (GRC) [59],
for which computation we employed the PYTHON package
NetworkX [60]. GRC is defined, for a graph G with N
nodes, as

GRC =
∑

i∈V

[
Cmax

R − CR(i)
]

N − 1
, (6)

where V is the set of nodes in G, CR(i) is the local reaching
centrality of node i, and Cmax

R is the maximum value thereof.
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Local reaching centrality is defined for unweighted directed
graphs as the fraction of all nodes in the network that may be
reached from node i, and generalized for weighted graphs as

CR(i) = 1

N − 1

∑
j:0<nout (i, j)<∞

∑nout (i, j)
k=1 w

(k)
i ( j)

nout (i, j)
, (7)

with nout (i, j) being the number of links along the shortest
path from node i to node j, and w

(k)
i ( j) the weight of the kth

such link.
Finally, we computed the clustering coefficient, which

quantifies the tendency of nodes to cluster together, may be
generalized to weighted networks by means of the geometric
average of weights [61], and may be computed for a given
node as

ci = 1

ki(ki − 1)

∑
j,k

(Ji jJikJjk )1/3, (8)

where ki is the degree of the node. The clustering coefficient
of the entire network is simply the average across all its nodes.
The PYTHON package NetworkX [60] was also utilized here.

D. Simulation details

The dynamics were simulated using the Wilson-Cowan
model, as explained above, in the absence of an external
stimulation. We utilized a second-order Runge-Kutta solver
with a sufficiently fine time step, such that the results were
independent of the size thereof. For each individual subject,
the value of cT

5 was estimated by simulating the model at
multiple values of c5 and observing the point at which the
transition took place.

We switched off the external stimulation, initialized all os-
cillators at E = I = 0.1, and chose the parameters σ = 10−5,
c1 = 16, c2 = 12, c3 = 15, c4 = 3, aE = 1.3, aI = 2, θE = 4,
θI = 3.7, and τ = 8 as prescribed in the literature [43,45]. At
these values of the parameters, the oscillators can be in one
of three states: A low fixed point, a high fixed point, and an
oscillatory limit cycle in-between [43]. For every subject, we
observed the strong transition (as discussed in Sec. I) into a
globally excited state, i.e., from a state where activity in all
oscillators decays into the low fixed point, to a state where a
significant fraction of the oscillators transitions into either the
limit cycle or the high fixed point. As mentioned above, this is
achieved by varying the global coupling parameter c5, and the
value at which this transition takes place in the absence of an
external stimulation, cT

5 , is unique for each subject, at a given
choice of parameters and initial conditions. We demonstrate
the effect in Fig. 1, which displays the fraction of excitatory
cells firing per unit time in each brain region as a function
of time for a given subject, and in the absence of an external
stimulation.

III. RESULTS AND DISCUSSION

We start by comparing all three types of connectomes
(extended, restricted, and shuffled) in Fig. 2, in which we plot
for each type of connectome the transition value cT

5 vs the
characteristic path length L. Each of the six different symbols
corresponds to a different subject. A few things may be noted

FIG. 2. The transition value cT
5 vs the characteristic path length

of a network. Symbol shapes correspond to individual subjects.
Blue symbols are extended connectomes, green are restricted con-
nectomes (in accordance with the FreeSurfer Desikan-Killiany atlas
[52]), and red are extended connectomes with randomly redistributed
connectivities (preserving the overall distribution of connectivities).
Errors are smaller than the symbol sizes.

by observing Fig. 2. First, both sorts of biological networks
fall on the same trend line (r2 = 0.879). This is a simple
observation that more strongly connected networks (shorter
characteristic path length) have a higher tendency for global
excitation (lower transition value) [62].

Second, by comparing the green points (corresponding to
the FreeSurfer Desikan-Killany atlas [52]) to the blue points
in Fig. 2, one observes that the restricted network for any
given subject invariably has a higher characteristic path length
and higher transition value than its extended counterpart. This
suggests that the exclusion of the brainstem (and the other 19
structures absent from the FreeSurfer Desikan-Killiany atlas
[52]) causes the networks to be substantially less well con-
nected, and thus harder to globally excite. This observation is
consistent with the findings in [53], highlighting the structural
importance of the brainstem, and of incorporating the full list
of subcortical structures. We eliminated the possibility that
this difference is an artifact of the system size by performing
the same calculations for another set of restricted connec-
tomes with 20 excluded structures, but now with the latter’s
being randomly chosen. The list of such structures, the same
for every subject, may be found in Table III in the Appendix,
and the result of the analysis may be found in Fig. 9 and the
associated text, also in the Appendix.

The third observation is perhaps the most striking. It is
clear that shuffling the connectivities of extended networks (as
represented by the red points in Fig. 2) invariably shortens the
characteristic path length while causing the transition value to
rise, which causes the red points to deviate from the biolog-
ical trend line. Instead, the random networks form their own
displaced trend line. We find it rather curious, not only that a
biological network should always be less strongly connected
compared to a random network with the same distribution of
connectivities, but that it should simultaneously have a higher
global excitability. This is the reverse of the phenomenon
observed upon excluding the 20 subcortical structures (going

054308-4



GLOBAL EXCITABILITY AND NETWORK STRUCTURE IN … PHYSICAL REVIEW E 107, 054308 (2023)

FIG. 3. The global reaching centrality of the biological extended
(red pluses) and biological restricted (green x’s), the three main
realizations of shuffled networks (blue triangles), and 50 more real-
izations of the latter (black hollow circles). The results are presented
for six subjects.

from the blue points to the green points), which caused the
networks to both be less well connected and less globally
excitable. For alternative presentations of the data in Fig. 2,
respectively, in terms of the reciprocals of the axes and the
clustering coefficient, see Figs. 10 and 11 in the Appendix.

The tendency of random networks to have a low charac-
teristic path length is, by itself, an unsurprising finding, as
random networks tend to have a low mean path length [3,54].
However, that global excitability should fall in spite of that
is quite an interesting observation and has implications for
the economics of brain network organization. The creation
and maintenance of anatomical connections is an expensive
affair, and the brain must therefore sagaciously utilize re-
sources within the network in order to bring about the desired
topological properties in an efficient way [63]. Consistent with
this trade-off principle, the results in Fig. 2 suggest that brain
networks are wired in a manner that is both parsimonious
and uncompromising of the required topology for high global
excitability. As a possible underlying cause for this dispar-
ity in behavior between biological and shuffled networks,
one candidate is the hierarchical structure of biological net-
works [64,65]. In particular, it has been demonstrated that
the hierarchical manner in which connectivity is distributed
within the human connectome is responsible for giving rise to
critical dynamics over an extended region of parameter space,
known as the Griffiths phase, rather than a singular critical
point (see, for instance, Refs. [66–68]). There are a number
of ways to quantify the extent of hierarchy within a net-
work [59,69], which allow us to test the hypothesis that these
hierarchies are largely preserved in going from the biological
extended connectome to the biological restricted one, but are
destroyed when pairwise connectivities are randomly shuf-
fled. Specifically, to investigate this hypothesis, we computed
the global reaching centrality (GRC) (defined in Sec. II C)
for the biological extended connectome, the restricted one,
the three realizations of shuffling presented earlier, and 50
additional realizations of shuffling. The results, presented in
Fig. 3 for six different subjects, suggest that the shuffling

FIG. 4. The dynamics of the excitatory firing rates of the shuffled
network of subject 111211, at (a) c5 = 17.4, (b) c5 = 17.5, (c) c5 =
23.4, and (d) 23.5. Here, cT

5 = 23.4.

process does not, in general, tend to degrade the hierarchical
structure of the biological connectomes, at least not within
our rather coarse-grained connectomes. Thus, our GRC anal-
ysis indicates that the high global excitability in our human
brain connectomes is not due to any hierarchical architecture.
Another notable difference between biological and shuffled
networks is in the manner in which the transition manifests
itself. This becomes clear by comparing Figs. 1 and 4. In
the former case, there is a sudden, rather dramatic increase
of activity upon exceeding the transition value. In the latter
case of shuffled networks, this is not always true. Instead, two
transitions might be present: At low values of c5, a transition
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FIG. 5. (a) The excited fraction (crosses) and oscillating fraction
( plus) of brain regions for the biological network and (b),(c) two
instances of shuffling for that same network belonging to subject
100307. Blue arrows indicate the location of the transition.

occurs to a state where only a very small fraction of brain
regions are excited, and then at a sufficiently high value of
c5, an abrupt jump in activity occurs, similar to the biological
networks, which is, hence, denoted as cT

5 (for an analysis with
cT

5 alternatively defined, see Fig. 12 and associated text in the
Appendix).

This phenomenon may also be observed in Fig. 5, which
presents the evolution of the excited fraction (the total fraction
of brain regions that saturate at the high fixed point or the limit
cycle) and the oscillatory fraction (the fraction that includes
only those brain regions that saturate at the limit cycle). In
all cases, the excited fraction starts at zero at low values of
c5, and saturates to unity at sufficiently high values of c5. The
differences, however, are in the manner in which the excited
fraction evolves from zero to unity. In biological networks,
we invariably observed a well-defined jump from zero to
a finite value of the excited fraction at a specific value of
c5, to which we refer as cT

5 , and beyond which the excited

FIG. 6. The excited fraction as a function of c5. Symbol shapes
and colors correspond to subject names. Errors are smaller than
symbol sizes.

fraction proceeds to smoothly grow until it saturates at unity.
A typical example of this behavior is presented in Fig. 5(a).
The situation in shuffled networks is quite different, however;
the excited fraction initially starts at zero and, as we raise the
value of c5, the system might leave the unexcited ground state
at a certain value of c5 but manifesting excitations in only a
very small fraction of brain regions, until a sufficiently high
value of c5 (which, as previously mentioned, we define as
cT

5 ) is reached, whereupon all brain regions become excited
and remain as such as we further increase c5. This region of
meager activity that precedes the transition was often (but not
always) observed in shuffled networks and was never seen in
any of the biological networks examined. The jump at cT

5 ,
however, which takes the system from zero (or near zero) to
unity, was observed in all realizations of shuffled networks.
This behavior may be observed in Figs. 5(b) and 5(c), which
present the behavior for two instances of shuffling for the
same network.

The behavior of shuffled networks is, however, quite vari-
able. For example, the two realizations of shuffling presented
in Figs. 5(b) and 5(c), respectively, show clear differences
in the behavior of the oscillatory fraction. It is clear that in
the case of the shuffled network in Fig. 5(b), the oscillatory
fraction never gains a significant value at any point, even after
the transition takes place at cT

5 = 19.2. This is in clear contrast
to the case in Fig. 5(c), in which a significant fraction of brain
regions exhibits nontrivial oscillations beyond the transition,
albeit rapidly decaying as we further raise the value of c5.
These qualitatively different classes of behavior suggest that
the specific way in which anatomical connections are arranged
in the brain is crucial for guaranteeing a strong transition
into a state with prolific oscillatory dynamics as exhibited in
Fig. 5(a).

We also conducted a closer inspection of the manner in
which the transition manifests itself in the case of biological
networks and how it varies across individuals. In Fig. 6, we
plot the excited fraction as a function of c5 for each of the
six subjects considered in this study. Every biological network
experienced a considerable jump in the excited fraction upon
crossing its respective value of cT

5 , as mentioned above. But
not only was the size of the jump different across subjects
and seemingly uncorrelated with the value of cT

5 , but so was
the rate at which the excited fraction continued to grow. This
demonstrates that individual variability across subjects is not
limited to the value of cT

5 itself, but that the character of the
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FIG. 7. The transition value cT
5 vs (a) the average degree,

(b) spectral radius, and (c) synchronizability, for the six subjects
previously considered, in addition to six others. The values of r2 are,
respectively, 0.796, 0.885, and 0.0262.

states beyond the transition, as viewed by studying the growth
of the excited fraction, is another independent consideration.

Finally, we measured the correlation between cT
5 and a va-

riety of structural quantities (defined in Sec. II C) and present
them in Fig. 7. The average degree and spectral radius are both
measures of the overall connectivity of the network, and thus
it was not unexpected that they should negatively correlate
with the transition value (r2 = 0.796, 0.885, respectively), in
light of the result presented in Fig. 2. The difference, however,
between the average degree and the spectral radius is that the
former is invariant under the shuffling of connectivities, while
the latter is not. Last, there was no correlation to be found with
global synchronizability (r2 = 0.0899). The latter observa-
tion, which suggests that path length and synchronizability are
not directly related concepts, is consistent with the “paradox
of heterogeneity,” which is the observation that (unweighted
and undirected) graphs with homogeneous connectivity dis-
tributions tend to synchronize more readily than those with
heterogeneous ones, irrespective of the latter’s possession of
lower average path lengths [54,70].

IV. CONCLUSIONS

We studied the spontaneous functional activity that arises
in individual brain networks, each belonging to a different
subject, by using the Wilson-Cowan model to simulate the
network dynamics in the absence of an external stimulation.
Under this framework, the dynamical state of the brain is
dictated by the numerical value of a single parameter c5, and
at a critical value thereof, referred to as cT

5 , these biological
networks exhibit a strong transition from a state where no
activity is allowed to propagate to a globally excited state
with rich oscillatory dynamics spanning a significant fraction
of brain regions. Our results confirm that the value of cT

5
displays significant variability across individuals, and further
show that this variability extends to the character of the tran-
sition as observed from the behavior of the excited fraction
as a function of c5. We have also drawn insights into the
remarkable ability of the brain to comprise networks designed
in a manner that is both resource efficient and conducive to the
desirable functional properties: Our observations suggest that
biological networks form their connectivities so judiciously
as to give rise to high global excitability while simultaneously
attempting to keep the associated wiring cost reasonably low.
Furthermore, it was clear that an invariably strong transition
from a globally inactive one to one with ubiquitous oscillatory
dynamics is a special property of biological networks, and
is, in general, not enjoyed by their shuffled counterparts. We
also established correlations between cT

5 and a number of
network properties such as characteristic path length, average
degree, and spectral radius, but found it to be uncorrelated
with network synchronizability. Finally, our results indicate
that utilizing a restricted atlas of the human brain causes
the networks to become both less well connected and less
susceptible to global excitation, in a manner consistent with
the biological relationship we established between cT

5 and the
characteristic path length.

A possible extension of this work may involve the inves-
tigation of the frequencies of the oscillations that manifest
themselves at high cT

5 . At first glance, it may seem that these
frequencies are brain-region dependent, in addition to being
dependent on the value of c5 itself. It may be worthwhile to
investigate how they vary in the brain regions possessing the
highest centralities, explore intersubject variability and how
the underlying structure affects those differences, or examine
them in the context of applied external stimulations.

Another possible extension might be to attempt to connect
these results to the critical brain hypothesis, which states
that the brain self-tunes to a regime with a large dynamical
range that is reminiscent of a critical point or regime in
statistical physics [66,71]. Indeed, using the Ising model at its
critical point, a recent study has calculated the dimensionality
of the brain and found it to vary between healthy groups
and those with disorders of consciousness [40]. More
fundamentally, the critical brain hypothesis is partially based
on the observation of scale-free information or spreading
cascades, so-called neuronal avalanches, across species and
spatial scales [72–75]. Recent theoretical work suggests
that scale-free neuronal avalanches require an “edge-of-
synchronization” phase transition [76]. Our work here further
suggests that cT

5 could serve as this phase transition point, but
more work is needed to explore this in the future.
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Our results could also be examined within the context of
popular theories of consciousness. Global workspace theory
(GWT) is one such theory which suggests that the brain has
a fleeting memory capacity, enabling back and forth access
between separate brain functions [77]. Specifically, this the-
ory purports that the global network is activated nonlinearly,
through a process known as “ignition” [78], which is the
sudden activation of neurons that code for current conscious
content [79]. It has been shown that a reduction in the inter-
connectivity of global network neurons makes ignition more
difficult to reach [79], suggesting that GWT requires a net-
work that is optimized for high excitability. Another popular
theory is integrated information theory (IIT), which identifies
and attempts to quantify the capacity of a network to integrate
information [80], represented by the quantity �, often referred
to as the quantity of conscious experience. In [81], � was
computed for small Ising systems and was found to exhibit
criticality at the temperature of the Ising phase transition.
While different in their approach, both theories require an
efficient functional network. Our results, which suggest that
biological networks are uniquely designed to possess great
global excitability and strongly transition from an inactive
state to a state with rich oscillatory dynamics, could be used
to further analyze these theories and shed more light on the
mechanism of consciousness.

In summary, we view the main result of the present work to
be the observation of the special ability of biological networks
to be highly excitable compared to their shuffled counterparts,
while simultaneously being less well connected. This high
excitability is represented by a reduced value of cT

5 , which
has also been observed, in past works, to predict some cogni-
tive measures such as response time to certain tasks [45,46].
We believe this to be a significant result, as it points to the
judiciousness of the brain in giving rise to networks imbued
with high excitability, while keeping the associated wiring
cost under control. It also has potential implications for a
variety of topics of interdisciplinary interest, such as network
neuroscience, the critical brain hypothesis, and theories of
consciousness.

The data used in this project were provided by the Human
Connectome Project (HCP; Principal Investigators: Bruce
Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Wee-
den, M.D.) [51]. HCP funding was provided by the National
Institute of Dental and Craniofacial Research (NIDCR), the
National Institute of Mental Health (NIMH), and the National
Institute of Neurological Disorders and Stroke (NINDS). HCP
data are disseminated by the Laboratory of Neuro Imaging at
the University of Southern California. Structural and diffusion
MRI images from the HCP, as well as lists of extracted struc-
tures, bvals, and bvecs, were all used to process the data in our
PYTHON program. All subjects are part of the “WU-Minn HCP
Data - 1200 Subjects” dataset [82]. A complete list of subject
names is available upon request. All scripts used to generate
the connectomes are available on our Github repository [83].
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TABLE I. A full list of the 104 brain structures.

ID Structure

1 Left-Lateral-Ventricle
2 Left-Inf-Lat-Vent
3 Left-Cerebellum-Cortex
4 Left-Thalamus-Proper
5 Left-Caudate
6 Left-Putamen
7 Left-Pallidum
8 3rd-Ventricle
9 4th-Ventricle

10 Brain-Stem
11 Left-Hippocampus
12 Left-Amygdala
13 CSF
14 Left-Accumbens-area
15 Left-VentralDC
16 Left-vessel
17 Left-choroid-plexus
18 Right-Lateral-Ventricle
19 Right-Inf-Lat-Vent
20 Right-Cerebellum-Cortex
21 Right-Thalamus-Proper
22 Right-Caudate
23 Right-Putamen
24 Right-Pallidum
25 Right-Hippocampus
26 Right-Amygdala
27 Right-Accumbens-area
28 Right-VentralDC
29 Right-vessel
30 Right-choroid-plexus
31 Optic-Chiasm
32 CC_Posterior
33 CC_Mid_Posterior
34 CC_Central
35 CC_Mid_Anterior
36 CC_Anterior
37 ctx-lh-bankssts
38 ctx-lh-caudalanteriorcingulate
39 ctx-lh-caudalmiddlefrontal
40 ctx-lh-cuneus
41 ctx-lh-entorhinal
42 ctx-lh-fusiform
43 ctx-lh-inferiorparietal
44 ctx-lh-inferiortemporal
45 ctx-lh-isthmuscingulate
46 ctx-lh-lateraloccipital
47 ctx-lh-lateralorbitofrontal
48 ctx-lh-lingual
49 ctx-lh-medialorbitofrontal
50 ctx-lh-middletemporal
51 ctx-lh-parahippocampal
52 ctx-lh-paracentral
53 ctx-lh-parsopercularis
54 ctx-lh-parsorbitalis
55 ctx-lh-parstriangularis
56 ctx-lh-pericalcarine
57 ctx-lh-postcentral
58 ctx-lh-posteriorcingulate
59 ctx-lh-precentral
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TABLE I. (Continued.)

ID Structure

60 ctx-lh-precuneus
61 ctx-lh-rostralanteriorcingulate
62 ctx-lh-rostralmiddlefrontal
63 ctx-lh-superiorfrontal
64 ctx-lh-superiorparietal
65 ctx-lh-superiortemporal
66 ctx-lh-supramarginal
67 ctx-lh-frontalpole
68 ctx-lh-temporalpole
69 ctx-lh-transversetemporal
70 ctx-lh-insula
71 ctx-rh-bankssts
72 ctx-rh-caudalanteriorcingulate
73 ctx-rh-caudalmiddlefrontal
74 ctx-rh-cuneus
75 ctx-rh-entorhinal
76 ctx-rh-fusiform
77 ctx-rh-inferiorparietal
78 ctx-rh-inferiortemporal
79 ctx-rh-isthmuscingulate
80 ctx-rh-lateraloccipital
81 ctx-rh-lateralorbitofrontal
82 ctx-rh-lingual
83 ctx-rh-medialorbitofrontal
84 ctx-rh-middletemporal
85 ctx-rh-parahippocampal
86 ctx-rh-paracentral
87 ctx-rh-parsopercularis
88 ctx-rh-parsorbitalis
89 ctx-rh-parstriangularis
90 ctx-rh-pericalcarine
91 ctx-rh-postcentral
92 ctx-rh-posteriorcingulate
93 ctx-rh-precentral
94 ctx-rh-precuneus
95 ctx-rh-rostralanteriorcingulate
96 ctx-rh-rostralmiddlefrontal
97 ctx-rh-superiorfrontal
98 ctx-rh-superiorparietal
99 ctx-rh-superiortemporal
100 ctx-rh-supramarginal
101 ctx-rh-frontalpole
102 ctx-rh-temporalpole
103 ctx-rh-transversetemporal
104 ctx-rh-insula

Wilten Nicola, Davor Curic, and Omid Khajehdehi from the
Complexity Science Group (CSG) for the discussion and in-
put. Additionally, we thank the HCP for providing access to
their data.

APPENDIX

1. Lists of brain regions

Table I lists the 104 structures constituting the extended
connectome. Table II lists the 84 structures constituting the re-
stricted connectome. Table III lists the 20 structures removed

FIG. 8. The same as Fig. 2, but with the inclusion of data points
for non-normalized networks, i.e., networks in which edge weights
were not divided by the sum of the volumes of their nodes.

from the extended connectome to give rise to the restricted
one.

2. Supplemental figures

Figure 8 presents the analysis that incorporates connec-
tomes which are not normalized, i.e., the connectivities are not
divided by the sum of the volumes of the nodes. It is clear that
the yellow points (representing the results for the restricted
connectomes) fall on the biological trend line, but the purple
points (representing the results for the extended connectomes)
do not. The anomalous behavior of the latter is attributable
to the presence of exceedingly dominant nodes such as the
brainstem, the effect of which is regularized when their great
size is taken into account in the normalized connectomes.

Figure 9 compares the biological extended and restricted
connectomes to another case of a restricted connectome in

FIG. 9. The transition value cT
5 vs the characteristic path length

of a network. Symbol shapes correspond to subject names. Blue sym-
bols are extended connectomes, green are restricted connectomes
(in accordance with the FreeSurfer Desikan-Killiany atlas [52]), and
black are connectomes restricted by removing 20 randomly chosen
regions (found in Table III). Errors are smaller than symbol sizes.
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TABLE II. The list of 20 structures removed in the restricted
connectome corresponding to the FreeSurfer Desikan-Killiany atlas
[52].

Removed structures

Left-Lateral-Ventricle
Left-Inf-Lat-Vent

3rd-Ventricle
4th-Ventricle
Brain-Stem

CSF
Left-VentralDC

Left-vessel
Left-choroid-plexus

Right-Lateral-Ventricle
Right-Inf-Lat-Vent
Right-VentralDC

Right-vessel
Right-choroid-plexus

Optic-Chiasm
CC_Posterior

CC_Mid_Posterior
CC_Central

CC_Mid_Anterior
CC_Anterior

which the excluded structures are chosen randomly, rather
than in line with the Desikan-Killiany atlas [52]. One readily
observes that while the green points (which correspond to
the Desikan-Killiany atlas [52]) are invariably further from
the origin than their blue counterparts (corresponding to the
extended connectomes) for each and every subject, the same
is not true for the black points (corresponding to the randomly

TABLE III. The list of 20 structures removed in the randomly
restricted connectome.

Removed structures

ctx-lh-middletemporal
ctx-lh-caudalmiddlefrontal

ctx-rh-pericalcarine
ctx-rh-bankssts
Left-VentralDC

ctx-lh-transversetemporal
ctx-lh-cuneus

Left-Inf-Lat-Vent
ctx-lh-frontalpole
ctx-lh-paracentral

Optic-Chiasm
ctx-lh-fusiform
Left-Amygdala

ctx-rh-transversetemporal
ctx-lh-precuneus

ctx-lh-rostralanteriorcingulate
Left-Pallidum

ctx-rh-inferiorparietal
ctx-rh-rostralanteriorcingulate

ctx-lh-insula

FIG. 10. The same as Fig. 2, but with the reciprocal of the transi-
tion value plotted vs the reciprocal of the characteristic path length.

restricted connectomes) as compared with their blue coun-
terparts. Indeed, for some subjects, the randomly restricted
connectome is more well connected and more highly suscep-
tible to global excitation, and for some other subjects, the
converse is true. This suggests that the differences observed
between the extended connectome and that which is restricted
in accordance with the FreeSurfer Desikan-Killiany atlas [52]
are not purely caused by the lower system size of the latter,
but rather by the exclusion of too important a set of structures.

Figure 10 recasts the analysis in Fig. 2 in terms of the
reciprocals of the transition value and the characteristic path
length. This alternative but equivalent way of presenting the

FIG. 11. (a) The transition value cT
5 vs the average clustering

coefficient of a network and (b) the characteristic path length vs the
average clustering coefficient. Symbol shapes correspond to subject
names. Blue symbols are extended connectomes and green sym-
bols are restricted connectomes (in accordance with the FreeSurfer
Desikan-Killiany atlas [52]). Errors are smaller than symbol sizes.
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FIG. 12. The same as Fig. 2, but with cT
5 alternatively defined for

the shuffled networks to be the lowest value of cT
5 at which the system

leaves the ground state, no matter how small the activity.

physics has the advantage of possibly being more intuitive,
as the reciprocal quantities are directly related to the global
excitability and the overall connectivity, rather than inversely.

Figure 11(a) presents the transition value cT
5 plotted against

the average clustering coefficient. It shows that in both sorts
of biological networks, it rather strongly anticorrelates with
cT

5 , with values of r2 of 0.873 and 0.969 for the extended and
restricted connectomes, respectively. This was hardly a sur-
prising finding, as the clustering coefficient had been observed
to anticorrelate with the characteristic path length, as shown in
Fig. 11(b). These properties are consistent with a small-world
topology [84].

Finally, Fig. 12 presents the case in which we alternatively
choose to define cT

5 as the smallest value of c5 at which the
system departs from the ground state (no matter how meager
the departure). A comparison with Fig. 2 reveals that the only
change is a slight lowering of the slope of the line of red
points in Fig. 12 with respect to those in Fig. 2, leaving our
conclusions qualitatively unchanged.
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