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Analysis of a continuous-time adaptive voter model
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In this paper, we study a variant of the voter model on adaptive networks in which nodes can flip their spin,
create new connections, or break existing connections. We first perform an analysis based on the mean-field
approximation to compute asymptotic values for macroscopic estimates of the system, namely, the total mass
of present edges in the system and the average spin. However, numerical results show that this approximation
is not very suitable for such a system, for which it does not capture key features such as the network breaking
into two disjoint and opposing (in spin) communities. Therefore, we propose another approximation based on
an alternate coordinate system to improve accuracy and validate this model through simulations. Finally, we
state a conjecture dealing with the qualitative properties of the system, corroborated by numerous numerical
simulations.
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I. INTRODUCTION

A. Research context and literature review

In the last decades, models of statistical mechanics
have been extensively studied to describe a wide spectrum
of complex phenomena, ranging from ferromagnetism to
biochemical interactions. Social systems and collective phe-
nomena are also under the scope of the aforementioned
framework. In this case, the particles are agents that influence
each other according to simple rules. One of the main models
is a spin system called the voter model (VM) introduced by
Liggett [1] and defined as follows. Consider a population of
agents of size K and index by an integer k each agent, k ∈
�1, K�. At all times t � 0, each agent k is endowed with a bi-
nary value Xk (t ) ∈ {+1,−1}. These two values represent two
opposite orientations that may be opinions, consumer pref-
erences, behaviors, etc. Across time, the agents may change
their spin under the influence of others, leading to a stochastic
process. Since Liggett’s seminal work, the VM has attracted a
lot of attention and numerous refinements have been explored,
e.g., nonlinear VMs [2], with stubborn agents [3] or contrarian
[4], including noise [5]. A comprehensive survey can be found
in Ref. [6].

*emmanuel.kravitzch@alumni.univ-avignon.fr
†yezekael.hayel@univ-avignon.fr; https://sites.google.com/site/

yezekaelhayelsite/
‡vineeth.satheeskumar-varma@univ-lorraine.fr; https://sites.

google.com/site/vineethshome/
§antoine.berthet@centralesupelec.fr

By the way, the word voter should be taken in a very
abstract sense: It may actually model any situation where
some agents have to make a repeated choice between several
possibilities, here two for sake of simplicity. Specifically, in
the context of social networks, the main mechanisms shap-
ing the social dynamics are social mimetism, homophily, and
selective exposure. Social mimetism is the behaving trend
involving synchronization of one’s own opinions with those
of the imitated person. Homophily is the trend one has to
connect with alike people—alike simply means having the
same spin in the VM formalism. Analogously, selective ex-
posure is the trend one has to dismiss dissonant neighbors,
that is, agents having an opposite spin. These notions have
been thoroughly described by psychosocial studies [7,8] and
then taken for granted in this paper. While VMs over static
graphs encompass social mimetism, they fail to encompass
selective exposure and homophily. To keep track of these last
two key characteristics, we have to consider a model where
the graph is adaptive, evolving according to the spin profile
(Xk )k∈�1,K�. Models of this kind are said to be coevolution-
ary [9] or adaptive and are the focus of this paper. Though
more recent and less studied than systems over static graphs,
adaptive voter models (AVMs) are the subject of growing
interest, e.g., in the context of epidemics [10]. By allowing the
edges to evolve, a wide choice of network dynamics is worth
considering. Some authors define a local linkage mechanism
[11,12], called triadic closure or transitivity reinforcement,
where agents only seek new friends among their two-hop
neighbors. Nevertheless, the main model is the one proposed
in Ref. [13], with two possible opinions. It is an AVM with a
simple linking rule: When agent l breaks his tie with agent m,
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he immediately reconnects to another agent p, the latter being
uniformly chosen over the whole population (rewire to ran-
dom). See, for instance, Refs. [14,15] and references therein.
Sometimes, rewiring is done only among like-minded people,
that is, people of the same spin (rewire to same). Finally,
some authors recently integrated AVMs as building blocks
into an evolutionary game-theoretic framework [16,17]. In the
context of cooperation and defection, it is indeed appealing
to generalize game models to dynamical networks and this
modification may display different behaviors compared to
games over static networks. Here again, the authors choose
rewiring to random with global linkage, namely, the basic
and most popular model in the literature. Hence, making the
link between game theory and adaptive networks is an ad-
ditional motivation to investigate several instances of AVMs.
The main difference in the model studied here is that breaking
and linking are done simultaneously, hence the total mass of
edges is conserved. The refinement we propose is to allow
edge breaks and edge creations separately. In this model, the
degree distribution is then dynamic, increasing the range of
possible configurations. In particular, the degree distribution
can evolve.

B. Motivation and main contributions

Among the traditional questions raised by such statistical
mechanics models, the most classical one is that of the phase
transition. It is well-known that in VMs, several radically
different regimes can be observed, depending on the model’s
parameters: In the case of static graphs, the two types of
spins can survive—this case is mentioned as coexistence in
Ref. [1], also called the metastable regime; or, on the contrary,
one spin can rapidly conquer all the agents: In this case, we
talk about consensus. After reaching consensus, the dynamics
stops; consensus is said to be an absorbing configuration.
When defining the model’s parameters, there are a range of
values dedicated to each of the phases and there exists (surface
of) values at the boundary, hence the term phase transition. In
the case of adaptive networks, the situation is a bit different.
One may have clustering according to the spins. Thus, both
spins are preserved but the two clusters are completely sepa-
rated. On the contrary, a third possibility is the coexistence of
disagreeing agents among the same connected components. In
this case, some links between the two communities of spins,
named discordant links and properly defined in the sequel,
maintains. Hence, global consensus is simply a very particular
case of the first scenario.

In this paper, instead of tracking threshold values for phase
transitions, as done in Ref. [18], we rather strive to give qual-
itative results about the macroscopic behavior of the coupled
dynamics. The main contributions are the following:

(1) In the dense graph regime, we highlight the homoge-
neous behavior and the existence of a continuous trajectory
which might be the limiting system as K → +∞. It is notable
that this phenomenon is independent of the model’s parame-
ters. Further investigations may uncover the very nature of this
object.

(2) We also provide quantitative results: By a change of
coordinates, we identify the surface of equilibria, and esti-
mate the limiting discordance (namely the mass of discordant

edges) for the metastable regime. This estimation shows very
good results compared to the standard mean-field approxima-
tion applied to the natural edges-spins coordinates.

(3) Finally, a linearization based analysis of the reduced-
order system around the points corresponding to absorbing
states, provides a reasonable approximation of the phase tran-
sition that occurs in the initial stochastic system.

In the remainder of the paper, Sec. II presents the model.
Section III analyzes the model using the standard mean-field
approximation. Section IV refines the analysis by introducing
a change of coordinates partitioning the edges into blocks.
Section V formulates a conjecture and supports it with numer-
ous numerical simulations. Section VI concludes the paper
and indicates avenues for future research. The table below
summarizes some notations.

Object definition Formula Symbol

Population index {1, ..., K} [K]
Unweighted digraph alm = 0 or 1 A
Complete graph Klm = 1∀l, m ∈ [K] K
Hadamard product (A � B)i j = ai jbi j �
ith unitary vector of RK ei

0 matrix with 1 at only lm el eT
m elm

All-1 vector
∑

j e j 1

Indicator U 1 if U occurs, 0 else 1U

II. MODEL

Let us define a population of agents of size K � 1 evolv-
ing and interacting over time. At all times t � 0, each agent
k ∈ {1, ..., K} (denoted by [K] for short) is endowed with a
binary value Xk (t ) = ±1 called a spin. The spin can represent
an orientation, a preference, or any other individual state. The
term “spin” comes from the analogy with magnetization mod-
els and is already used in early works on VMs over lattices.
We then keep it throughout the text by commodity. The vector
X (t ) := (Xk (t ))k∈[K] ∈ {+1,−1}K is the spin profile at time
t . The agents interact through a dynamic graph Gt , the latter
coevolving with the spin profile. Throughout this paper, graph
Gt , supposed to be unweighted and directed, is represented by
its adjacency matrix A(t ) ∈ {0, 1}K2

. We have that alm(t ) = 1
if and only if there is a link from agent l to agent m at time
t . We will also use the generalized notation: For two subsets
U,V ⊂ [K] we denote by aUV := ∑

l∈U,m∈V alm.
The overall process (X K , AK ) (the dependence in K will

be omitted when it is clear from the context) then evolves in
the finite state space: SK := {+1,−1}K × {0, 1}K2

. The rates
associated to the coevolution dynamics, namely, the nodes’
dynamics and the edges are now introduced. The dynamics
of the agents’ spins correspond to the standard linear VM,
already abundantly analyzed over regular lattices (Chap. V of
[1] and part II of Ref. [19]) and more recently over hetero-
geneous and random graphs [20,21]. It models the mimetic
behavior of individuals. Typically, an agent with positive spin
(value +1) surrounded by agents displaying negative spin
(value −1) is very likely to flip because of the influence of
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the neighbors. The flip rate of agent k ∈ [K] is given by

flip: (X, A) −→ (X − 2Xkek, A) at rate

�(k; X, A) = φ
∑
j∈[K]

Ak j1(Xk �=Xj ), (1)

where ek is the kth unit vector of RK . The voter step is said to
be linear because the rate to flip is linear with respect to the
number of disagreeing neighbors. In this regard, the parameter
φ > 0 can be interpreted as the persuadability coefficient,
equal for all agents.

On top of this linear flip dynamics, we consider the fol-
lowing edge dynamics. It takes into account two important
properties that are characteristic of social interactions, namely,
homophily and selective exposure. As mentioned in the In-
troduction, they, respectively, correspond to the trend one has
to create links with alike people on one hand and to dismiss
disagreeing neighbors on the other hand. These two features
have been copiously described by psychosocial studies [7,22]
and are nowadays well recognized to play a structural role
in social dynamics. Then, for any individuals l, m ∈ [K], the
rate for link creation and link deletion (when it exists) are
respectively defined as follows:

link creation: (X, A) −→ (X, A + elm) at rate

�(lm; x, A) = γ (1 − Alm)1(Xl =Xm )︸ ︷︷ ︸
homophily

, (2)

where one shall remember that we are dealing with a directed
graph and elm = eleT

m is the unitary matrix with a 1 at entry
(l, m) and only 0’s everywhere else, and

link deletion: (X, A) −→ (X, A − elm) at rate

B(lm; x, A) = βAlm 1(Xl �=Xm )︸ ︷︷ ︸
selec. exposure

, (3)

where γ (respectively, β) is the propensity of one agent l to
get connected (respectively, disconnected) to another agent m
endowed with the same spin (respectively, with opposite spin).

For any f : SK 	→ R, the associated generator Q : RSK 	→
RSK allows us to characterize the Markov process by a single
formula. Then,

(Q f )(x, a) =
∑

k

�(k; x, a)[ f (x − 2ekxk, a) − f (x, a)]

+
∑
lm

�(lm; x, a)[ f (x, A + elm) − f (x, a)]

+
∑

lmB(lm, x, A)[ f (x, a − elm), f (x, a)].

(4)

Note that if the rate parameters φ, γ , and β are in the same
range, the agents’ spin dynamics (1) is, therefore, K times
faster compared to the edge stones given by (2) and (3). Since
we are interested in the coevolution of the two dynamics (spin
and graph) at the same timescale, from now on we consider
that the flip rate is in the same range as the others and thus
φ = O(γ /K ). The Markov process (X K , AK ) can equivalently
be described by a set of stochastic differential equations driven
by 3K2 independent Poisson point processes N α

k j of intensity

α with (k, j) ∈ [K]2 and α ∈ { φ

K , β, γ }:⎧⎪⎨
⎪⎩

dXk (t ) = −2Xk (t−)
∑

j Ak j (t−)1(Xk (t− )�=Xj (t− ))N φ/K
k j (dt )

dAlm(t ) = (1 − Alm(t−))1(Xl (t− )=Xm (t− ))N γ

lm(dt )
− Alm(t−)1(Xl (t− )�=Xm (t− ))N β

lm(dt ).
(5)

A. Absorbing configurations

When K is finite, it is clear that the VM over static (and
adaptive) graphs possesses absorbing configurations (some-
times called frozen states), which can be identifiable. In our
setting, the Markov process (X K , AK ) indeed admits the fol-
lowing absorbing states:

A = {(x, a) ∈ SK : ∀(l, m),(xl = xm and alm = 1) (6)

or (xl �= xm and alm = 0)}. (7)

In other words, an absorbing state is then a configuration
where the population of individuals is clustered in two sep-
arated complete subgraphs denoted by C+ and C− with
C+ ⋃

C− = [K],C+ ⋂
C− = ∅, with xl = +1 ∀l ∈ C+ and

xk = −1 ∀k ∈ C−, and with no links between the two blocks:
ai j = a ji = 0 ∀i ∈ C+, ∀ j ∈ C−.

Furthermore, the absorbing configurations are strongly at-
tractive: With probability one, the process gets trapped into
one of them after a (random) finite time Tabs defined as

Tabs := inf{t : (X (t ), A(t )) ∈ A} < ∞. (8)

B. Filter bubbles and discordance

When the stochastic process (X, A) has reached an ab-
sorbing state, then it stops: Each agent Xk has ultimately
chosen his spin and has broken all of his links with the
opposite individuals. This configuration represents the emer-
gence of so-called filter bubbles: Each one confines himself
to a group of people sharing the same opinion, and then has
no access to other viewpoints, hence the term filter bubble.
This phenomenon is suspected to increase radicalization and
fake news propagation [23–25]. Detecting and forecasting the
emergence of these bubbles is a major issue in social network
analysis. A simple estimator to quantify the filter bubble effect
is the discordance (sometimes called interface density [5]).
This value measures how strongly two opposite communities
influence one other. An edge lm is said to be discordant if
alm1(xl �=xm ) = 1, meaning that a link between individuals l and
m exists and the two individuals have opposite spin.

Definition 1 (total discordance). The total discordance
D(x, a) of any configuration (x, a) ∈ SK is defined as

D(x, a) := 1

K2

∑
lm

alm1(xl �=xm ). (9)

If D(x, a) = 0, then it means that (x, a) is close to an
absorbing configuration: The node dynamics has stopped, and
after the link creation between agreeing agents, the overall
process (X, A) will get frozen. Let us define the associ-
ated hitting time Tabs := inf{t > 0 : D(X (t ), A(t )) = 0}. The
following property, called slow extinction [26], properly for-
malizes metastability.
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FIG. 1. Extinction time of the process for different num-
ber of agents K = 10, 20, ..., 80. In each case, ten simulations
have been performed for each regime: In blue, the subcritical
regime: (φ, β, γ ) = (1, 1, 1); in red, the metastable one: (φ, β, γ ) =
(4, 1, 4). One can see that the absorbing time Tabs grows much faster
in the metastable regime than in the subcritical regime.

Definition 2 (slow extinction). The total discordance
slowly becomes extinct if

∃c > 0, P(Tabs < ecK ) < e−cK . (10)

Figure 1 illustrates this phenomenon: We have plotted the
extinction time evolution in terms of time to extinction for two
different regimes: The subcritical regime (φ ≈ β, in blue),
and the metastable regime (φ  β, in red). It is clear that
extinction time grows much faster for the metastable regime
compared to the subcritical regime.

The next section is devoted to a first line of analysis,
namely, one of the standard mean-field approximation.

C. Graph dynamics under a dense regime

Before turning our attention to the analysis, let us give a
few words on the graph regime of the model defined so far.
In network models, the density of links is indeed a struc-
tural attribute of the considered graph. For instance, many
threshold results concerning Erdös-Renyi graphs deal with
the sparse regime ER(K,

p
K ), K −→ +∞ and p > 0 (see, for

instance, part II of Ref. [27]). More recently, dense regimes
have been intensively investigated and the field has then
reached maturity [28]. It is the last frame that the current
paper pertains to, where almost all nodes are connected to a
significant proportion of all the other agents. This is due to the
so-called edgecentric model design: Focus on agent k ∈ [K],

at time instant t ∈ R+, all concordant inactive links {k j :

Xk (t ) = Xj (t ) and ak j (t ) = 0} activate at rate γ regardless of
the other variables, without degree limitation. To this title,
Fig. 2 illustrates the densification phenomenon: Fig. 2(a) plots
several simulations where, initially, there is no concordant
link: ak j = 1(Xk (0)�=Xj (0)) and maximal discordance. Measuring

FIG. 2. (a) Evolution through time of the mass of concordant
links between agents possessing positive spins normalized by the
size of the block A++. We have made four simulations with K = 500
and (φ, β, γ ) = (4, 1, 4) and with a concordant-free configuration at
initial time. We observe that the four curves are very similar and
they quickly grow to a stationary value ∼0.1. This confirms that
the component of positive spin becomes dense very fast. (b) The
same quantity A++ with all the same values, with the exception of β,
the breaking rate parameter which varies as follows: In blue β = 1,
in orange β = 2.5, in green β = 4, and in red β = 5, 5. Although
the growth rate decays when β increases, one still observes that the
community of positive spins gets dense fast for various values of β.

the ratio of positive concordant links A++ :=
∑

l,m alm1(Xl =Xm=1)

(
∑

j 1(Xj =1) )2 ,

we see that this quantity quickly grows from 0 to roughly 0.1,
regardless of the model’s parameters [Fig. 2(b)]. Thus, it is
then clear that the block of agents with spin positive is dense.
From this, one can also expect that, though dynamic, the entire
graph displays a high degree of connectivity. This aspect is
nonetheless outside the scope of the paper, and all the reader
has to keep in mind is that dynamics evolve under a dense
regime.

III. A FIRST APPROXIMATION: THE CLASSICAL NIMFA

The principle of the N-intertwined mean-field approxima-
tion (NIMFA) [29] is to consider that when the number of
particles in the system is high, independence between particles
state emerges, and then we have EXkXj = EXkEXj . Thus
applying this approximation by considering large number of
agents, we can assume that EAlm(t )Xk (t ) = EAlm(t )EXk (t ).
Introducing the variables x(t ) := EX (t ) ∈ [−1, 1]K , a(t ) :=
EA(t ) ∈ [0, 1]K2

, taking both lines of (5) under expectation
E[.], and assuming independence between particles yields the
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associated NIMFA system for (x, a):

ẋk = φ

K

∑
j

ak j (x j − xk )

ȧlm = γ (1 − alm)
1 + xl xm

2︸ ︷︷ ︸
homophily

−βalm
1 − xlxm

2︸ ︷︷ ︸
sel.exp.

. (11)

In matrix form, it reads

ẋ = φ

K
(A − diag(A1))x

ȧ = γ (K − a) � K + xxT

2
− βa � K − xxT

2
, (12)

where diag(u) is the diagonal matrix (diag(u))lm := ul1(l=m),
u ∈ RK , and � is the Hadamard (matrix) product. Here, we
have used the fact that 1(p�=q) = 1−pq

2 for p, q ∈ {+1,−1},
implying

−2XkAk j1(Xk �=Xj ) = Ak j[Xj − Xk], (13)

hence recognizing a Laplacian term for the spin evolution
in (11). By this computation, we can clearly identify the
homophily term as well as the selective exposure term in (11).

A. Analysis of the NIMFA system

The deterministic system (11) is easier to analyze than the
initial large-scale stochastic system: We are able to derive the
entire set of equilibria and determine their stability.

Proposition 3. Let g := γ

β
. The set of attractive equilibria

of the above dynamical system (11) is

S = {(x, a) : x = c1, c ∈ [−1, 1], a = v∗(c, g)K}, (14)

where 1 is the vector full of 1’s: 1 = ∑
j e j and

v∗(c, g) = 1

1 + 1−c2

2g

. (15)

Furthermore, there exists a set of unstable equilibria:

U = {(x, a) : xk = ±1∀k and xl = xm ⇐⇒ alm = 1

or xl �= xm ⇐⇒ alm = 0}. (16)

Proof. First, suppose that the system has reached a con-
sensus state: x ∈ {c1 : c ∈ [−1, 1]}. We automatically have
ẋ = 0. At consensus, the graph evolution yields

0 = γ (K − A) − β(1 − c2)

2
A = v∗(c, g)K, (17)

with v∗(c, g) given by (15). From this, we can conclude that
there is only one graph at consensual equilibrium xk = c∀k.

Let us now take in the more general case Ȧ = 0K×K and
ẋ = 0K . Suppose first ai j > 0∀i, j, and define the homophily
matrix as

H (x) := K + xxT

2
. (18)

We then obtain

ȧ = 0K×K

⇐⇒ 0 = −a � {γ H (x) + β(K − H (x))} + γ H (x)

⇐⇒ a = f�(H (x)), (19)

with

f (h) = γ h

γ h + β(1 − h)
, (20)

and f� : [0, 1]K2 	→ [0, 1]K2
the associated entrywise map

taking matrices as arguments. Note that f is monotonically
strictly increasing, thus invertible. Therefore,

f −1
� (a) = H (x) ⇒ L(a) ◦ f −1

� (a) = 0

⇒
∑

j

al j[ f −1(a jm) − f −1(alm)] = 0∀l, m. (21)

Now, ad absurdum, suppose it exists a column m and two
lines l, L ∈ [K] such that alm < aLm. Because f −1 is also
strictly increasing, aL j[ f −1(a jm) − f −1(aLm)] � 0 ∀ j, with at
least one strict inequality for j = l . Thus, equality 21 cannot
be verified for all l, m. This shows that al j = c j ∀l, j, and then

ẋk = 0 ⇒
∑

j

c j (x j − xk ) = 0 ⇒ x = c1, c ∈ [−1, 1].

(22)

And by the analysis made in the consensus state, it implies
that the only possibility for the graph is A = v∗(c, g)K, c ∈
[−1, 1].

Until now, we have supposed that alm > 0 ∀l, m. Sup-
pose now there exists at least one null coefficient: alm =
0. Then ȧ = 0 ⇒ 1 + xl xm = 0 ⇐⇒ xl = xm = ±1. With-
out loss of generality, take xl = +1 and xm = −1. We have
al j (x j − xl ) � 0. This implies that either x j = xl or al j = 0.
Furthermore, in the case of xl = x j = ±1, we necessarily have
al j = 1. The set U is thus well identified.

We now study the stability of all these equilibria. To
show the attractiveness of S , one can first notice that the
phase space [−1, 1]K × [0, 1]K2

is compact. Then, every tra-
jectory {(x(t ), A(t )) : t � 0} admits at least one accumulation
point (x∗, A∗) ∈ S

⋃
U for all initial datum (x(0), A(0)) ∈

[−1, 1]K × [0, 1]K2
. Second, notice that there is a diam-

eter contraction: xmin(t ) := mink xk (t ) is increasing, while
xmax(t ) := maxk xk (t ) is decreasing, provided it exists some
k ∈ [K] such that ẋ(0) �= 0. Every accumulation is thus in S:
∃t j � 0, ||x(t j ) − c1K || < ε and ||x(t ) − c1K || < ε for all t �
t j . This implies that for two distinct edges e = lm, f = k j,the
edges dynamics are roughly the same. Indeed, rewrite (11) as

∂t alm = −(γ hlm + β(1 − hlm))alm + γ hlm

= ulm(t )alm + hlm(t ), (23)

where ulm(t ) < 0 ∀l, m, t and hlm = 1+xl xm
2 . Each edge differ-

ence (alm − ak j ) evolves according to

∂t (alm − ak j ) = ulm(t )alm + hlm(t ) − (uk jak j + hk j )

= uk j (alm − ak j ) + η(t ), (24)

where

η(t ) = (vlm − vk j ) + alm(ulm − uk j ) (25)

can be made arbitrarily small provided ε is chosen small
enough. Recall ulm < − min(γ , β ). Hence,

∂t (alm − ak j ) � − min(γ , β )(alm − ak j ) + η0. (26)
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By comparison principle (see lemma 3.4 of chapter 3 of [30]),
we have

(alm − ak j ) � min(γ , β ) for large enough t . (27)

This allows us to conclude that A(t ) converges to the set
{vA : v ∈ [0, 1]}. The previous derivation provides a closed-
form analytical expression of the value v∗ as a function of the
consensus value c reached by the spin profile. �

Remark 4. The set of stable equilibria S is made up of
a continuum of points independent of φ, while the unsta-
ble ones are just isolated points in the compact phase space
� := [−1,+1]K × [0, 1]K2

. The points in set U correspond to
the absorbing configurations of the initial stochastic system,
where the system is maximally polarized and the discordance
is zero.

The NIMFA method also gives as output a closed-form
expression of the discordance. Let us first extend the definition
of the discordance to continuous systems as

D(x, a) := 1

K2

∑
lm

alm
1 − xlxm

2
. (28)

Corollary 5. Consider the system having reached the sur-
face of equilibria computed in Proposition 3: (x, a) ∈ S which
implies x = c1 for some c ∈ [−1,+1] and a = v∗(c, g)K.
Then discordance reads

D(x, a) = v∗(c, g)
1 − c2

2
, (29)

where v∗ is defined in Proposition 3.
Proof. Because by definition

D = 1

K2

∑
lm

alm1(xl �=xm ) = 1

2K2

∑
lm

alm(1 − xl xm), (30)

the result is straightforward in view of Proposition 3. �

B. Numerical simulations

To represent visually the dynamics, the Markov process is
reduced to three global estimators, namely,

X := 1

K

∑
j

Xj,

A := 1

K2

∑
lm

Alm, and (31)

D := 1

K2

∑
lm

Alm1(Xl �=Xm ).

X is the mean spin profile, A is the global density of links, and
D is the discordance. In Fig. 3, five trajectories are represented
in the X − A axis, with slightly different initial configura-
tions. We can see that all the trajectories are quasiattracted
by the consensual equilibria line analytically computed in
Proposition 3, although a small but consistent gap subsists.
In the second plot, three trajectories are represented in the
X − D axis. Also, in that case, the theoretical NIMFA-based
discordance seems similar yet quantitatively distinct.

Let us try to understand intuitively why this bias oc-
curs. For this purpose, let us represent the asymptotic system

FIG. 3. Simulations have been performed in the metastable
regime: (φ, β, γ ) = (4, 1, 4) and K = 800. The grey points are the
initial configurations. We see that the system is attracted by the blue
curve analytically computed in Proposition 3, although there is still
a small gap between the simulations and the theoretical result. A
similar observation can be stated in part (b): we see that the three
independent stochastic simulations have roughly the same shape as
the theoretical NIMFA discordance line (in red), but here also a
substantial gap persists.

K −→ +∞ with a continuum of population u ∈ [0, 1], and
the associated spin profile and generalized matrix {Xu, Auv :
u, v ∈ [0, 1]}. This construction can be seen as the limiting
system when K −→ +∞. Informally, the NIMFA actually
acts on it as follows: It makes a partition in an arbitrary fashion
the population in K cells and applies a cellwise averaging:

x j ∼ 1

K

∫
u∈I j

Xudu, alm ∼ 1

K2

∫
(u,v)∈Il ×Im

Auvdudv (32)

for j ∈ [K], with I j = [ j
K ,

j+1
K [. This is why we retrieve at

the end a system of large though finite dimension. But this
arbitrary averaging puts in the same category discordant links
{(lm) : xl �= xm} and concordant links {(lm) : xl = xm}, lead-
ing to a dead-weight loss of information. To see this, let us
take the following example: Suppose xl = xm = 0 and alm =
1
2 . This means that half the mass of cell l has a positive spin
and the other half has a negative spin, and the same with cell
m. Nonetheless, one cannot in any way determine whether the
links from cell l to cell m are discordant or concordant, and
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FIG. 4. In each cell l, m, a first half of the population is +1 and
the other half is −1.

in which proportion. Thus, as depicted in Fig. 4, one of the
drawbacks of the NIMFA is the ambiguity. It can correspond
either to a case of discordance free: All agents of cell l are
linked toward people in m of the same spin and only with
them, or it can correspond to maximum discordance (and zero
concordance) configuration. In the next section, an alternative
system of coordinates is presented to make the distinction
between concordant edges and discordant edges, and then
assign distinct dynamics to these possible cases.

IV. NEW BLOCKWISE COORDINATE SYSTEM

Instead of considering the spin profile, let us just keep
the graph structure. We separate the links in four categories
C1,D1, C0,D0 ∈ {0, 1}K2

according to two criteria: concor-
dant (C) or discordant (D), and present (indexed with a one)
or absent (indexed with a zero). This partition leads to the
following equivalences:

alm = 1 ∧ xl = xm ⇐⇒ C1
lm = 1,

alm = 0 ∧ xl = xm ⇐⇒ C0
lm = 1,

alm = 1 ∧ xl �= xm ⇐⇒ D1
lm = 1,

alm = 0 ∧ xl �= xm ⇐⇒ D0
lm = 1. (33)

In this new coordinate system, the stochastic evolution equa-
tion is rewritten as

dC1 = +C0 � N γ (dt ) + (D1 − C1) � F (dt ),

dC0 = −C0 � N γ (dt ) + (D0 − C0) � F (dt ),
(34)

dD1 = −D1 � N β (dt ) + (C1 − D1) � F (dt ),

dD0 = +D1 � N β (dt ) + (C0 − D0) � F (dt ),

where

F (dt ) := (D1 � N
φ

K (dt )) ◦ K + K ◦ (D1 � N
φ

K (dt ))�.

(35)

Here N α (t ) = (N α
lm(t ))(l,m)∈[K]2 is a square matrix of dimen-

sion K stacking all the independent Poisson processes of
intensity α > 0, α ∈ { φ

K , β, γ }. One can see that the first terms
of the right-hand side correspond to the network dynamics,
while the second terms correspond to the flip dynamics with
the N φ

K as driving processes. Figure 5 provides a schematic

FIG. 5. A partition of the edges linked with flows.

picture of the different flows between the four compartments
defined above.

A. Dimensionality reduction

System (34) describes the initial one (5) but from another
viewpoint. Its main advantage is that it conveniently separates
the discordant and concordant edges, and these two categories
of edges display very different behaviors. It has to be noted
that through these coordinates, one has no access to the mean
spin profile X nor the proportion of agents with positive spin

m+ := 1

K

∑
j

1(Xj=1). (36)

Because of its high dimensionality, actually 4K2, it seems in-
tractable. Proposition 3 suggests to circumvent this difficulty
by making the following homogeneity hypothesis:

Cσ ≈ cσK and Dσ ≈ dσK, (37)

for some dσ , cσ ∈ [0, 1], σ ∈ {1, 0} with vanishing random-
ness when K gets large. Some details of this assumption will
be given in the next section. The large-scale stochastic system
(34) can then be described by a nonlinear four-dimensional
deterministic ordinary differential equation (ODE):

∂tYt = �(Yt ) = Nβ,γYt + 2φd1MYt , (38)

where

Y =

⎡
⎢⎢⎣

c1

c0

d1

d0

⎤
⎥⎥⎦, Nβ,γ :=

⎡
⎢⎢⎣

0 γ 0 0
0 −γ 0 0
0 0 −β 0
0 0 β 0

⎤
⎥⎥⎦ (39)

and

M :=

⎡
⎢⎢⎣

−1 0 +1 0
0 −1 0 +1

+1 0 −1 0
0 +1 0 −1

⎤
⎥⎥⎦. (40)
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Remark 6. Contrary to system (11) where the absorbing
points are always unstable and repulsive regardless of the
models’ parameters, this system displays a stable discordance-
free region for φ � β:

Let us consider the discordance-free absorbing points that
are easily identifiable:

A = {
[u 0 0 1 − u]T : u ∈ [

1
2 , 1

]}
. (41)

Setting u = 1 corresponds to a global consensus, while if u =
1
2 , then the two blocks are of the same size. By linearization
of the vector field � in (38), we get for y ∈ A:

∂�y =

⎡
⎢⎢⎢⎢⎣

0 γ −2φu 0

0 −γ 2φ(1 − u) 0

0 0 −β + 2φu 0

0 0 β + 2φ(u − 1) 0

⎤
⎥⎥⎥⎥⎦. (42)

A simple examination of the eigenvalues leads to

Sp ∂�y = {0, 0,−γ , 2φu − β}. (43)

Furthermore, the null eigenvalue is semisimple. Then, by
linearization method (Theorem 3.15 of Ref. [31]), for high
enough β, that is, φ <

β

2u , the point y is stable.
Furthermore, system (38) being low dimensional, we can

now give an explicit formula for the equilibria.
Proposition 7 (characterization of the equilibria). For any

values φ, β, γ , in the coordinates (c1, d1, m), the surface of
equilibria Seq of the reduced system (38) is given by

Seq = {(c1, d1, m+) : d1 = g(1 − c1 − 2m+(1 − m+))}.
(44)

Proof. Recall g := γ

β
. At equilibrium, ∂tY = 0, we have

d1 = gc0, (45)

and by construction, d1 + c1 + d0 + c0 = 1 and 2m+(1 −
m+) = d0 + d1 at all times. Combining the last three identities
yields the last proposition. �

B. Computation of the discordance

We are now able to derive a formula for the global discor-
dance d1 at equilibrium: The third line of (38) yields

0 = −βd1 + (c1 − d1)2φd1. (46)

Then, adding the first and second lines gives 0 = (d1 − c1 +
d0 − c0)2φd1. Because d1 > 0, we thus get

d1 + d0 = c1 + c0 = 1
2 . (47)

Recall d1 = gc0, combining all the last identities allows us to
state the following proposition.

Proposition 8. (Limit value for the discordance.) For high
K , the discordance d1 of system (X, A) converges toward the

value d∗ = 1
2 × 1− β

φ

1+ β

γ

∈ [0, 1
2 ].

Remark 9. This quantity does make sense only for φ > β.
More specifically, for φ  β and γ  β, d∗ is almost maxi-
mal, namely, d∗ ≈ 1

2 . On the contrary, for β < φ, the system
is attracted toward the discordance-free region.

FIG. 6. Seq is represented by the grey surface. Red points are
samples of the overall trajectory starting at the black point, under
the metastable regime: (φ, β, γ ) = (4, 1, 4) and K = 800. We see
that there is no gap between the surface of theoretical surface and the
stochastic simulation.

C. Numerical plots

Figure 6 shows how close the actual process is to the
analytical surface Seq when projected to the phase space
(c1, m+, d1). Figure 7 displays four independent numerical
simulations in the metastable regime with the same model’s
parameters. The horizontal line d∗ corresponds to the value
obtained in Proposition 8. When taking smaller φ, we observe
that discordance is vanishing; see Fig. 8.

V. DISCUSSION

The results of the preceding section rely on the homo-
geneity assumption obtained by the standard NIMFA method
(see Proposition 3). Because the spins and edges are binary

FIG. 7. (φ, β, γ ) = (4, 1, 4), K = 800. Here is a plot of six in-
dependent simulations for the discordance d1. We see that in the
metastable regime, discordance maintains and is close to the value
computed via block-coordinates (represented as an horizontal pink
line on the plot), that is, d∗ = 0.3.
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FIG. 8. (φ, β, γ ) = (1, 0.8, 1), and K = 800. Six independent
plots have been performed. We see that there is a fast extinction of
discordance when β ≈ φ (subcritical regime).

Xk ∈ {+1,−1}K and Alm, Cσ
lm,Dσ

lm ∈ {0, 1}, it is necessary to
clarify that Cσ is roughly equal to some cK for c ∈ [0, 1].
Actually, this approximation has to be taken in the macro-
scopic viewpoint, that is, when taking an arbitrary but infinite
subset of agents { j ∈ [K] : j

K ∈ U } for some interval U ⊂
[0, 1]. Sampling this way and taking the associated averages

XU , AUV defined below, we then obtain, when K tends to +∞,
deterministic limits with identical trajectories, regardless of
the choice of U,V ⊂ [0, 1]. It is what we call homogeneity.

Conjecture 10. Recall that |U | stands for the Lebesgue
measure of an interval U in R. Define the partial average,

X
K
U := 1

K|U |
∑

j

Xj1U

(
j

K

)
, (48)

for any interval U ⊂ [0, 1] with U = [a, b], a < b. Then, X
K
U

converges towards a deterministic and continuous trajectory
as K −→ +∞, under the hypothesis that the initial samples
(Xk (0))k∈[K] and (Alm)l,m are i.i.d. This statement is also valid
for the functionals

A
K
UV := 1

K2|U ||V |
∑
lm

Alm1U×V

(
l

K
,

m

K

)
. (49)

Especially, the global density of links defined as

A
K = 1

K2

∑
lm

alm (50)

FIG. 9. For several values of K : K = 120 in (a), K = 400 in (b), K = 800 in (c), and K = 1600 in (d), we plot the curves of the 16 partial
edges means {t 	→ AUV (t ) : U,V ∈ P4}. In all cases, models’ parameters are taken constant: (φ, β, γ ) = (4, 1, 4). At initial times, all random
variables are taken i.i.d: alm(0) = 1 with probability 0,95. The concentration of the all trajectories around the same curve when K grows is
visible when comparing K = 120 (a) and K = 1600 (d).
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FIG. 10. For several values of K : K = 120 in (a), K = 400 in (b), K = 800 in (c), and K = 1600 in (d), we plot the curves of the four partial
edges means {t 	→ XU (t ) : U ∈ P4}, with (φ, β, γ ) = (4, 1, 4). For all simulations, xk (0) are taken i.i.d with xk (0) = +1 with probability 1

2 .
Here too, a concentration effect occurs, but it is less pronounced because the spin profile includes less variables as the graph.

converges toward a deterministic and continuous trajectory.
Furthermore, the limiting trajectories are identical: For any
U,V,U ′,V ′ ⊂ [0, 1],∣∣∣∣X K

U − X
K
U ′

∣∣∣∣
∞,T

−→ 0 and (51)

∣∣∣∣AK
UV − A

K
U ′V ′

∣∣∣∣
∞,T

−→ 0, (52)

as K −→ +∞, provided that the entrance sample is i.i.d:
alm(0) = 1 with probability a0 for all l, m, Xk = +1 with
probability x0 all variables being independent, and where
||.||∞,T is the uniform norm over the set of bounded real-
valued functions defined on the time interval [0, T ]: ||u|| :=
sups∈[0,T ] |u(s)|.

Remark 11. The hypothesis on the entrance law is crucial.
Indeed, suppose that we set Xk (0) = +1 with probability 1 for
k < K

2 and Xk (0) = −1 with probability 1 for k � K
2 , which is

not an i.i.d entrance law. Setting β  φ would yield X [0, 1
2 ] ≈

+1 and X [ 1
2 ,1] ≈ −1, which would contradict the last result.

Remark 12. The type of convergence stated above via par-
tial sampling along intervals U ∈ [0, 1] has strong links with
the cut metric over dense graphs. Roughly speaking, it says
that the sequence of random trajectories (AK (t ))t admits a
correctly defined limit object Wt [32].

To verify numerically that the graph displays an homoge-
neous behavior, we have partitioned the population in four
equal parts I j := {k ∈ [K] : k ≡ j mod 4}. We thus obtain a
partition P4 of size 4. Then, for U,V ∈ P4 := (I j )1� j�4, we
compute the average blockwise defined as

AUV =
(

K

4

)−2 ∑
lm

Alm1U×V (l, m). (53)

We then obtain 16 trajectories. We have performed the simu-
lations for several values of K (see Fig. 9). For increasing K , it
is clear that the 16 curves concentrate over the same trajectory
and randomness decays. We also display the partial means for
the spins: XU ,U ∈ (I j ) j (see Fig. 10). We observe that the
edges means Alm converge much faster compared to the spins’
ones XU because each average AUV contains ( K

4 )2 = K2

16 terms
whereas the spin averages only contains K

4 terms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a continuous-time AVM
where node and edge steps are not simultaneous. By taking
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into account additional permissible configurations, the model
is more flexible and satisfactory. Its analysis by the standard
NIMFA was refined by a precise change of coordinates using
a blockwise approach. Moreover, in the case of dense graphs,
a phenomenon that we call homogeneity has been conjectured
when K becomes large. Although we could not give rigor-
ous proof, numerous numerical simulations were provided to
corroborate our intuition. This may be an interesting topic
for further investigation. Finally, an alternative interesting re-
search line is to study how connectivity evolves across time,

for instance, inspecting the number of connected components.
It is a challenging perspective but may significantly contribute
to the understanding of dynamical network models.
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