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Epidemic control in networks with cliques
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Social units, such as households and schools, can play an important role in controlling epidemic outbreaks.
In this work, we study an epidemic model with a prompt quarantine measure on networks with cliques (a clique
is a fully connected subgraph representing a social unit). According to this strategy, newly infected individuals
are detected and quarantined (along with their close contacts) with probability f . Numerical simulations reveal
that epidemic outbreaks in networks with cliques are abruptly suppressed at a transition point fc. However, small
outbreaks show features of a second-order phase transition around fc. Therefore, our model can exhibit properties
of both discontinuous and continuous phase transitions. Next, we show analytically that the probability of small
outbreaks goes continuously to 1 at fc in the thermodynamic limit. Finally, we find that our model exhibits a
backward bifurcation phenomenon.
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I. INTRODUCTION

When a novel and dangerous disease unfolds, governments
often implement a wide range of non-pharmaceutical inter-
ventions (NPIs) to decrease the burden on health care services
[1–3]. These interventions include, for example, travel bans,
quarantine measures, and school closures. Epidemiological
studies have shown that the spread of contagious diseases
depends on multiple factors, including the network of face-to-
face contacts [4–6]. Therefore, studying the effect of different
network structures on the spread of epidemics becomes essen-
tial to develop more effective interventions.

In the last few years, several mathematical models have
been proposed to study NPIs in complex networks [7–10].
For example, St-Onge et al. [11,12] recently explored a
susceptible-infected-susceptible (SIS) model on networks
with cliques (defined as groups where all members are con-
nected to each other) and proposed a mitigation strategy that
consists of reducing the maximum clique size. They found
that the total fraction of infected people decreases as the
maximum clique size is reduced. Another NPI that has been
extensively studied in the field of complex networks is the
rewiring strategy, in which susceptible individuals protect
themselves by breaking their links with infected contacts and
creating new ones with noninfectious people [13]. Interest-
ingly, recent work has shown that this strategy can lead to an
explosive epidemic for a susceptible-infected-recovered (SIR)
model [14,15].

Several works have also explored the effect of dif-
ferent quarantine strategies on the spread of epidemics
[16–18]. For example, Hasegawa and Nemoto [18] inves-
tigated a susceptible-infected-recovered-quarantined (SIRQ)
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model with a “prompt quarantine strategy” that works as
follows. At each time step, after individuals become infected,
they are immediately detected with probability f , and then the
detected ones and their contacts are placed under quarantine.
In that work, they showed (for networks without cliques) that
the probability of an epidemic and the proportion of recovered
people undergo a continuous phase transition. On the other
hand, very recently, Börner et al. [19] studied an SIRQ model
with a quarantine strategy that becomes less effective over
time. More specifically, they considered the case in which the
rate at which individuals are quarantined decreases as the total
number of infected people increases. For a mean-field model
(corresponding to a homogeneously well-mixed population),
they showed that the proportion of recovered people at the
final stage could exhibit a discontinuous transition. However,
they also observed that the probability of an epidemic van-
ishes continuously around this transition point, so their model
exhibits features of both continuous and discontinuous phase
transitions.

Following the line of research on nonpharmaceutical inter-
ventions, in this paper we investigate an SIRQ model with a
prompt quarantine strategy on random networks with cliques.
On the one hand, numerical simulations show that the proba-
bility of an epidemic (�) vanishes continuously at a transition
point f = fc (i.e., the probability of a small outbreak, 1 − �,
goes to 1 at f = fc). However, numerical simulations also
reveal that the fraction of recovered people (R) is abruptly
suppressed around f = fc, so our model displays features
of both continuous and discontinuous phase transitions as in
[19]. Note that this result is markedly different from the case
without cliques, where only a continuous phase transition was
observed [18], as mentioned above. Finally, we find that our
model exhibits the phenomenon of backward bifurcation. In
order to elucidate the origin of these results, we explore the
spread dynamics close to the transition point, and numerical
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FIG. 1. Illustration of a bipartite network (a) and its projection
(b). Each blue node represents a clique and each light blue node
represents an individual.

simulations suggest that the quarantine strategy becomes less
effective over time, which may explain why our model ex-
hibits the same behavior as in [19].

This paper is organized as follows. In Sec. II, we describe
the details of our model. In Secs. III A and III B, we inves-
tigate the final stage of an epidemic and the probability of
small outbreaks (1 − �) when only one person is infected at
the beginning of the outbreak. In the following section, we
explore the final stage of an epidemic when a large proportion
of the population is infected at the beginning of the spreading
process. Finally, we present our conclusions.

II. MODEL DESCRIPTION

A. Network with cliques

Networks with cliques can be represented as bipartite net-
works (as illustrated in Fig. 1). In this work, we will focus
on bipartite networks that are locally treelike because they
have two main advantages. First, they can be easily generated
by using a version of the configuration model [20,21], and,
second, they simplify the analytical treatment, as explained
in [22].

To generate these networks, we apply the following steps:
Step 1: We create two disjoint sets, denoted by I and C,

where I corresponds to the set of individuals and C represents
the set of cliques. The total numbers of individuals and cliques
are denoted by NI and NC , respectively.

Step 2: We randomly assign a number kI of cliques (or
“stubs”) to every person according to a probability distribution
P(kI ). Similarly, we assign a number kC of individuals (or
“stubs”) to every clique according to a probability distribution
P(kC ). Initially, each stub is unmatched. We denote the total
number of stubs in sets I and C, by SI and SC , respectively.
In the limit of large network sizes, the relation SC = SI holds
(as explained in [23]). Additionally, in this limit, we have that
SI = 〈kI〉NI and SC = 〈kC〉NC , where 〈kI〉 = ∑

kI
kI P(kI ) and

〈kC〉 = ∑
kC

kCP(kC ).
Step 3: In practice, for finite networks, if |SC − SI | <

0.01〈kI〉NI then we proceed as follows. We randomly choose
one stub from each set and join them together to make a
complete link (but avoiding multiple connections between

individuals and cliques). This procedure is repeated until one
of these sets is empty. On the other hand, if |SC − SI | >

0.01〈kI〉NI , our algorithm returns to Step 1.
Step 4: Finally, we eliminate those stubs that remained un-

matched from the previous step, and project the set of cliques
onto the set of individuals, as illustrated in Fig. 1.

B. Susceptible-infected-recovered-quarantined model

Let us first introduce the susceptible-infected-recovered
model (SIR), and some definitions.

The SIR model splits the population into three compart-
ments called susceptible (S), infected (I), and recovered (R).
Here, the symbols S, I , and R refer to both the state of
an individual and the proportion of the population in each
compartment, where S + I + R = 1. For a discrete-time SIR
model, all individuals synchronously update their states ac-
cording to the following rules. At each time step, t → t + 1,
every infected individual

(1) transmits the disease to each susceptible neighbor with
probability β,

(2) recovers from the disease after being infected for tr
time steps (which is called the recovery time) and becomes
permanently immune. In this paper, we will use tr = 1.

Typically, the spreading process starts with a single in-
fected individual, called the “index case,” and the rest of the
population is susceptible. The disease then spreads through
the population until the system reaches a final stage with only
susceptible and recovered individuals. If the disease dies out
after a few time steps and only an insignificant fraction of the
population has become infected, then such an event is defined
as a small outbreak. Conversely, the outbreak turns into an
epidemic if the fraction of recovered people is macroscopic
at the final stage. In the last few years, several works have
also studied the case in which a macroscopic fraction I0 of
the population is infected at the beginning of the spreading
process [24–28]. This case is usually referred to as a nontrivial
or large initial condition.

A widely used measure to predict whether a disease will
develop into a small outbreak or an epidemic is the basic
reproduction number R0, defined as the average number of
secondary cases infected by the index case [29]. For a value of
R0 less than 1, the probability of a disease becoming an epi-
demic is known to be zero (� = 0), while, for R0 greater than
1, this probability is positive (� > 0). Finally, around R0 = 1,
there is a second-order phase transition where many quantities
behave as power laws [30,31]. For example, at R0 = 1 the
probability distribution of the number of recovered individuals
for small outbreaks, denoted by P(s), decays algebraically as
P(s) ∼ s−(τ−1), where τ is called the Fisher exponent [30].

As explained in the Introduction, an extension of the SIR
model that was proposed in [18] introduces a Q compartment
in order to study the effect of a prompt quarantine strategy
on the epidemic spread. In this model, the states of the nodes
were updated asynchronously. However, in our work, we will
consider a synchronous version of that model in order to
simplify the analytical study. More precisely, our model works
as follows: at time t ,

(1) All infected individuals are detected and isolated with
probability f , i.e., they move to the Q compartment.
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FIG. 2. (a) Scatter-plot of the fraction of recovered people at the final stage, R, as a function of β for a RR network with kC = 7, kI = 3,
NI = 106, and different values of the probability of detection f . Results were obtained from 103 stochastic realizations. (b) 〈s〉 against β for
f = 0.4 and several values of NI . Results were averaged over 105 realizations. The vertical arrow indicates the peak position βc of 〈s〉 for
NI = 8 × 105. In the inset, we show the height of the peak of 〈s〉, which we call 〈s〉max (in log-log scale) for the same values of NI as in the
main plot. The dashed line corresponds to a power-law fit with an exponent of 0.46. (c) distribution P(s) for β = 0.78, f = 0.4, and NI = 106,
obtained from 3 × 105 stochastic realizations (symbols). The solid black line is a guide to the eye, and the dashed red line is a power-law
function with an exponent equal to τ − 1 = 1.5. (d) Probability of a small outbreak, 1 − �, against β for the same parameter values as in panel
(a). Results were averaged over 105 stochastic realizations.

(2) Next, all the neighbors of the individuals who were
isolated in the previous step, also move to the Q compartment.

(3) After that, those infected individuals who have not
been isolated, will transmit the disease to each susceptible
neighbor with probability β.

(4) Finally, individuals who are still in the I compartment
and have been infected for tr time steps, will recover [32].
Likewise, people who have been infected and then quaran-
tined will move to the R compartment after tr time steps, so
R represents the proportion of the population ever infected.
In this paper, we present results only for tr = 1; however, we
have verified that our findings remain qualitatively unchanged
for tr > 1 (not shown here).

Similarly to the standard SIR model, at the final stage of
the SIRQ model the population consists solely of susceptible,
recovered, and quarantined individuals.

Note that, according to the rules of our model, it is suffi-
cient to detect a single infected person in a clique to quarantine
the entire clique. Therefore, larger (smaller) cliques have a
higher (lower) probability of being quarantined. On the other
hand, from one perspective, our model could be seen as a
spreading process in higher-order networks [33,34] because
the transition from a susceptible to a quarantined state is
not caused by pairwise interactions but rather by group in-
teractions. Typically, in models with higher-order structures,

nodes become “infected” through group interactions, and after
that, they transmit the “infection” to other nodes. However, it
should be noted that in our model quarantined individuals are
removed from the system, so they cannot transmit their state
to the rest of the population, unlike other contagion models
with higher-order structures.

In the following sections, we will study our SIRQ model
on networks with cliques.

III. RESULTS

A. Final stage

In this section, we investigate the final stage of the SIRQ
model for random regular (RR) networks with cliques, defined
as networks in which every clique has kC members and every
individual belongs to kI cliques. We will show numerical
results for RR with kI = 3, and kC = 7 and focus only on the
case where a single individual is infected at the beginning of
the dynamic process. In Appendix B, we present additional re-
sults for networks in which kC and kI follow other probability
distributions.

In Fig. 2(a), we show a scatter plot of R vs β for several
values of the probability of detection f . For low values of f ,
we observe that the transition from an epidemic-free phase
to an epidemic phase is continuous. However, for f � 0.35
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FIG. 3. Heat-map of R in the plane β- f for RR networks with
cliques (with kC = 7 and kI = 3), obtained from numerical simula-
tions. To compute R, we took into account only those realizations
in which an epidemic occurs (R > 1%). Darker colors represent a
low value of R (black corresponds to R = 0) and brighter colors a
higher value of R (yellow corresponds to R = 1). Simulation results
were averaged over 103 stochastic realizations with NI = 105. The
dashed white line was obtained from Eq. (1) for R0 = 1, and the point
f ∗ = 0.51 corresponds to the value of f above which the system is
in an epidemic-free phase for any value of β.

we see that, as β increases, another phase transition exists
above which the fraction of recovered individuals is abruptly
suppressed. This transition is also observed in other network
topologies (see Appendix B), especially in networks contain-
ing larger cliques. In Sec. III C, we will show that around this
transition point, a backward bifurcation occurs.

To delve deeper into the nature of the transition point at
which R is abruptly suppressed, we will study how small
outbreaks behave around this point. Here, we consider that
a small outbreak occurs when the fraction of the recovered
people is below 1% at the final stage. Figure 2(b) shows the
average number of recovered individuals for small outbreaks
〈s〉 vs β for f = 0.4. Interestingly, we note that 〈s〉 exhibits
a peak around a value of β that we call βc, which roughly
corresponds to the point at which R is abruptly suppressed [see
Fig. 2(a)]. Furthermore, the height of this peak increases with
NI as a power law [see the inset of Fig. 2(b)], which is a typical
finite-size effect of a second-order phase transition [30]. On
the other hand, Fig. 2(c) shows the probability distribution of
the number of recovered individuals for outbreaks at β = βc.
It can be seen that P(s) decays as a power law. Finally, in
Fig. 2(d), we display the probability of a small outbreak,
1 − �, as a function of β (note that � is the probability that an
epidemic occurs), and we get that 1 − � goes continuously to
1 around β = βc, which again is a feature of other epidemic
and percolation models in random networks with a continu-
ous phase transition [35,36]. Therefore, if we take together
the results of Figs. 2(b)–2(d), they all suggest that quantities
associated with small outbreaks will exhibit properties of a
continuous phase transition.

To provide a broader picture of the effect of our strategy on
networks with cliques, in Fig. 3 we show the heat map of R
when an epidemic occurs in the plane β- f . From this figure,
we observe that there is a minimum detection probability f ∗,
above which the system is always in an epidemic-free phase.

On the other hand, we also find that in the region β � 1 an
abrupt color change occurs around f ≈ 0.4, which indicates
that the system undergoes a discontinuous transition in that
region of the parameter space.

Next, we will compute the basic reproduction number, R0.
As mentioned in Sec. II B, R0 is a widely used quantity to
predict whether a disease outbreak will become an epidemic
or die out quickly, and typically, around R0 = 1, a second-
order phase transition occurs. In order to estimate R0, we adapt
the approach proposed in [37], leading us to the following
expression for RR networks with cliques:

R0 = ε1 + ε2

β(kC − 1)
, (1)

with

ε1 = (kC − 1)(1 − β )[(β(1 − f ) + (1 − β ))kC−2

− (β(1 − β )(1 − f ) + (1 − β ))kC−2], (2)

ε2 = (1 − f )(1 − β f )kC−2(kI − 1)(kC − 1)2β2. (3)

In Eq. (1),
(1) The denominator is the average number of individuals

(within a clique) who are infected by the index case. We refer
to these individuals as the “first generation.”

(2) The numerator corresponds to the average number
of people who are infected by the first generation. In Ap-
pendix A, we explain how to derive the expressions of
ε1 and ε2.

In Fig. 3, we plot the set of points (βc, fc) that satisfy the
constraint R0 = 1. In particular, for βc = 1, it can be easily
obtained from Eq. (1) that fc is given by

fc = 1 −
(

1

(kI − 1)(kC − 1)

) 1
kC −1

. (4)

Remarkably, from Fig. 3, we can see that the predicted curve
agrees well with the entire boundary between the epidemic
and epidemic-free phases, including in the region where a dis-
continuous transition occurs. In Sec. III C, we will see that this
result is consistent with a backward bifurcation phenomenon
around R0 = 1.

In summary, in this section we found that the SIRQ model
on networks with cliques has a discontinuous phase transi-
tion, but at the same time several quantities [specifically, 〈s〉,
1 − �, and P(s)] display the same features of a continuous
phase transition. We note, however, that the results shown in
this section were obtained from simulations in finite networks
and from approximate formulas. In the following section, we
will demonstrate that in the thermodynamic limit (NI → ∞)
the probability of a small outbreak (1 − �) goes continuously
to 1 at the transition point for β = 1.

B. Probability of a small outbreak

In this section, we will describe the SIRQ model as a
forward branching process [35,38] to calculate the probability
of a small outbreak, 1 − �, and the transition point f = fc for
β = 1. Here, we focus only on RR networks with cliques, but
in Appendix C we compute these quantities for other network
structures.
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Branching theory has been extensively applied to the study
of many processes on random networks, including cascad-
ing failures [39,40], disease transmission [23,41,42], random
percolation [43,44], k-core percolation [45,46], and fractional
percolation [47,48]. For an SIR model, this theory was first
applied to networks without cliques to calculate the behavior
of various quantities as a function of β [23,41]. Later on,
multiple works used branching theory to study the SIR model
on networks with cliques [49–52]. However, their calculations
were usually more complex because they required an exhaus-
tive enumeration of transmission events occurring within a
clique with at least one infected person. But, for β = 1, these
calculations can be substantially simplified. This is because,
when individuals become infected (in a clique composed of
susceptible members), at the next time step they will transmit
the disease to the rest of the clique members with probability
1, unless an intervention strategy is applied. Therefore, in
what follows, we will focus only on the case β = 1.

To compute the probability of a small outbreak, 1 − �, we
first need to calculate the probability φ that an infected indi-
vidual (reached through a link) will not generate an epidemic
[35,36]. By using the branching process approach, it can be
found that φ is the solution of the following self-consistent
equation:

φ = [((1 − f )φ)kC−1 + 1 − (1 − f )kC−1]kI −1. (5)

The left-hand side (l.h.s.) of this equation is the probability
that an infected individual “ j” reached through a link does
not cause an epidemic. On the other hand, the right-hand
side (r.h.s.) is the probability that an infected individual “ j”
transmits the disease, but none of the kI − 1 outgoing cliques
will be able to cause an epidemic. This is because one of the
following two events happens to every clique:

(1) with probability 1 − (1 − f )kC−1, at least one member
(other than “ j”) is detected, so the whole clique is placed
under quarantine,

(2) with probability [(1 − f )φ]kC−1, none of its mem-
bers are detected but also they will not be able to generate
epidemics.

After solving Eq. (5), the probability 1 − � that an index
case does not cause an epidemic can be obtained from the
equation

1 − � = f + (1 − f )[((1 − f )φ)kC−1 + 1 − (1 − f )kC−1]kI ,

(6)

where, in the r.h.s.,
(1) the first term corresponds to the probability that the

index case is detected,
(2) the second term corresponds to the scenario where the

index case is not detected and transmits the disease, but none
of the kI outgoing cliques will be able to generate an epidemic,
similarly to Eq. (5).

It is worth noting that Eqs. (5) and (6) are valid only if the
initial fraction of index cases is infinitesimal.

Another quantity of interest that can be calculated in the
limit of large network sizes is the critical threshold fc at which
a phase transition occurs. To derive fc, we take derivatives of

both sides of Eq. (5) at φ = 1 and obtain

fc = 1 −
(

1

(kI − 1)(kC − 1)

) 1
kC −1

, (7)

which has the same expression as in Eq. (4).
To verify the validity of our theoretical analysis, we per-

formed numerical simulations of the SIRQ model on RR
networks with cliques. In Fig. 4(a), we show the mean size
of small outbreaks 〈s〉 vs f for different network sizes (NI ). It
can be seen that, as NI increases, the peak position of 〈s〉 [that
we call fc(NI )] converges to the critical threshold fc predicted
by Eq. (7). On the other hand, in Fig. 4(b), we display the
probability of a small outbreak, 1 − �, obtained from our
simulations and theoretical predictions [see Eqs. (5) and (6)].
As seen in this figure, the agreement between theory and sim-
ulation is excellent. In addition, we observe that 1 − � goes
continuously to 1 (i.e., � → 0) at the critical threshold f = fc

predicted by Eq. (7). Thus, our findings in this section provide
further evidence that small outbreaks display features of a
continuous phase transition around f = fc, as noted in the
previous section.

In the next section, we will investigate the effect of non-
trivial initial conditions on the final stage of the propagation
process and discuss the mechanism leading to the discontinu-
ous transition observed in Sec. III A.

C. Backward bifurcation

In previous sections, we focused our attention only on the
case where a single index case was infected at the beginning
of the outbreak. Here, we will study the effect of a nontrivial
initial condition on the final stage of the propagation process.
To this end, we conduct numerical simulations in which the
fraction of infected individuals at t = 0 (denoted by I0) is
macroscopic. In particular, we are interested only in the case
where f > fc (i.e., R0 < 1) because for f < fc (i.e., R0 > 1)
we have already found that an epidemic can take off even from
a single index case (see Sec. III B).

Figure 5 shows a scatter-plot of the proportion of recovered
people R at the final stage as a function of I0 for β = 1 and
f = 0.40 (which is greater than fc = 0.3391; see Sec. III B),
and for several network sizes NI . Additionally, in the inset, we
plot the average value of R vs f for the same parameter values
used in the main plot. Interestingly, we obtain that R has an
abrupt jump around I0 ≈ 2.5 × 10−3 ≡ I∗

0 . Therefore, our nu-
merical simulations reveal that the final fraction of recovered
people strongly depends on the initial fraction of infected
individuals for R0 < 1. In the language of bifurcation theory,
these findings imply that our model undergoes a backward
bifurcation [53], i.e., the final fraction of recovered people
is bistable for R0 < 1 ( f > fc). In Appendix D, we present
additional results showing that the system is also bistable for
other values of f and network topologies.

Previous studies have shown that this type of bifurcation
can be caused by multiple mechanisms, such as exogenous
reinfection and the use of an imperfect vaccine against in-
fection [53]. On the other hand, very recently, Börner et al.
[19] proposed a mean-field SIRQ model to explore different
quarantine measures whose effectiveness decreases over time.
Although not explicitly mentioned in that work, it can be seen
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FIG. 4. (a) 〈s〉 vs f for β = 1 and RR networks with cliques (kC = 7 and kI = 3) for different network sizes (from bottom to top: NI =
1.25 × 104, 2.5 × 104, 5 × 104, 105, and 2 × 105). Symbols correspond to simulation results averaged over 105 stochastic realizations. The
vertical dashed line indicates the predicted value of fc obtained from Eq. (7). In the inset, we show the peak position of 〈s〉 (estimated from the
main plot), called f (NI ), as a function of NI in a linear-log scale. The dashed line corresponds to our theoretical prediction of fc. Dotted lines
are a guide to the eye. (b) Probability of a small outbreak (1 − �) vs f for β = 1 and RR networks with cliques (kC = 7 and kI = 3). The line
corresponds to the theory given by Eqs. (5) and (6), and symbols are simulation results averaged over 105 realizations with NI = 106.

that their model is sensitive to initial conditions for R0 < 1.
Thus, a backward bifurcation phenomenon can also be caused
by a quarantine measure that becomes less effective over
time. Additionally, in [19], it was shown that a discontinuous
epidemic phase transition occurs, and the probability of an
epidemic vanishes around the transition point.

To explain why our model is sensitive to initial conditions
for R0 < 1, we will next measure the time evolution of 〈n〉
for several values of I0, where 〈n〉 is defined as the average
number of members (either in a susceptible or infected state)
in a clique. In particular, for RR networks with cliques, the
inequality 〈n〉 � kC holds. From Fig. 6, we can clearly see
that 〈n〉 is a decreasing function with time, or in other words,
cliques become smaller as the population moves into the Q
and R compartments. This leads us to the conclusion that
the effectiveness of our strategy diminishes over time (as in
[19]) because, as indicated in Sec. II B, smaller cliques are
less likely to be placed under quarantine. Therefore, based

FIG. 5. Scatter plot of R vs I0 obtained from numerical simula-
tions for β = 1 and f = 0.40 in a RR network with kC = 7, kI = 3,
and different network sizes NI . Inset: Average value of R as a function
of I0 for the same parameter values used in the main plot. Numerical
results were averaged over 104 stochastic realizations. The vertical
arrow indicates the value of I∗

0 around which R undergoes a phase
transition.

on what was observed in [19], we conjecture that a decrease
in 〈n〉 over time could explain why our model displays an
abrupt transition and a backward bifurcation diagram, as seen
in Secs. III A and III C, respectively.

IV. CONCLUSIONS

In summary, in this paper, we have investigated an SIRQ
model with a prompt quarantine measure on networks with
cliques. Numerical simulations revealed that epidemics could
be abruptly suppressed at a critical threshold fc, especially on
networks with larger cliques (as shown in Appendix B). In
contrast, we observed that small outbreaks exhibit properties
of a continuous phase transition around fc. Furthermore, using
branching theory, we demonstrated that the probability of a
small outbreak goes continuously to 1 at f = fc for β = 1.
Therefore, these results indicate that our model can exhibit
features of both continuous and discontinuous transitions.
Next, we explored the impact of a macroscopic fraction of
infected population at the beginning of the epidemic out-
break, and found that for R0 < 1 a backward bifurcation
phenomenon emerges. Finally, numerical simulations showed
that the quarantine measure becomes less effective over time,
which could explain why our model exhibits an abrupt transi-
tion and a backward bifurcation phenomenon.

Several lines of research can be derived from this work.
For example, one question that remains open is whether the
fraction of recovered people (in the event of an epidemic)
can be predicted by branching theory since in this paper we
have only used this theory to study small outbreaks. On the
other hand, our model could be extended to include a time lag
between infection and detection. Another relevant modifica-
tion would be to allow quarantined individuals to return to the
network after a certain period of time (especially those who
were susceptible) because it is unrealistic to assume that they
will remain isolated until the end of an epidemic outbreak. Ad-
ditionally, a natural extension of our work would be to study
the phenomenon of mesoscopic localization [11,12]. Lastly,
our model could be studied in higher-order networks with
simplicial complexes. It is known that simplicial contagion
models can lead to explosive epidemic transitions [33,34], so
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FIG. 6. Time evolution of the average number of individuals (either in a susceptible or infected state) in a clique, denoted by 〈n〉, for
f = 0.40, β = 1, and several initial conditions: I0 = 1.5 × 10−3 (a), I0 = 2.5 × 10−3 (b), and I0 = 3.5 × 10−3 (c). We generated 500 simulation
trajectories (light blue lines) on RR networks with kC = 7, kI = 3, and NI = 106. Box plots show the 5th, 25th, 50th, 75th and 95th percentile
values of 〈n〉.

it would be interesting to investigate how they compete with
a prompt quarantine measure. We will explore some of these
extensions in a forthcoming work.
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APPENDIX A: BASIC REPRODUCTION NUMBER
FOR RR NETWORKS WITH CLIQUES

In [37], Miller estimated the basic reproduction number R0

for random networks with cliques using the concept of rank
proposed by Ludwing [54]. He found that R0 can be well
estimated by the following expression:

R0 = 〈N2〉
〈N1〉 , (A1)

where 〈N1〉 and 〈N2〉 are the average numbers of infected
people of rank 1 and 2, respectively.

In our work, we use a similar approach to the one proposed
in [37], but estimate R0 as the following ratio:

R0 = 〈N2〉
〈N1〉 , (A2)

where
(1) 〈N1〉 is the average number of people (within a clique)

infected by the index case, that we call the “first generation,”

(2) 〈N2〉 is the average total number of individuals in-
fected by the people from the first generation.

In what follows, we derive the expressions of 〈N1〉 and
〈N2〉 for the case of random RR networks in which every
clique has kC members, and each person belongs to kI cliques.

1. Derivation of 〈N1〉
Let us consider that, at time t = 0, there is a single index

case and the rest of the population is susceptible. If we as-
sume that the index case is not detected, it follows that the
probability that the index case will transmit the disease to N1

individuals (in a clique with kC members) is given by

P(N1) =
(

kC − 1

N1

)
βN1 (1 − β )kC−1−N1 . (A3)

Then, the average number of people infected by the index case
at t = 1 is

〈N1〉 =
kC−1∑
N1=0

N1P(N1),

= (kC − 1)β. (A4)

Note that the people who get infected at this time step are at a
chemical distance of � = 1 from the index case.

2. Derivation of 〈N2〉
After the index case has infected N1 people, one of the

following two events can occur:
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l=1 l=2Index-case

FIG. 7. Illustration of an index case (black node) who has in-
fected one neighbor (red node) in a given clique at t = 1. In this
example (i) the index case is already in a recovered state, (ii) cliques
have kC = 4 members, and (iii) each member belongs to kI = 3
cliques. Blue dashed lines indicate the chemical distance from each
node to the index case. Note that there are still kC − 1 − 1 = 2
susceptible members (white nodes) at a chemical distance of � = 1
from the index case.

(1) At least one of these N1 individuals is detected, so
the entire clique is isolated. The probability of this event is
P(D|N1) ≡ 1 − (1 − f )N1 .

(2) No individual is detected, which occurs with probabil-
ity

P(¬D|N1) = 1 − P(D|N1) = (1 − f )N1 . (A5)

If the second event occurs, people from the first generation
will transmit the disease to every susceptible neighbor with
probability β. As shown in the schematic illustration (see
Fig. 7), these neighbors can be at a chemical distance of either
� = 1 or � = 2 from the index case. Therefore, we split the
average number of infected individuals at time t = 2, denoted
by 〈N2〉, as

〈N2〉 = ε1 + ε2, (A6)

where ε1 (ε2) corresponds to the number of new infected peo-
ple at a chemical distance of � = 1 (� = 2) from the index case
at time t = 2. In what follows, we will deduce the expressions
of ε1 and ε2.

a. Deduction of ε2

Let us assume that there are N1 infected people in the first
generation, and none of them have been detected. This event
occurs with probability P(N1)P(¬D|N1) [see Eqs. (A3) and
(A5)]. As illustrated in Fig. 7, every infected person of the
first generation has kI − 1 outgoing cliques, each containing
kC − 1 susceptible individuals. Therefore, following similar
arguments leading up to Eq. (A4), we obtain that every in-
fected person of the first generation will transmit the disease
(on average) to (kI − 1)(kC − 1)β people at a distance of
� = 2 from the index case.

Then, it follows that the average total number of infected
individuals at a distance of � = 2 is given by

ε2 =
kC−1∑
N1=0

(kI − 1)(kC − 1)βN1P(N1)P(¬D|N1),

= (1 − f )(1 − β f )kC−2(kI − 1)(kC − 1)2β2. (A7)

TABLE I. Cases considered in Figs. 11(a) and 11(b).

Case P(kC ) P(kI ) 〈kC〉 VAR(kC )

I Pois(3, 0, 20) Pois(3, 0, 20) 3 3
II Pois(7, 0, 20) Pois(3, 0, 20) 7 7
III Pois(7, 0, 20) Pois(7, 0, 20) 7 7
IV PL(2.0, 2, 100) Pois(3, 0, 20) 6.4 112.4
V PL(1.5, 2, 100) Pois(3, 0, 20) 12.4 319.5

b. Deduction of ε1

As illustrated in Fig. 7, there are kC − 1 − N1 susceptible
members at a chemical distance of � = 1 from the index case
at t = 1. It is easy to see that, at the following time step, the
effective probability of infection for any of these members is

p ≡ 1 − (1 − β )N1 . (A8)

Then, if we denote by N2 the number of these members who
get infected at t = 2, we have that the probability P(N2|N1)
can be written as

P(N2|N1) =
(

kC − 1 − N1

N2

)
pN2 (1 − p)kC−1−N1−N2 . (A9)

Finally, using Eqs. (A8) and (A9), we can estimate the
average number of people becoming infected at time t = 2
as

ε1 =
kC−1∑
N1=0

kC−1−N1∑
N2=0

N2P(N2|N1)(1 − f )N1 P(N1), (A10)

where the factor (1 − f )N1 P(N1) is the probability that the
first generation is composed of N1 infected individuals and
none of them have been detected. Replacing Eqs. (A3) and
(A9) in the last expression, and after algebraic manipulation,
we obtain

ε1 = (kC − 1)(1 − β )[[β(1 − f ) + (1 − β )]kC−2

− [β(1 − β )(1 − f ) + (1 − β )]kC−2]. (A11)

APPENDIX B: ADDITIONAL RESULTS

In Sec. III A, we investigated an SIRQ model on random
networks with cliques and showed results for P(kC ) = δkC ,7

and P(kI ) = δkI ,3, where δ is the Kronecker delta. In what
follows, we will study this SIRQ model for other P(kC ) and
P(kI ) distributions.

1. RR networks with cliques

Here we will present our results for RR networks with
case I: P(kC ) = δkC ,3 and P(kI ) = δkI ,7,
case II: P(kC ) = δkC ,5 and P(kI ) = δkI ,2,
case III: P(kC ) = δkC ,2 and P(kI ) = δkI ,5.
For the simulations, only one person is infected at the

beginning of the dynamic process.
In Figs. 8(a), 8(c), and 8(e), we show a scatter plot of the

fraction of recovered people R at the final stage as a function
of β for several values of f . Similarly, in Figs. 8(b), 8(d),
and 8(f), we show R at the final stage as a function of f for
different values of β.
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FIG. 8. Scatter plot of the fraction of recovered population R at the final stage as a function of β [(a), (c), (e)], and as a function of f [(b),
(d), (f)]. Results were obtained from 103 stochastic realizations on RR networks with kC = 3 and kI = 7 [(a) and (b)], kC = 5, kI = 2 [(c) and
(d)], and kC = 2, kI = 5 [(e) and (f)].

In contrast to what was observed in Sec. III A, here we
do not find any abrupt transition for case III, as shown in
Figs. 8(e) and 8(f). This result may be due to the fact that
cliques are smaller in case III than in cases I and II, so these
cliques have a lower probability of being quarantined. On the
other hand, for cases I and II, we obtain that R exhibits an
abrupt transition for high values of β, as seen in Figs. 8(b)
and 8(d).

In Figs. 9(a)–9(c), we plot the heat-map of the fraction
of recovered individuals when an epidemic occurs (R > 1%)
in the plane β- f . In these figures, we also include the curve
where R0 = 1 [obtained from Eq. (1)]. For all cases, we ob-
serve that this curve predicts well the boundary between the
epidemic and nonepidemic phases.

Now for case II, we measure
(1) the average size of small outbreaks 〈s〉 vs β for

f = 0.32 and different network sizes NI [see Fig. 10(a)],
(2) the distribution of small outbreak sizes for β = 0.87

and f = 0.32 [see Fig. 10(b)].

As in Figs. 2(b) and 2(c), we can see that 〈s〉 has a peak
around β = 0.87, and P(s) decays as a power law. Therefore,
our findings reveal that outbreaks exhibit features of a contin-
uous phase transition around β = 0.87 for case II.

2. Nonregular random networks with cliques

So far, we have focused our attention on random networks
with cliques in which kC and kI follow a delta distribution. In
this section, we show results for random networks with cliques
in which kC and kI follow other probability distributions.
Specifically, we consider

(i) a truncated Poisson distribution, defined as

Pois(λ, kmin, kmax) =
{

c λke−λ

k! if kmin � k � kmax,

0 otherwise,
(B1)

where c is a normalization constant;
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FIG. 9. Heat-map of R in the plane β- f for a RR with cliques with kC = 3 and kI = 7 (a), kC = 5 and kI = 2 (b), and kC = 2 and kI = 5
(c), obtained from stochastic simulations for networks with NI = 106. Simulation results were averaged over 103 stochastic realizations. The
solid white line was obtained from Eq. (1) for R0 = 1.

FIG. 10. (a) 〈s〉 against β (fixing f = 0.32) for RR networks with cliques with kC = 5, kI = 2, and several values of NI . Results were
averaged over 105 realizations. (b) distribution P(s) for β = 0.87, f = 0.32, and NI = 106, obtained from 1.5 × 105 stochastic realizations
(symbols). The solid black line is a guide to the eye, and the dashed red line is a power-law function with exponent τ − 1 = 1.5.

FIG. 11. Scatter plot of the fraction of recovered population R at the final stage as a function of f for cases I–III (a) and cases IV and V
(b); see Table I. Results were obtained from 103 stochastic realizations on random networks with NI = 106.
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FIG. 12. 〈s〉 against f (fixing β = 1) for several values of NI . Panels (a) and (b) correspond to cases II and V, respectively. Results were
averaged over 104 realizations. In the insets, we show the distribution P(s) (in log-log scale) for β = 1, f = 0.36, and NI = 106 (a) and
for β = 1, f = 0.22, and NI = 106 (b). These results were averaged over 2 × 105 and 4 × 104 stochastic realizations for panels (a) and (b),
respectively. Solid lines are a guide to the eye.

(ii) a truncated power-law distribution, defined as

PL(λ, kmin, kmax) =
{

ck−λ if kmin � k � kmax,

0 otherwise,
(B2)

where c is a normalization constant.
In Figs. 11(a) and 11(b), we plot the fraction of recovered

people at the final stage vs f (fixing β = 1) for the cases listed
in Table I. In this table, we also include the mean value of
kC [i.e., 〈kC〉 = ∑

kC
kCP(kC )] and its variance [VAR(kC ) =

〈k2
C〉 − 〈kC〉2]:
Similarly to the results in Sec. B 1, from Figs. 11(a) and

11(b) we note that, as the average clique size increases, the
system tends to exhibit an abrupt transition.

Now, focusing on cases II and V, in Fig. 12 we plot 〈s〉 vs f
(fixing β = 1). Additionally, in the insets we show the proba-
bility distribution of the final number of recovered people for

(i) β = 1 and f = 0.36 (for case II),
(ii) β = 1 and f = 0.22 (for case V).
As in Sec. III A and Appendix B 1, we obtain that 〈s〉 has

a peak around fc(NI ) and P(s) decays as a power law, so
these results indicate that outbreaks exhibit some features of a
continuous phase transition.

In summary, our findings suggest that nonregular networks
with larger cliques tend to exhibit features of both discontinu-
ous and continuous phase transitions.

APPENDIX C: PROBABILITY OF A SMALL OUTBREAK

In Sec. III B, we calculated the probability of a small out-
break, 1 − �, as a function of f (with β = 1) for the case
in which kC and kI follow a delta distribution. Here, we will
generalize our previous equations to compute 1 − � for any
arbitrary probability distributions P(kC ) and P(kI ).

Let us consider a random network with cliques that can be
represented by a bipartite network. We define the following
generating functions:

(1) G0C[x] = ∑
kC

P(kC )xkC , which is the generating
function for the distribution P(kC ), and G1C[x] =∑

kC
kCP(kC )/〈kC〉xkC−1 which is the generating function

for the distribution kCP(kC )/〈kC〉,
(2) G0I [x] = ∑

kI
P(kI )xkI , which is the generating

function for the distribution P(kI ), and G1I [x] =

∑
kI

kI P(kI )/〈kI〉xkI −1 which is the generating function
for the distribution kI P(kI )/〈kI〉.

In the same way as in Sec. III B, we define φ as the
probability that an infected individual (reached by a link)
does not generate an epidemic. For any arbitrary distribu-
tion P(kC ) and P(kI ), we have that φ obeys the following
equation:

φ = G1I [G1C[(1 − f )φ] + 1 − G1C[1 − f ]], (C1)

=
∑

kI

kI P(kI )

〈kI〉 {G1C[(1 − f )φ] + 1 − G1C[1 − f ]}kI −1,

(C2)

The right-hand side of the above equation is the probability
that an individual “ j” (reached through a link) does not gener-
ate an epidemic. This is due to the fact that none of the kI − 1
outgoing cliques generates an epidemic, because one of the
following two events occurs in every clique:

(1) The outgoing clique has at least one infected member
who is detected with probability 1 − G1C[1 − f ], so the entire
clique is quarantined.

(2) The outgoing clique is not isolated, but it will not be
able to cause an epidemic with probability G1C[(1 − f )φ].

On the other hand, the probability 1 − � that a randomly
chosen individual will not generate an epidemic is given
by

1 − �= f + (1 − f )G0I [G1C[(1 − f )φ] + 1 − G1C[1 − f ]],

(C3)

where the second term on the right-hand side of this equa-
tion has an interpretation similar to that of Eq. (C1). Following
a procedure similar to that in Sec. III B, it can be seen that the
critical probability of detection fc at which a phase transition
occurs is implicitly given by

1 = (1 − fc)G′
1I (1)G′

1C[(1 − fc)], (C4)

where G′
1I (x) ≡ dG1I/dx and G′

1C (x) ≡ dG1C/dx. In particu-
lar, for the case where kC and kI follow a Poisson distribution
[i.e., Pois(λ, 0,∞)], the above equation can be solved

054304-11



VALDEZ, VASSALLO, AND BRAUNSTEIN PHYSICAL REVIEW E 107, 054304 (2023)

FIG. 13. Probability of a small outbreak (1 − �) vs f for β = 1 and several network topologies: RR networks with P(kC ) = δkC ,5

and P(kI ) = δkI ,2 (a), non-RR networks with P(kC ) = Pois(7, 0, 20) and P(kI ) = Pois(3, 0, 20) (b), and non-RR networks with P(kC ) =
PL(1.5, 2, 100) and P(kI ) = Pois(3, 0, 20) (c). The line corresponds to the theory given by Eqs. (C1)–(C3), and symbols are simulation
results averaged over 104 network realizations with NI = 105.

explicitly in terms of the Lambert W function [56]:

fc = 1 −
W

(
e〈kC 〉
〈kI 〉

)
〈kC〉 . (C5)

To see the validity of our equations, we run numerical
simulations for the following networks:

case I: RR networks with P(kC ) = δkC ,5 and P(kI ) = δkI ,2,
where fc = 0.293 [computed from Eq. (C4)],

case II: non-RR networks with P(kC ) = Pois(7, 0, 20)
and P(kI ) = Pois(3, 0, 20), where fc = 0.369,

case III: non-RR networks with P(kC ) = PL(1.5, 2, 100)
and P(kI ) = Pois(3, 0, 20), where fc = 0.226.

In Fig. 13, we show the probability of an outbreak as a
function of f (with β = 1) obtained from our simulations and
Eqs. (C1)-(C3). As we can see, the agreement between theory
and simulations is excellent.

FIG. 14. Scatter plot of R vs I0 (fixing β = 1) obtained from numerical simulations on random networks where P(kC ) = Pois(7, 0, 20)
and P(kI ) = Pois(3, 0, 20) (a) and P(kC ) = PL(1.5, 2, 100) and P(kI ) = Pois(3, 0, 20) (b). We set the probability of detection to f = 0.40
for panel (a), and f = 0.25 for panel (b). Note that in both cases we used f > fc (see the value of fc in Appendix C). Numerical results
were obtained from 103 stochastic realizations (a) and 3 × 103 stochastic realizations (b) on networks with NI = 106 (black symbols) and
NI = 8 × 106 (red symbols). The insets show the susceptibility of the number of recovered people, χ , as a function of I0 (for NI = 8 × 106),
where I∗

0 is the peak position.
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FIG. 15. I∗
0 as a function of f − fc (fixing β = 1) for random networks with cliques where P(kC ) = δkC ,7 and P(kI ) = δkI ,3 (a), P(kC ) =

Pois(7, 0, 20) and P(kI ) = Pois(3, 0, 20) (b), and P(kC ) = PL(1.5, 2, 100) and P(kI ) = Pois(3, 0, 20) (c). Symbols represent simulation results
in networks with NI = 8 × 106 and solid lines are a guide to the eye. The number of realizations was 250 (a), 1000 (b), and 3000 (c).

APPENDIX D: BACKWARD BIFURCATION:
ADDITIONAL RESULTS

In Sec. III C, we found (for β = 1) that a backward bifurca-
tion phenomenon emerges for RR networks with cliques with
kC = 7 and kI = 3. Here, we will show that this phenomenon
also occurs on networks where kC and kI follow other proba-
bility distributions.

In Fig. 14, we plot the fraction of recovered individuals
at the final stage as a function of I0 (fixing β = 1) for the
following cases:

case I: P(kC ) = Pois(7, 0, 20) and P(kI ) = Pois(3, 0, 20),

case II: P(kC )= PL(1.5, 2, 100) and P(kI )= Pois(3, 0, 20).
As in Sec. III C, we can see that R exhibits an abrupt jump

around a threshold I∗
0 for β = 1, where I∗

0 is the peak position
of the susceptibility [55], defined as

χ = NI
〈R2〉 − 〈R〉2

〈R〉 . (D1)

Similar results can be obtained for β = 0.8 and β = 0.9 (not
shown here).

Finally, in Fig. 15, we display the threshold I∗
0 vs f − fc

for different network structures.
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