
PHYSICAL REVIEW E 107, 054302 (2023)

Deterministic and stochastic cooperation transitions in evolutionary games on networks
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Although the cooperative dynamics emerging from a network of interacting players has been exhaustively
investigated, it is not yet fully understood when and how network reciprocity drives cooperation transitions.
In this work, we investigate the critical behavior of evolutionary social dilemmas on structured populations
by using the framework of master equations and Monte Carlo simulations. The developed theory describes
the existence of absorbing, quasiabsorbing, and mixed strategy states and the transition nature, continuous or
discontinuous, between the states as the parameters of the system change. In particular, when the decision-
making process is deterministic, in the limit of zero effective temperature of the Fermi function, we find that
the copying probabilities are discontinuous functions of the system’s parameters and of the network degrees
sequence. This may induce abrupt changes in the final state for any system size, in excellent agreement with the
Monte Carlo simulation results. Our analysis also reveals the existence of continuous and discontinuous phase
transitions for large systems as the temperature increases, which is explained in the mean-field approximation.
Interestingly, for some game parameters, we find optimal “social temperatures” maximizing or minimizing the
cooperation frequency or density.
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I. INTRODUCTION

Cooperation and defection are both ubiquitous behaviors
in natural societies, including indeed those of humans. While
defectors usually receive the highest benefits when acting self-
ishly, cooperators help others in an altruistic way at their own
cost, and, based on the “survival of the fittest” principle, de-
fection should prevail against cooperation. Yet nature provides
us with numerous examples in which cooperative interactions
among agents (be it humans, animals, micro-organisms, or
genes) are at the origin of more complex and functional
systems [1–4].

Understanding the mechanisms driving the evolution of co-
operation within a population is at the core of the evolutionary
game theory [5,6]. Under this mathematical framework, social
dilemmas are modeled as games among agents whose strate-
gies are allowed to spread within the population according
to their payoffs through a replicator dynamics [7,8]. One of
the mechanisms known to favor cooperation is the reciprocity
induced by the spatial distribution of the players as shown
by Nowak and May [9]. When interactions are no longer
well-mixed and players are distributed in a spatial/topological
structure, cooperators can cluster together and might survive
surrounded by defectors, changing the mean-field equilibrium
panorama of many games [10–13].

Since the seminal work by Nowak and May [9], and
with the rapid development of the complex networks field
in the past few decades [14–16], a lot of research has been
focused on the role of the underlying network topology in
the emergence of cooperation, including aspects like network
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heterogeneity both theoretically [17,18] and experimentally
[19–22], the presence of a layered structure describing the
different types of social relationships [23,24] and degree
correlations among layers [25], or game refinements by in-
troducing topology-dependent payoffs [26], and the influence
of an update rule and connectivity on the outcome dynamics
of structured populations [27,28].

From a statistical physics perspective [29,30], several at-
tempts have been made to provide rules that predict transitions
to collective states of cooperation at critical points, involv-
ing the structure connectivity and the game parameters. For
example, Ohtsuki et al. [31] using mean-field and pair ap-
proximations derived a simple condition stating that the ratio
of benefit to cost of the altruistic act has to exceed the mean
degree to favor cooperation. Konno [32], however, suggests
that what really matters is the mean degree of the nearest
neighbors. Recently, Zhuk et al. [33] showed that the unique
sequence of degrees in a network can be used to predict for
which game parameters major shifts in the level of cooper-
ation can be expected; this includes phase transitions from
absorbing to mixed strategy phases, characterized by agents
switching intermittently between cooperation and defection.
Recently, Zhuk et al. [33] showed that the unique sequence
of the different degrees present in a network is sufficient to
predict which game parameters give rise to significant shifts in
the level of cooperation. Using finite-size scaling, Menon et al.
[34] investigated the different phase transitions between those
collective states, and they found critical exponents dependent
on the connection topology. Phase transitions in evolution-
ary cooperation induced by lattice reciprocity have also been
investigated using the standard statistical mechanics of macro-
scopic systems, showing that the onset of the phase transition
cannot be captured by a purely mean-field approach [35,36].
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In addition, systematic investigations on how evolutionary
games and processes evolve towards the stationary state in the
thermodynamic limit revealed the existence of Griffith phases
induced by either quenched node disorder [37] or even by
the topological disorder of a complex network in the absence
of quenched randomness [38]. The slow algebraic relaxation
dynamics associated with these rare phases make it difficult
to achieve the final stationary state and, thus, to interpret the
numerical results [8,39].

Indeed, due to the intrinsic complexity of games on graphs,
their analytical treatment is a challenging task [40–43]. Here
we present a general analytical approach based on the mas-
ter and the Fokker-Planck equations derived for a network
of pairwise engaged agents whose reproductive success, in
terms of the replication rate of their strategy, depends on
the payoff obtained during the interaction. Each agent in-
teracts with her neighbors by choosing one of two possible
strategies (cooperation or defection), and the resulting pay-
off is calculated through a matrix that accounts for the full
space of two-player social dilemmas. We generalize the re-
sults obtained in [33] by examining in detail the steady and
metastable states and the nature (continuous or discontinuous)
of the phase transitions between absorbing, quasiabsorbing,
and mixed strategy states using the master and Fokker-Planck
equations for any system size and any effective temperature
describing how often a player makes irrational choices. In
particular, when the decision-making process is deterministic,
in the limit of zero effective temperature of the Fermi func-
tion, we find that the copying probabilities are discontinuous
functions of the system’s parameters and the sequence of the
network degrees. This may induce abrupt changes in the final
state for any system size, in excellent agreement with the
Monte Carlo simulation results. Our analysis also reveals the
existence of continuous and discontinuous phase transitions
for large systems as the temperature increases, in agreement
with an analytical mean-field approximation. Interestingly, we
find optimal “social temperatures” for some game parame-
ters, maximizing or minimizing the cooperation frequency or
density.

The work is organized as follows. In Sec. II we define
the model (game dynamics, updating rule, and interaction
network) and introduce the notation used throughout this
work. In Sec. III we study the most general master equa-
tion describing the state of the system, and we identify some
steady-state solutions and discontinuity points depending on
the parameters of the system. The mean-field case is thor-
oughly investigated in Sec. IV by means of the corresponding
Fokker-Planck equation, which we solve analytically by artifi-
cially removing the singularities at the pure absorbing states of
the system. Monte Carlo numerical simulations are provided
in Sec. V to corroborate the analytical predictions of mean
field, both for all-to-all interactions and for more complex
interaction networks. Finally, we summarize our results in the
Conclusion.

II. MODEL DEFINITION

We consider a population of N agents playing a 2 × 2
game, where each agent can adopt a strategy of cooperation
(C) or defection (D) that can be changed depending on her

performance, her neighbors’ performance, and some degree
of randomness. The population connectivity is structured in
a connected and undirected network represented by the adja-
cency matrix A, such that Aμ,ν = Aν,μ = 1 if nodes μ and ν

are neighbors, while Aμ,ν = Aν,μ = 0 otherwise. We denote
by � the set of all nodes and by Vσ = {ν ∈ � |Aσ,ν = 1} the
set of neighbors of a given node σ . The number of elements
of Vσ is the degree of σ , kσ = ∑

ν Aσ,ν [14]. Throughout this
work, in addition to the complete graph (CG) describing all-
to-all interactions, we will consider different graph-structured
populations ranging from random regular graphs (RR), to
Erdős-Rényi random graphs (ER) [44], to scale-free networks
(SF) using the Barabási-Albert model [45].

As any node σ ∈ � is always occupied by an agent, for our
discussion it is useful to use the Boolean variables cσ and dσ ,
indicating if σ holds a cooperator or a defector, respectively.
Then, it is readily seen that cσ , dσ ∈ {0, 1}, cσ + dσ = 1, and
cσ dσ = 0. As a consequence, in order to specify the state S
of the system at a given time t , we only need the set S =
{cσ | σ ∈ �}.

The dynamics, including Monte Carlos simulations, un-
folds in several steps:

(i) First, the network, as given by its adjacency matrix A,
and an initial state S0 are selected.

(ii) All agents play the game with their neighbors. The
resulting payoff of a dyadic interaction is given by the payoff
matrix:

M =
C D

C R S
D T P

. (1)

The values R, S, T , and P classically represent the reward for
mutual cooperation (R), the sucker’s payoff (S), the temptation
to defect (T ), and the punishment for mutual defection (P).
This way, the payoff gσ of an agent at node σ depends on
the parameters of the matrix M, her state, and the state of her
neighbors as

gσ = cσ

∑
ν∈Vσ

(Rcν + Sdν ) + dσ

∑
ν∈Vσ

(T cν + Pdν ). (2)

(iii) After the play, an agent at σ and one of her neighbors
at ν are selected at random. The former copies the strategy of
the latter with a probability

pσ,ν = 1

1 + exp
(−�gσ,ν

θ

) , (3)

where θ is a non-negative parameter playing the role of an
effective temperature (tuning the probability of an irrational
choice) and

�gσ,ν = gν − gσ

T max(kσ , kν )
(4)

is a normalized payoff difference [46].
(iv) The time t and the state S of the system are updated:

t → t + t0, S → S ′, where t0 is an arbitrary unit of time.
(v) The steps (ii)–(iv) are repeated until the system reaches

a stationary consensus state, or the maximum number of time
steps tmax is consumed.

The proposed updating dynamics given by Eq. (4) is
the usual Fermi rule for regular connectivity structures [8]

054302-2



DETERMINISTIC AND STOCHASTIC COOPERATION … PHYSICAL REVIEW E 107, 054302 (2023)

except for the normalization factor T max(kσ , kν ) in the pay-
off difference. This normalization is taken from previous
studies [17,18,33] where the probability of an agent σ adopts
the strategy of an agent ν given by (gν − gσ )/ max(kσ , kν )T .
The reason behind our choice is to have a payoff difference
bounded between 0 and 1 and to properly account for the
effect of the temperature when comparing different network
structures. The updating rule is thus equivalent to the tradi-
tional one with the appropriate tuning of the game parameters;
it exhibits the same absorbing states and supports cooperation
via the mechanism of network reciprocity.

For zero effective temperature (θ = 0), the copying mech-
anism is (almost) deterministic: if �gσ,ν > 0, then node σ

always copies the strategy of node ν (pσ,ν = 1), while nothing
changes when �gσ,ν < 0 (pσ,ν = 0). In the tie case �gσ,ν =
0, the copying probability is pσ,ν = 1

2 . In this case (θ = 0) and
for a very large and well-mixed population, four different cat-
egories of games have been extensively studied as a function
of the parameters R, S, T , and P: Harmony, Snowdrift, Stag
Hunt, and Prisoner’s Dilemma. The Harmony game represents
a category of games satisfying R > S > P and R > T > P
where full cooperation is the only possible stable outcome in
a population [47], while in the Prisoner’s Dilemma, T > R >

P > S, the evolutionary stable strategy is a whole population
of defectors [48]. The other two categories represent, respec-
tively, the classes of anticoordination and coordination games.
In the Snowdrift game [49], T > R > S > P, full defection
and cooperation are unstable and the best response is always
doing the opposite of your opponent, giving rise to a mixed
strategy state. In the Stag Hunt game [50], R > T > P > S,
players either always cooperate or always defect.

In the opposite temperature limit, when θ → ∞, the model
reduces to the well-known Voter Model [51–53]. In this case,
the dynamics is independent of the payoffs (pσ,ν → 1

2 ), and
the nodes blindly copy the state of a randomly chosen neigh-
bor. In our study, we will consider the effects of small and
intermediate values of θ on the final state of the system. More-
over, while in our theoretical study we explore all possible
values of the parameters (effective temperature and parame-
ters of the payoff matrix), in the numerical simulations we
restrict ourselves to the values R = 1 and P = 0.

III. THEORETICAL DESCRIPTION

A. Master equation

Due to the stochastic character of the dynamics and the
initial state S0, we consider the probability P (S, t ) of finding
the system at state S at a given time t . The dynamics is
Markovian and completely determined by the probability rates
of the elementary transitions:

(i) A change of a defector at a node σ to a cooperator,

cσ = 0 −→
π+

σ

cσ = 1, (5)

with a rate π+
σ .

(ii) A change of a cooperator to a defector,

cσ = 1 −→
π−

σ

cσ = 0, (6)

with a rate π−
σ .

Note that the dynamics can be seen as a birth-death pro-
cess, hence it is suitable for being analyzed as in previous
works [13,54]. Taking into account the steps (ii) and (iii) of
the evolution given in the previous section, the rates can be
written as

π+
σ = dσ

N kσ t0

∑
ν∈Vσ

cν pσ,ν, (7)

π−
σ = cσ

N kσ t0

∑
ν∈Vσ

dν pσ,ν, (8)

where pσ,ν is provided by Eq. (3).
The probability P (S, t ) obeys the following master

equation:

∂tP (S, t ) =
∑
σ∈�

[(E+
σ − 1)π−

σ P (S, t )

+ (E−
σ − 1)π+

σ P (S, t )], (9)

where ∂tP (S, t ) ≡ 1
t0

[P (S, t + t0) − P (S, t )] is the discrete
time derivative, and the new operator E+

σ (E−
σ ) acts on any

function of the state of the system by increasing (decreasing)
the number of cooperators at node σ by 1.

The master equation cannot be solved analytically in
general. Nevertheless, some solutions can be identified and
analyzed upon changing the parameters of the dynamics
(effective temperature and game parameters of the payoff
matrix). In particular, we will be concerned with the values of
the parameters for which there are major changes in the mean
fraction of cooperators 〈ρ〉, defined in terms of the probability
function P (S, t ) as

〈ρ〉 =
∑
S

1

N
∑
σ∈�

cσP (S, t ), (10)

where the sum
∑

S is over all states.

B. Steady, absorbing, and quasiabsorbing states

We assume that, for any initial state, the system always
reaches a steady or metastable state. The steady states are
characterized by a probability function P (S ) verifying∑

σ∈�

(E+
σ − 1)π−

σ P (S ) + (E−
σ − 1)π+

σ P (S ) = 0 (11)

for all states S . The system (11) has an infinite number of solu-
tions, including the absorbing states for which π−

σ = π+
σ = 0

for all nodes. It is readily seen that the absorbing states are,
for any value of θ , the consensus states {cσ = 1} (full cooper-
ation) and {cσ = 0} (full defection).

In the case of positive effective temperature θ > 0, the
probability of copying a neighbor’s strategy is always positive,
pσ,ν > 0. Hence, for finite system size N < ∞, there is a
nonzero probability for the system to reach and get trapped
into either of the two consensus states starting from any initial
state. As a consequence, the only steady-state solutions to
the master equation when θ > 0 and N < ∞ are of the form
P(S ) = pcPc(S ) + pdPd (S ), i.e., linear combinations of the
probability functions Pc (full cooperation) and Pd (full defec-
tion), with pc and pd representing the probabilities of reaching
the cooperation and defection consensus states, respectively.
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FIG. 1. Raster plots for the evolutionary dynamics of a popu-
lation on a random regular graph for two different game settings
displaying quasiabsorbing states (top panel, S = −0.4, T = 0.55)
and mixed strategy states (bottom panel, S = 0.4, T = 1.55). Blue
(yellow) [light gray (dark gray)] colors encode defection (coopera-
tion) strategies. The population size is N = 600 and each player is
randomly connected to k = 3 neighbors. The rest of the parameters
are R = 1 and P = θ = 0.

However, the case of zero temperature (θ = 0) requires
more careful analysis. Apart from the absorbing states, we find
that depending on the parameters and the network structure,
the system can also get trapped in either a set of what can be
called quasiabsorbing states or a set of mixed strategy states.
We show two raster plot examples in Fig. 1. In the quasiab-
sorbing states, which appear mainly but not only when S < 0
and T < 1 [see Fig. 1(a)], connected domains of nodes with
frozen strategy are separated by a frontier of oscillating nodes.
In addition, the system can also get trapped in a set of mixed
strategy states, in which all nodes change their strategy along
the evolution. These latter states appear for S > 0 and T > 1,
as shown in Fig. 1(b). From a dynamical viewpoint, both the
quasiabsorbing and mixed strategy states form absorbing sets
of states (once reached, the system has no way to leave them).

The quasiabsorbing states have been previously studied in
a similar model [18], where they were the “locally fluctuating
strategies.” In that work, the dynamic rules are different: An
agent never copies the strategy of others with a smaller payoff,
but that of a higher payoff with some probability. That is, the
rule includes a deterministic part. Hence, we conclude that,
for the existence of the quasiabsorbing states, at least some
degree of determinism in the update rule is required.

Mathematically, as already noted, the quasiabsorbing and
mixed strategy states form a self-absorbing subset of states,
where the absorbing states are a special limiting case of the
former. Absorbing, quasiabsorbing, and mixed strategy states
make the dynamics nonergodic, i.e., only a subset of states
can be explored from a given initial condition. Only with a big
enough effective temperature, and disregarding the absorbing
states, can we ensure an ergodic dynamics.

Finally, it is worth stressing that when the size of the
system increases and/or for some values of its parameters, the
time required to reach the absorbing and/or quasiabsorbing

states may grow very fast, both for θ = 0 and θ > 0. This
way, at the relevant physical scales, the system is very often at
(macroscopic) metastable states. This already happens in the
Voter Model [55], which is the θ 	 N limit of our model.
But metastability also occurs in the limit of small effective
temperature when, for instance, the system stays close to the
quasiabsorbing states. Moreover, the evolution towards a final
state is often affected by the growth of cooperation/defection
domains, with the eventual appearance of Griffith phases
[38,39,56,57]. Metastability of mixed strategy states already
happens with all-to-all interactions, as we analyze in Sec. IV.

C. Transition points

The system’s parameters, together with the initial condi-
tions, determine the evolution and final states of the system
through the dependence of the rates π± on them. This is
very apparent, for instance, when analyzing the steady-state
solutions Pst to the master equation. Consider Eq. (11) for Pst,
which can be written in matrix form as

W 
Pst = 
0, (12)

where W represents the 2N × 2N matrix of coefficients, and
the vector 
Pst is obtained by evaluating Pst at all the 2N pos-
sible states. For a finite-size system (N < ∞) with positive
temperature (θ > 0), the rates π± and, hence, all the compo-
nents of W are smooth functions of the parameters. Therefore,

Pst (also Pst) depends continuously on the parameters of the
system. However, for θ = 0 the copying probability pσ,ν in
Eq. (3) is a discontinuous function of the system parameters
(see Appendix A for details). The discontinuities may induce
jumps on the steady-state solutions as we change the param-
eters. Similar arguments can be applied for the metastable
states as well. Taking the limit θ → 0 in the expression (3),
the possible discontinuities can be localized with the condition

�gσ,ν = 0, (13)

provided two agents with different strategies are located at σ

and ν. Using Eqs. (2) and (4) with condition (13), we derive
the following conditions (see Appendix A for further details):

mR + (kσ − m)S = nT + (kν − n)P,

0 � m � kσ − 1, 1 � n � kν (14)

for natural numbers m and n, and when there is a nonzero
probability of finding a cooperator with degree kσ with at
least one defector neighbor with degree kν . Note that the static
condition (14), given by the degree sequence of the network, is
restricted by an additional dynamic condition, which induces
an eventual dependence on the initial conditions.

The previous abrupt changes in the distribution function
for θ = 0 translate into discontinuities in the average coop-
eration 〈ρ〉, as illustrated in Fig. 2. Throughout the work,
unless mentioned otherwise, all simulations correspond to net-
works with N = 1000, different topologies, tmax = 3 × 104

maximum evolution time steps, payoff parameters R = 1, and
P = 0. All the results averaged over at least 100 independent
simulations (realizations). Moreover, all initial (microscopic)
states S0 have the same number of defectors and cooperators
randomly placed at the nodes. In Fig. 2(a) we show the results
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FIG. 2. Deterministic cooperation transitions: (a) Average co-
operation observed in Monte Carlo simulations of random regular
graphs with N = 1000 nodes and k = 3 as a function of T for three
different values of S (see the legend). Vertical lines correspond to
T values solving Eq. (14) for each one of the values of S used
(S = −0.4, red continuous; S = 0, dotted blue; and S = 0.4, dashed
black). The left red (right black) circle corresponds to the game
dynamical settings used in Fig. 1(a) [(b)]. (b) Average cooperation
as a function of T when S = 0.4 for N = 1000 networks with dif-
ferent degree distributions and increasingly longer degree sequences.
Vertical gray dashed lines correspond to the T fulfilling Eq. (14) for
the case of the ER 〈k〉 = 4 networks (k = {2 : 12} in our ensembles),
which encloses the previous k = {3}, {4}, {4, 7} cases. See the main
text for the rest of the parameters.

for random regular networks with all players having k = 3
neighbors (therefore 0 � m � 2 and 1 � n � 3), as a function
of T . Equation (14) predicts that discontinuities may only
occur at particular values of T , shown as vertical dashed lines.
Indeed, when we choose values of S exploring the different
possible games in the parameter space, we observe that, in all
cases, whenever there is a jump in the average cooperation, it
precisely coincides with one of the T values fulfilling Eq. (14).
The accuracy of this equation, which relates topological fea-
tures and game dynamics at the microscopic level, holds for
any network degree distributions as shown in the bottom panel
of Fig. 2. As the list of possible different degrees present in the
network becomes longer and the degree distribution becomes
more complex (from random regular to ER and SF configu-
rations), the number of combinations matching the condition
given by Eq. (14) increases, even if not all of them give rise to
an actual abrupt change in the cooperation frequency. There-
fore, the number of transitions grows in number and decreases
in magnitude, and finally tends to fade as a continuum. This is

FIG. 3. (a) Average cooperation observed in Monte Carlo sim-
ulations of graphs with N = 600 nodes and ER and SF topologies
of different 〈k〉 values. Vertical dashed gray lines correspond to the
possible transitions for ER, 〈k〉 = 8, which includes the 〈k〉 = 4, 6
cases. Game parameters: S = 0, θ = 0. (b) Raster plot realization for
the game and graph conditions represented by the blue dot in (a) after
discarding a transient of t = 104 time steps.

even more clear in Fig. 3 where a direct comparison between
SF and ER networks with increasing mean degrees is made.
First, as it is already known [17], heterogeneous networks
are better catalysts for cooperation and support this trait for
longer ranges of the parameter T . Second, notice the much
higher density of the possible transitions resulting from an
ER network with 〈k〉 = 8. The plotted set includes, by con-
struction, the transitions for 〈k〉 = 4 and 6 and many of the
transitions for the SF since the sequence of unique degrees for
the ER is a subset of the much larger degree sequence in the
SF. In all cases investigated, each one of the significant drops
in cooperation takes place at one specific transition line. And
third, as the mean degree increases, both types of complex
networks will eventually become all-to-all connected, and the
transition from full cooperation to full defection occurs at
T = 1.

Once again, we notice that this is consistent with the fact
that, for the (static) condition (14) to be fulfilled, we need the
additional (dynamic) condition of having a cooperator with
degree kσ and a defector neighbor with degree kν .

Notice that even if the macroscopic evolution of the av-
eraged cooperation 〈ρ〉 in Fig. 2(a) shows similar qualitative
characteristics for all the values of S, with dramatic changes
separated by long stable plateaus, the microscopic states in-
volved are very different, as discussed in the previous section.
For S < 0 (red curve), the discontinuous transitions occur
between absorbing and quasiabsorbing states, as in Fig. 1(a),
while in the case S > 0 (black curve) the cooperation ab-
sorbing state yields to mixed strategy states, see Fig. 1(b),
and then to quasiabsorbing states with a very small level of
cooperation. Finally, for the S = 0 (blue) curve, the transition
is between the cooperation state and a set of quasiabsorbing
states very close to the defection consensus.
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FIG. 4. Stochastic cooperation transitions in a random regular network with N = 1000 nodes and k = 3. (a), (b) Average cooperation as a
function of T for several values of the pseudotemperature θ and (a) S = −0.4 and (b) S = 0.4. In both panels, vertical dashed lines correspond
to the T values predicted by Eq. (14) using the constant S value and the rest of parameters. (c), (d) Average or probability of full cooperation as
a function of θ for several values of T resulting from different Monte Carlo simulations for (c) S = −0.4 and (d) S = 0.4. (e), (f) Scatter plots
showing the average cooperation or probability of complete cooperation as a function of θ for (e) T = 0.65 and S = −0.4 [black central curve
in panel (c)] and (f) T = 1.2 and S = 0.4 [blue curve, second from above in panel (d)]. Insets show the corresponding standard deviation. The
rest of the parameters in all panels are R = 1 and P = 0.

As long as θ > 0 is small enough, we also expect important
changes in the behavior of the system when conditions (14)
hold. As shown in Figs. 4(a) and 4(b), the presence of a
stochastic component in the choice of strategy (θ > 0) pro-
motes a smoother evolution of the average cooperation as a
function of T , while the steepest changes still occur near a
predicted transition point given by Eq. (14).

Nevertheless, as the temperature increases, the behavior
critically depends on whether the system is in quasiabsorb-
ing states, Fig. 4(c), or passes through mixed strategy states,
Fig. 4(d). In the former case, for some values of the param-
eters not close to the abrupt transitions, and for very small
θ , quasiabsorbing states are “stable” up to a critical tempera-
ture θ c [θ c ∼ 0.02 in Fig. 4(c)]. Beyond θ c, quasiabsorbing
states are “destroyed” in favor of one of the two possible
absorbing states, pure cooperation or pure defection, being
the probability of the selection dependent on the values of T
and θ . This is plain in the scatter plot in Fig. 4(e), in which
each dot is the cooperation density from a single Monte Carlo
simulation and, for θ > θc, they are placed at either 1 (full
cooperation) or 0 (full defection). These numerical results
suggest the existence of a discontinuous thermodynamic-like

transition (for N 	 1) separating two distinct phases. For
θ < θc the system is in a (macroscopic) mesoscopic state
around the quasiabsorbing states (identified at θ = 0), while
for θ > θc the system reaches either full cooperation or de-
fection with a temperature-dependent probability. This picture
is also sustained by the presence of a peak in the dispersion
of dots (standard deviation) around θc, as shown in the inset
of Fig. 4(e). Also remarkable is the resonant behavior of the
probability of reaching consensus with the temperature θ for
some values of T . As the temperature increases, the average
cooperation is promoted up to a maximum; beyond this peak,
higher values of θ favors defection instead.

On the other hand, the mixed strategy states are more
robust in a broad range of temperatures, and we observe a
monotonous behavior with increasing/decreasing or constant
values of the average fraction of cooperators as the tempera-
ture θ rises; see Fig. 4(d). However, a nonmonotonic behavior
of the cooperation density as a function of θ is also observed
for some values of T [see, for example, T = 1.18 in Fig. 4(d)].
In this case, the system loses the pure cooperation state as the
temperature increases, reaching a minimum of cooperation
for intermediate temperatures. Here as well, the simulations
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FIG. 5. Mean field and the effective potential in the limit θ � N . (a)–(c) Cooperation density in the (T, S) plane for a complete graph and
effective temperatures (a) θ = 0, (b) θ = 0.05, and (c) θ = 0.5. (d)–(f) Effective potential functions V (ρ ) for the parameter settings marked
with letters from A to F in panel (a). Each panel corresponds to the same effective temperature as in the upper panel, and the color code is the
same as for the symbols labeled in panel (a). Notice the different vertical scales. (g)–(i) Cooperation density in the (T, S) plane for a random
regular graph with k = 3 and the same temperatures as in the top and middle panels. The white dashed lines in panel (g) are solutions to
Eq. (14) for the (n, m) � k pairs (1,1),(1,2),(2,2),(3,2). The initial cooperation level is set to 50% and networks have N = 100 nodes.

suggest that the temperature acts as a control parameter driv-
ing the system through a discontinuous phase transition, but
this time between mixed strategy states and full cooperation,
as shown in the scatter plot of Fig. 5(f) for T = 1.2.

Finally, it is worth noting that, on the one hand, the abrupt
behavior of the system for θ � 0 given by conditions (14)
does not require us to take the thermodynamic limit (N →
∞), i.e., it occurs for any system size. On the other hand, the
first-order-like transitions suggested by Figs. 5(e) and 5(f) do
require the thermodynamic limit.

IV. MEAN FIELD

In the case of having an all-to-all connectivity, all agents
can be regarded as physically equivalent, and thus the system
can be fully described with the probability function P (ρ, t ) of
finding a fraction of cooperators ρ at a time t . This probability

is defined as

P (ρ, t ) =
∑ρ

P (S, t ), (15)

where
∑ρ stands for the sum over all states with the same

fraction of cooperators ρ. Using that P (S, t ) = P (S ′, t ) for
any two states S and S ′ with the same ρ, Eq. (15) can be
expressed as

P (ρ, t ) = N !

(Nρ)![N (1 − ρ)]!
P (S, t ) (16)

for any state S with a fraction of cooperators ρ.

A. The master equation

A master equation for the P (ρ, t ) can be obtained using
Eq. (16) and by summing both sides of Eq. (9) over all states
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S with a fraction of cooperators ρ,

∂tP (ρ, t ) = (E+ − 1)π−P (ρ, t ) + (E− − 1)π+P (ρ, t ),

(17)

where E+ (E−) increases (decreases) the argument of any
function of ρ by 1/N , and the new rates π± read

π+ = N
(N − 1)t0

ρ(1 − ρ)p+, (18)

π− = N
(N − 1)t0

ρ(1 − ρ)p−, (19)

with

p± =
[

1 + exp

(−�g±

θ

)]−1

(20)

and

�g± = ∓ 1

T (N − 1)
{TNρ + P[N (1 − ρ) − 1]

− [R(Nρ − 1) + SN (1 − ρ)]}. (21)

At this level, our model describes the dynamics of a random
walk with site-dependent hopping rates and two absorbing
(consensus) states, as already reported in [58,59] for similar
models. Here, however, we are not interested in the stochastic
properties of fixation [58] but in the behavior of the system
after “removing” the absorbing nature of the consensus states,
which is the relevant one for large enough system sizes.

For the typical values of N (not necessarily in the ther-
modynamic limit), Eqs. (18), (19), and (21) can be very
accurately approximated by

π± � 1

t0
ρ(1 − ρ)p±, (22)

�g±

θ
� ∓[tθρ + sθ (1 − ρ)], (23)

where the parameters tθ and sθ are defined as

tθ = T − R

T θ
, (24)

sθ = P − S

T θ
. (25)

Notice that, under these simplifications, all the system depen-
dency on the payoff parameters and the effective temperature
θ occurs through these two new parameters tθ and sθ . In
particular, this means that, with high accuracy, a change in the
effective temperature (beyond θ = 0) is equivalent to keeping
the temperature fixed and appropriately changing the game’s
parameters. This is a generalization of the well-known results
found with the replicator dynamics, in which all the depen-
dence on the game parameters occurs through T -R and P-S
[8]. In our case, we realize that the same property is conserved
for moderate system sizes (not necessarily N → ∞), with the
additional appearance of the effective temperature θ . Further
considerations will be given at the end of this section.

In the continuum limit, ∂t is the time derivative and, for
N 	 1, ρ ∈ [0, 1] becomes a continuum variable. Then, ex-
panding the right-hand side of Eq. (17) up to order ( 2

N )2 we

obtain the following Fokker-Planck equation:

∂tP (ρ, t ) � − 1

N ∂ρ[(π+ − π−)P (ρ, t )]

+ 1

2N 2
∂2
ρ [(π+ + π−)P (ρ, t )], (26)

which includes two contributions to the time evolution of
P (ρ, t ). The first one on the right-hand side of the equation is
the drift term, which is proportional to

π+ − π− = ρ(1 − ρ)(p+ − p−) (27)

and vanishes for ρ = 0, 1 (the absorbing states) and for p+ =
p−. This latter condition gives rise to

ρ � ρ0 ≡ sθ

sθ − tθ
= 1 + tθ

sθ − tθ
. (28)

The second contribution is the diffusion term which also van-
ishes for ρ = 0 and 1 as expected, but it is positive in the
interval ρ ∈ (0, 1). In fact, we have p+ + p− = 1 and the
diffusion term is proportional to π+ + π− = ρ(1 − ρ), which
has the same form as in the Voter Model.

Equation (26) provides a good estimation of P , including
finite-size effects. In particular, we can directly identify three
regimes: (a) When π+ − π− and π+ + π− are of the same
order (which is the case when tθ , sθ 	 1/N ), the drift term
acts on a timescale t1 ∼ N t0 while the diffusion term acts on
t2 ∼ N 2t0. That is, for N → ∞ the drift term is dominant.
As we will explicitly show, in this case, the drift term may
create metastable states with a lifetime of the order of t2,
as already mentioned in Sec. III B. We will also show that
under some conditions, the dynamics is given by the replicator
equation. (b) When (but not only) the effective temperature
is big enough θ ∼ N (which is the case when tθ , sθ ∼ 1/N ),
both drift and diffusion terms are of the same order and evolve
in the same timescale t2 ∼ N 2t0. (c) Finally, for tθ = sθ = 0,
or for extremely large effective temperature θ 	 N , the dom-
inant term is the diffusion one and the model becomes the
Voter Model.

B. Effective potential

Due to the nonlinear dependence of p± on ρ with absorbing
states, it is difficult to solve the Fokker-Planck equation an-
alytically (the steady-state solutions are linear combinations
of δ functions at ρ = 0, 1). Nonetheless, we can gain some
relevant information if we artificially remove the singularities
at ρ = 0, 1 as

π+ − π− → [ρ(1 − ρ) + κ](p+ − p−), (29)

π+ + π− → [ρ(1 − ρ) + κ], (30)

with κ > 0 a small parameter. This parameter makes the sys-
tem slightly away from the absorbing states as if we retain one
agent of each kind (then κ ∼ 1/N ). With this regularization,
we can focus on the steady-state solutions of Eq. (26), charac-
terized by a zero probability flux:

−(π+ − π−)P (ρ) + 1

2N ∂ρ[(π+ + π−)P (ρ)] = 0. (31)
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The solution to this equation can be written as (see
Appendix B 1 for further details)

P (ρ) = Ce−2NV (ρ), (32)

with C a normalization constant and V (ρ) an effective poten-
tial given by

V (ρ) = 2

tθ − sθ

ln

{
cosh

[
tθρ + sθ (1 − ρ)

2

]}

+ 1

2N ln [ρ(1 − ρ) + κ], (33)

valid for tθ �= sθ .
When θ � N , in the regime (a) discussed above, we can

locate one extreme of V (ρ) at

ρm � ρ0 − 1

N
tθ + sθ

tθ sθ

, (34)

where ρ0 is given by Eq. (28). The previous expression is
accurate up to order O(1/N 2). The other two possible ex-
tremes can appear closer to the absorbing states (ρ = 0, 1).
With the same accuracy, when ρ0 is far from 0 and 1, the
second derivative of V at ρm is

V ′′(ρ) � tθ − sθ . (35)

Hence, ρm is a minimum of the potential for tθ > sθ . In this
case, Eq. (34) gives the cooperation density of a state of
coexistence of strategies, that is, a mixture of cooperators and
defectors with ρm ∈ (0, 1). Moreover, from a dynamic point
of view, the system is in a metastable state that decays to the
absorbing states on a timescale of the order of t2 ∼ N 2t0. As-
suming ρm � ρ0, the minimum ρm is in (0,1) only when P < S
and T > R. For the typical values R = 1 and P = 0 often
chosen in the literature, in the T -S plane, the game compatible
with a minimum ρm ∈ (0, 1) is the Snowdrift [points E and F
in Fig. 5(a)]. In the Stag Hunt game, ρm ∈ (0, 1) represents
a maximum of the potential, and hence a repulsive point [see
points A, B, and C in Fig. 5(a) and the corresponding curves
for the potential in Fig. 5(d)].

In the other two regimes, (b) and (c) discussed above,
when the effective temperature is large enough, the previous
expressions, Eq. (34) for ρm and Eq. (35) for the second
derivative of the potential, are no longer valid. The respective
new expressions have to be obtained directly by numerically
solving V ′ = 0, V ′′ = 0. However, some relevant cases can be
addressed analytically; see Appendix B.

C. The replicator equation

Our mean-field description using the Fokker-Planck equa-
tion is more general than the one based on the mean fraction
of cooperators

〈ρ〉(t ) =
∫

dρ ρP (ρ, t ), (36)

which is typically assumed to obey the replicator equation.
Therefore, it is interesting here to discuss under what condi-
tions the replicator equation emerges from the Fokker-Planck
equation.

Multiplying Eq. (26) by ρ and integrating over all values
of ρ, we obtain

∂t 〈ρ〉 = 1

N t0
〈π+ − π−〉 − 1

2N 2t0
[(π+ + π−)P]1

0. (37)

When the effective temperature is small (θ � N ) and the sys-
tem is not close to the boundaries [such that κP (ρ = 0, 1) �
N ], we can disregard the diffusion contribution. We then get

∂t 〈ρ〉 � − 1

N t0

〈
ρ(1 − ρ) tanh

[
tθρ + sθ (1 − ρ)

2

]〉
, (38)

where we have used Eq. (22) to replace π±, and we removed
κ . Notice that the previous equation is not closed in the sense
that it involves moments of P (ρ, t ) beyond 〈ρ〉 that are un-
known. Hence, further simplifications are needed.

When P (ρ, t ) accumulates around 〈ρ〉, then

∂t 〈ρ〉 � −〈ρ〉(1 − 〈ρ〉)

N t0
tanh

tθ 〈ρ〉 + sθ (1 − 〈ρ〉)

2
. (39)

Finally, for tθ 〈ρ〉+sθ (1−〈ρ〉)
2 � 1, we get the replicator equation

∂t 〈ρ〉 � − 1

2N t0
〈ρ〉(1 − 〈ρ〉)[tθ 〈ρ〉 + sθ (1 − 〈ρ〉)], (40)

which can also be rewritten as

˙〈ρ〉 = 〈ρ〉(φc − φ), (41)

where the overdot denotes the time derivative, and the gain
and loss terms read

φc = sθ

2N t0
〈ρ〉(1 − 〈ρ〉), (42)

φ = 1

2N t0
[tθ 〈ρ〉 + sθ ](1 − 〈ρ〉). (43)

V. VALIDITY OF MEAN FIELD

A. All-to-all interactions

We validate the mean-field approach by performing nu-
merical simulations of agents all-to-all connected and in the
regime of small effective temperature. Panels (a)–(c) of Fig. 5
show the cooperation density in the S-T plane for different
values of θ .

1. Case θ = 0

For θ = 0 [panel (a)], the numerical simulations essentially
show the results predicted by the replicator equation and al-
ready described in Sec. II for very well-mixed populations.
Moreover, in the Stag Hunt game (−1 < S < 0 < T < 1) the
final outcome is also of complete cooperation and/or de-
fection, depending on the game’s parameters and the initial
conditions, while for the Snowdrift game (0 < S < 1 and
1 < T < 2) a mixture of strategies is found.

The different dynamical regimes are in agreement with the
shape of the effective potential V (ρ) given by Eq. (33) and
plotted in Fig. 5(d). Recalling that the steady-state distribution
of the fraction of cooperation ρ is proportional to e−2NV (ρ),
we realize that, due to the typical large values of N , the system
has a ρ around the local minima of the potential most of the
time.
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For S > 0 and 1 < T < 2 (Snowdrift game), the effective
potential has three local minima at ρ = 0, 1 and ρm [see the
continuous yellow and dashed magenta curves in Fig. 5(d)
representing the game conditions of points E and F in panel
(a) of the same figure]. The system tends to a consensus
state only if the initial condition is close to it; otherwise, the
coexistence regime persists with ρm � S

S+T −1 ∈ (0, 1). Since
the latter is a continuous function of T and S, the cooperation
density changes smoothly with the parameters. In particular,
for T = 1, S > 0, where the Snowdrift and Harmony games
meet [point D in panel (a) and the dashed green line in panel
(d)], ρm → 1, and therefore cooperation is always reached
for any initial condition different from all being defectors.
Analogously, when T > 1, S = 0, where the Snowdrift game
turns into the Prisoner’s Dilemma game, we find that ρm → 0.

Only for the Stag Hunt game are abrupt changes from full
cooperation to full defection observed. These discontinuous
transitions depend on S and T for a given initial fraction of
cooperation. On the contrary, for a given set of game pa-
rameters, the final state varies discontinuously on the initial
fraction of cooperators. Finally, when the effective potential
is monotonic [not shown in Fig. 5(d)] in ρ ∈ (0, 1) (excluding
regions near ρ = 0, 1), a slight variation of T and S does
not change the final absorbing states of the system, either
being full cooperation or full defection. This is the case of
the Harmony and Prisoner’s Dilemma games.

Notice that the apparent coexistence along the line S =
T − 1 in the Stag Hunt game [point B in Fig. 5(a)] occurs
only when the initial number of cooperators and defectors
is the same. For other initial conditions, the region moves to
another location. In any case, it corresponds to a situation of
an “artificial” coexistence of strategies: The system does not
show a mixture of strategies but has a nonzero probability of
reaching any of the two consensus states.

2. Case θ > 0

So far, we have considered the case θ = 0. As long as θ

is kept small, the Harmony and Prisoner’s Dilemma games
are not significantly affected, as shown in Figs. 5(b) and 5(c).
However, upon increasing the effective temperature θ , the
effective potential becomes flatter and smoother, rendering
the system more sensitive to the finite-size effects [compare
the curves in panels (e) and (f) of Fig. 5]. In addition, the
unstable area of the Stag Hunt game becomes wider while
the region of mixed strategies in the Snowdrift game becomes
narrower. More precisely, an increase of the effective tem-
perature θ expands and deforms the T -S diagram due to its
unique dependence, at the mean-field level and for large N , on
the rescaled values of tθ and sθ (here tθ = T −1

T θ
and sθ = −S

T θ
).

Hence, a temperature change from θ to θ ′ can be seen as the
following mapping:

(T, S) −→
(

θ

θ ′ + (θ − θ ′)T
T,

θ ′

θ ′ + (θ − θ ′)T
S

)
. (44)

For instance, the point (T, S, θ ) = (1, 0.05, 0.05) which
has a fraction of cooperation of 1 shifts to (S′, T ′, θ ′) =
(1, 0.5, 0.5); the point (T, S, θ ) = (1.05, 0.05, 0.05) with
a cooperation density of 1/2 shifts to (S′, T ′, θ ′) �

FIG. 6. Average cooperation as a function of the effective tem-
perature θ for a complete graph with N = 100 nodes. Each dot
corresponds to different Monte Carlo simulations (50 in total), and
the red curve is the sample average. Inset shows the standard devi-
ation in the average cooperation. The game parameters are T = 1.2
and S = 0.4 [point E in Fig. 5(a)]. The blue dashed line for θ � 0.45
is the analytical value of the cooperation given by Eq. (34) when the
effective potential (32) has a local minimum ρ ∈ (0, 1), while for
θ > 0.45, the effective potential has only one minimum located at
ρm = 1.

(1.9, 0.9, 0.5); and (T, S, θ ) = (1.05, 0, 0.05) with a zero co-
operation density moves to (S′, T ′, θ ′) � (1.9, 0, 0.5).

Regarding the critical behavior of the system, the main
difference between the cases θ = 0 and θ > 0 lies in the
presence of discontinuous transitions. As a representative ex-
ample, let us consider point E in Fig. 5(a) for θ = 0 to discuss
how the fraction of cooperators evolves as the agents increase
their stochastic behavior (θ ). Figure 6 shows the scatter plot
of ρ as the effective temperature increases for a game set-
ting close to point E (each dot represents the outcome of a
Monte Carlo simulation). While the sample average 〈ρ〉 (red
curve) changes from 〈ρ〉 ∼ 0.65 to 〈ρ〉 ∼ 1 in a narrow region
around θ = 0.35, the cloud of points spreads more as the
temperature rises, up to a point near θ = 0.4 where full coop-
eration is the only possible outcome. The inset shows a peak
in the cooperation fluctuations pointing towards a discontin-
uous temperature-induced transition. From the viewpoint of
the effective potential, Figs. 5(e) and 5(f), we observe how
the minimum at ρm � 0.65 [plotted as a dashed blue line in
Fig. 6 and obtained from Eq. (34) for θ � 0.45] fades out upon
increasing θ [compare the magenta curves in panels (e) and
(f)]. The system changes from ρm � 0.65 for θ < θc � 0.45
to a state of complete cooperation for θ > θc. The transition is
discontinuous in the thermodynamic limit N → ∞ [11,27].

B. Random regular graphs

To explore the extent of our mean-field theory beyond the
complete graph, we also consider random regular graphs. New
interesting features emerge, as is confirmed by the Monte
Carlo simulations in panels (g), (h), and (i) of Fig. 5 for
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random regular graphs with degree k = 3, and the same values
of the effective temperature as in the upper plots. We recall
that the results are for the specific initial conditions of ρ = 0.5
(50% of cooperators) and all agents randomly distributed all
around the nodes of the network, regardless of their strategy.

1. Case θ = 0

For zero effective temperature θ = 0, Fig. 5(g), the T -S
plane divides into six clear disjoint domains with differ-
ent cooperation densities. Within each domain, variations of
the parameters T and S do not produce any change in the
system’s behavior, while crossing two adjacent domains in-
duces discontinuous changes in the cooperation density as
described in Sec. III C. The dashed lines delimiting the dif-
ferent domains correspond to solutions to Eq. (14), showing
an excellent agreement between theory and numerical sim-
ulations. Comparing panels (a) and (g), we notice how the
structured interactions favor the expansion of full cooperation
(region I) into adjacent games, while complete defection is
limited now to a smaller region (VI). The remaining four
domains describe situations that cannot be described using the
mean-field framework. Three of them (regions III, IV, and V)
are characterized by the presence of quasiabsorbing states of
different cooperation densities, with region V invading three
game quadrants but displaying a very low cooperation density
with just a few cooperators and oscillating nodes. Finally,
region II in the Snowdrift quadrant exhibits mixed strategy
states but, contrary to the all-to-all case, with only one possi-
ble intermediate level of cooperation.

2. Case θ > 0

When the effective temperature is slightly increased up
to θ = 0.05, see Fig. 5(h), the distribution of the different
dynamical regimes observed for θ = 0 remains more or less
similar, but the sharp boundaries become smoother. As al-
ready reported in Figs. 4(a) and 4(b), the cooperation density
changes continuously with the temptation-to-defect parame-
ter, as soon as the choice to change strategy is no longer
deterministic. This effective temperature, although small, is
enough to destroy the quasiabsorbing states in region V, en-
larging the domain with pure defection. However, the mixed
strategy states of region II and the quasiabsorbing states of
regions III and IV stay at almost the same levels of average
cooperation, except for a not negligible range of parameter
settings where cooperation is promoted. A further increase of
the effective temperature θ , up to 0.5 in Fig. 5(i), completely
“destroys” all the quasiabsorbing states, in the sense that the
system keeps away from them. As already discussed when
describing Figs. 4(e) and 4(f), this scenario is consistent with
a discontinuous transition with the effective temperature as a
control parameter.

VI. CONCLUSION

We have studied the dynamics of cooperators and defectors
in a structured environment when playing different coopera-
tive games subject to eventual irrational choices. Overall, the
system exhibits emergent complex behavior, which includes
abrupt and continuous transitions as we change the probability

of the irrational choices (tuning the effective temperature θ ),
the parameters of the game (entries of the generic payoff ma-
trix), and the structure of the interactions through the topology
of the underlying network.

For a finite system size, we have identified the most general
steady states of the system, given in terms of the absorb-
ing (consensus), quasiabsorbing, and mixture strategy states
(which all form absorbing sets of states). Moreover, we have
also obtained necessary and sufficient conditions for the exis-
tence of discontinuous transitions when θ = 0 (deterministic
interactions). They include a geometric condition, given by
Eq. (14), which involves the parameters of the payoff matrix
and the degrees sequence of the interaction network; and a
dynamic condition that requires the existence of agents in the
geometric condition. It has also been shown that for θ > 0 the
previous transitions are continuous.

In the simplest interaction scenario, when all agents inter-
act with all others, the system can be completely described by
the fraction of cooperators ρ. An exact master equation for
the probability of ρ has been used to derive a more tractable
Fokker-Planck equation, suitable for describing the system for
(typical) large system sizes. Then, a regularized solution to
the Fokker-Planck equation, after removing the divergences
induced by the absorbing states, has been obtained. This solu-
tion provides an explicit expression for an effective potential
which correctly describes the behavior of the system not too
close to the absorbing (consensus) states. This has allowed
us to explicitly assess the finite-size effects and the impact
of the effective temperature on the dynamics. We recover the
replicator equation for large system sizes and small effective
temperatures: The effective potential has a local minimum
describing a coexistence of strategies only in the parameter
region of the Snowdrift game (0 < S < 1 < T < 2). Due to a
scaling property of the effective potential, we have also seen
that increasing the effective temperature θ is equivalent to
keeping it constant and changing the game parameters prop-
erly. In particular, upon increasing θ , the coexistence region
shrinks and moves to higher values of T and S. Interestingly,
in large systems, increasing the effective temperature may
induce a discontinuous transition in the level of cooperation:
The local minimum of the effective potential around ρm ∈
(0, 1) disappears above a critical value of θ and only the
minima describing consensus survive.

Our mean-field theory successfully explains our numerical
simulations with all-to-all interactions, including finite-size
and temperature-dependent effects. It also demonstrates the
replicator dynamics as a limiting case. However, as already
noticed, this comparison is restricted to finite-size systems
(100 agents), moderate time simulations, and states exclud-
ing the consensus ones. If one is interested in fixation [58]
or first-passage time properties [60], one should consider a
formulation using the (exact) master equation or the (ap-
proximate) Fokker-Planck equation with absorbing states. The
latter analysis is left for future works. The dependence on the
game parameters and their scaling properties for a more gen-
eral interaction structure has yet to be addressed. Results for
similar models are reported in Refs. [8,56], although validated
for large effective temperatures.

The previous mean-field scenario becomes more complex
when the network of interactions is structured. First, we
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observe discontinuous transitions for zero effective temper-
ature not explained by the mean field. Moreover, the game
parameter space splits into domains of differentiated dynami-
cal regimes, separated by discontinuous transitions between
them. The transitions are ruled by the condition (14) with
an additional dynamical condition, which, eventually, makes
the domains depend on the initial conditions. That is, dif-
ferent initial percentages of cooperators may select another
set of transitions among the solutions to Eq. (14). This is
consistent with the results found in [8] where the evolution
of cooperation as a function of the initial conditions has been
investigated for several dynamics and networks. An interest-
ing point for further consideration is whether the effective
temperature tunes the dependence of the system on the initial
conditions.

Second, while in most games the qualitative behavior of
the system is well captured by the mean field, the presence of
quasiabsorbing states is a new and interesting ingredient. The
numerical simulations show for zero effective temperature the
presence of connected domains of nodes with frozen strategy,
separated by a frontier of frustrated agents with oscillating
strategy. This results in an intermediate level of cooperation
mostly located in the region of parameters for the Stag Hunt
game, but also for the Snowdrift and Prisoner’s Dilemma
games, for small effective temperatures. Consequently, this
suggests the existence of an effective potential, a function
of the fraction of cooperation, that develops a minimum in
this region of the parameter space, unlike the mean-field case.
Our simulations also show that upon increasing the effective
temperature, keeping the system size and simulation time
constant, above a critical value (which is a nontrivial func-
tion of the parameters of the system), the system abruptly
moves away from the quasiabsorbing states, which can be
interpreted as a change in the local minimum of the potential
to a maximum, hence recovering some of the predictions of
mean-field. However, the previous and other numerical find-
ings for nonzero effective temperature are limited to moderate
system size and evolution times. Extensive simulations with
larger sizes and times are needed for further investigation of
the domain growth, the fixation times, and the identification
of Griffith phases [38,39].

Finally, the system exhibits interesting nonmonotonous
phenomena, which is a new feature not present in the mean-
field theory. This happens in the two games showing the
coexistence of opinions—the Snowdrift and the Stag Hunt
games—but with different peculiarities. In the Snowdrift
game, there is a region of parameters where the cooperation
density develops a minimum as a function of the effective
temperature, a surprising instance of stochastic resonance. In
the Stag Hunt game, we observe a similar behavior when
the effective temperature is above the critical one, and the
quasiabsorbing states are destroyed. Now, the probability of
reaching full cooperation exhibits a maximum for intermedi-
ate values of θ .

In conclusion, the evolution of cooperation in evolutionary
social systems is critically determined by the underlying struc-
ture of interactions among agents and their level of irrational
choices. Here, we have provided a deeper insight into the
network reciprocity mechanism by describing abrupt shifts
in the cooperation, due to particular arrangements of the net-

work interactions and purely deterministic strategy updates,
as well as genuine phase transitions and stochastic resonances
induced by an effective temperature calibrating the stochastic
nature of the social behavior.
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APPENDIX A: DERIVATION OF EQ. (14)

Under the same assumptions considered in Sec. III C, dis-
continuous transitions are expected for θ = 0 when condition
(13) holds, namely when there is a tie pair. Using the expres-
sion (2) for the payoffs, Eq. (13) can be written as

cσ

∑
α∈Vσ

(Rcα + Sdα ) + dσ

∑
α∈Vσ

(T cα + Pdα )

= cν

∑
α∈Vν

(Rcα + Sdα ) + dσ

∑
α∈Vν

(T cα + Pdα ). (A1)

If m is the number of cooperating neighbors of node σ

(kσ − m is then the number of defectors) and n is the number
of cooperating neighbors of node ν (respectively, kν − n is
the number of defectors), then the previous relations can be
written as

cσ [mR + (kσ − m)S] + dσ [mT + (kσ − m)P]

= cν[nR + (kν − n)S] + dν[nT + (kν − n)P]. (A2)

The possible values of m and n depend on the specific
configuration. However, the only relevant configuration that
may produce a dynamical transition is the one with agents
at nodes σ and ν having different strategies. By symmetry
considerations, it is enough to consider the case when σ holds
a cooperator and ν a defector. Then, 0 � m � kσ − 1 and
1 � n � kν , and the previous equality becomes

mR + (kσ − m)S = nT + (kν − n)P, (A3)

which is Eq. (14).

APPENDIX B: SOME PROPERTIES
OF THE EFFECTIVE POTENTIAL

1. Solution to Eq. (31)

After some trivial manipulation, Eq. (31) can be written as

P ′

P = − (π+ + π−)′

π+ + π− + 2N π+ − π−

π+ + π− , (B1)

where the prime denotes the derivative with respect to ρ. The
solution to this equation can be written as Eq. (32) where the
normalization constant comes from the constant of integration
and the effective potential is

V (ρ) = 1

2N ln |π+ + π−| +
∫

dρ
π+ − π−

π+ + π− . (B2)
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Taking the expressions of the rates given by Eq. (29) and solv-
ing the integral, we get the expression (33) for the effective
potential.

2. Limit of zero effective temperature

In the limit of zero effective temperature, θ → 0, Eq. (33)
for the effective potential reduces to

V (ρ) = 1

tθ − sθ

|tθρ + sθ (1 − ρ)| + 1

2N ln[ρ(1 − ρ) + κ],

(B3)
which is independent of θ . If we remove the finite-size con-
tribution, the potential has an extreme at ρ = ρ0, given by
Eq. (28). It is a minimum when tθ > sθ , and a maximum
otherwise.

3. Local extremes

From Eq. (32) we see that, in most of the cases, the width
of the distribution P around a maximum is of the order of
1/N , hence the relevant contributions to the distribution are
located at the minima of the effective potential. Apart from
the absorbing states, ρ = 0, 1, the effective potential has an
additional minimum at ρm ∈ (0, 1), when V ′(ρm) = 0 and
V ′′(ρm) > 0.

The derivative of the effective potential is

V ′(ρ) = tanh

[
tθρ + sθ (1 − ρ)

2

]
+ 1

2N
1 − 2ρ

ρ(1 − ρ) + κ
,

(B4)
even if tθ = sθ . It can be graphically seen that the equa-
tion V ′(ρm) = 0 has three solutions at most, for any values of

tθ , sθ , N , and κ . When θ � N , in the regime (a) discussed
in Sec. IV, we can localize an extreme of V (ρ) at ρm given
by Eq. (34). With the same accuracy, we can also compute the
second derivative, with the result given by Eq. (35).

We can also obtain exact results, useful for understand-
ing the behavior of the system as parameters are changed.
Consider the case of sθ = −tθ (equivalently, P − S = R − T ).
The drift and diffusion terms have the same symmetry; they
are odd functions of 1 − ρ/2. Hence, an exact solution to the
equation V ′ = 0 is

ρm = 1
2 . (B5)

Moreover, the second derivative of the potential at 1/2 is tθ −
4

N (1+4κ ) � tθ − 4
N , meaning that V has a local minimum at ρm

when

−sθ = tθ >
4

N (1 + 4κ )
� 4

N . (B6)

Note that the previous condition is not restricted to any value
of the system size nor the effective temperature. For N → ∞
we recover condition tθ − ts > 0, valid for regime (a). More-
over, for R = 1 and P = 0, the previous condition reads S =
T − 1 > 4θ

N T , which gives the critical condition T > 1
1− 4θ

N
.

For tθ = sθ , both the diffusion and drift terms have the
same symmetry as well, since the drift term does not depend
on ρ. It is readily seen that in this case the equation V ′ = 0 has
two solutions, only one solution (ρm) being in (0,1) for any
values of the parameters. However, it turns out that V ′′(ρm) >

0, meaning that when T − R = P − S the system always ends
up at an absorbing state.
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