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Feasibility and stability in large Lotka Volterra systems with interaction structure

Xiaoyuan Liu , George W. A. Constable , and Jonathan W. Pitchford
Department of Mathematics, University of York, York, YO10 5DD, United Kingdom

(Received 24 November 2022; accepted 14 April 2023; published 5 May 2023)

Complex system stability can be studied via linear stability analysis using random matrix theory (RMT)
or via feasibility (requiring positive equilibrium abundances). Both approaches highlight the importance of
interaction structure. Here we show, analytically and numerically, how RMT and feasibility approaches can
be complementary. In generalized Lotka-Volterra (GLV) models with random interaction matrices, feasibility
increases when predator-prey interactions increase; increasing competition/mutualism has the opposite effect.
These changes have crucial impact on the stability of the GLV model.
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I. INTRODUCTION

In the 1950s, ecologists such as Odum and MacArthur
argued [1,2] that ecosystems with a larger number of species
tend to be more stable than less biodiverse systems. This idea
was famously mathematized by May in 1972, who applied
random matrix theory (RMT) to the problem [3]. May consid-
ered perturbations in n species abundances ζ, linearised about
a hypothetical fixed point, with near-equlibrium dynamics
described by

dζ

dt
= Aζ, (1)

where he suggested parameterising A according to

Aii = −1, Ai j = σcai j, (2)

with Aii representing the species self-regulation at equilibrium
and ai j ∼ N (0, 1) and c ∼ B(1,C). Here Ai j represents ran-
dom species interactions that are nonzero with probability C
(referred to as connectance) and when present have standard
deviation σ (referred to as interaction strength). Since the
asymptotic stability of Eq. (1) is governed solely by its eigen-
values, system-level stability is determined by characterising
the eigenvalues of random matrix A.

The eigenvalue distribution of A is uniform across a circle
in the complex plane, centered on (−1, 0) and with radius
σ
√

nC as n → ∞ [3–5].
Thus the stability criterion for Eq. (1) is σ

√
nC < 1 [see

Fig. 1(a)]. This suggests that more diverse ecosystems with
more interspecific interactions are less likely to be stable for a
given variance in interaction strength.

Allesina and Tang [6] added ecologically-motivated struc-
ture to May’s approach, choosing elements of A pairwise by
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imposing a correlation ρ between Ai j and Aji for j �= i,

(Ai j, Aji ) = σc(ai j, a ji ) where
(3)

(ai j, a ji ) ∼ N (0, �) with � = [(1, ρ), (ρ, 1)],

where again c ∼ B(1,C). Ecologically, ρ < 0 implies more
predator-prey interactions in the ecosystem (Ai j and Aji

are more likely to have opposite signs), while ρ > 0 implies
more mutualistic and competitive interactions (Ai j and Aji are
more likely to have the same sign). Utilizing another RMT
result [7,8] they generalized May’s stability criterion to

σ
√

nC(1 + ρ) < 1. (4)

Thus, increasing the proportion of predator-prey interac-
tions increases stability, whilst increasing the proportion of
competitive and mutualistic interactions reduces stability in
Eq. (1) [see Fig. 1(a)]. Equation (4) implies that in the extreme
limit ρ → −1, ecosystems are stable as long as there is self-
regulation.

These analytic results are independent of the underlying
nonlinear model from which they are hypothetically derived.
However, this apparent generality conceals an implicit as-
sumption that the fixed point about which the nonlinear
system is linearized [to arrive at Eq. (1)] exists and is biolog-
ically meaningful. Such biologically meaningful fixed points,
where every species is present at a positive abundance, are
termed feasible equilibria [9].

We use the generalized Lotka-Volterra model (GLV)

dx
dt

= x � (r + Ax) (5)

to explore the links between the parametrizations of the in-
teraction matrix A in Eqs. (2)–(3) and feasibility. Here xi is
the abundance of species i, ri is its intrinsic growth rate, A
the interaction matrix, and � the Hadamard product. Equa-
tion (5) has a single nonzero fixed point x∗, with a Jacobian J ,
such that

x∗ = −A−1r, J = diag(x∗)A. (6)
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FIG. 1. Panel (a): Eigenvalue distributions of interaction matrix
A parameterized according to Eq. (2) (red, ρ = 0, see Ref. [3])
and Eq. (3) (blue and green, ρ �= 0, see Ref. [6]), used to infer
the stability of the linear model proposed in Eq. (1). Parameter
values are σ = 0.01, n = 1000, C = 1, and |ρ| = 0.6. Panel (b):
Feasibility probability Pfeas, for an ensemble of random fixed points
from the nonlinear GLV model, Eq. (5), with interaction matrices
parameterized according to Eq. (2) (ρ = 0, see Ref. [13]). Pfeas is
plotted as a function of May’s complexity parameter γ = σ

√
nC,

for community sizes ranging from n = 14 to n = 100. In this panel
C = 1. Curves are analytical predictions and markers are numerical
simulations, obtained by sampling 104 random interaction matrices
A parameterized according to Eq. (2) and calculating the proportion
of those that give rise to a feasible equilibrium solution of the GLV
model (see Supplemental Material IV [14]).

Note that if the elements of A are drawn from a random
distribution, then x∗ is also a random variable (see, for in-
stance, Fig. 2). We denote the multivariate distribution of x∗
as P(x∗). In particular, there is nothing intrinsic about the
structure of x∗ in Eq. (6) that guarantees that it is feasible (i.e.,
that x∗

i > 0 ∀ i). Instead, for any given randomly sampled A,
there is a probability that the fixed point is feasible, which we
denote Pf eas. The relationships between feasibility, stability,
and different system constraints such as interaction structure
is a central theme in theoretical ecology [10].

Early analytic insight into the feasibility of x∗ in Eq. (6) as-
sumed that A had interaction coefficients with fixed strengths,
or with randomly generated signs [9,11,12]. Stone [13] linked
this to May’s approach by considering the probability that x∗
is feasible given an ensemble of random interaction matrices

parameterized according to Eq. (2). Under the condition that
ri = 1 ∀ i ∈ [i, n], Stone assumed that such a parametrization
of interaction matrices gives rise to a normally distributed x∗

i
(see Fig. 2 and Supplemental Material, Sec. VIII [14]).

Stone showed that for a fully connected system C = 1, the
probability of feasibility is

Pfeas = 2−n

⎛
⎜⎝1 + erf

⎛
⎜⎝ 1

γS

√(
1 + γ 2

S + γ 4
S

)
⎞
⎟⎠

⎞
⎟⎠

n

, (7)

where γS = σ
√

n is known as the disturbance in Stone’s
analysis, which is equivalent to May’s definition of com-
plexity for the case C = 1. We see that Pfeas drops sharply
at a critical value of γS , and also has an additional depen-
dence on system size n [see Fig. 1(b)]. By working in the
limit n → ∞, Refs. [15,16] determined a threshold interaction
strength above which feasibility is lost in GLV models with
interaction matrices parameterized according to Eq. (2). An
analytical prediction for the relationship between Pfeas and the
complexity γ = σ

√
nC which accounts for C was obtained by

Dougoud et al. [17]. Akjouj et al. [18] investigated the feasi-
bility of sparse ecosystems with interaction matrices that are
block structured and d-regular (where each species interacts
with d other species). Together these results suggest that feasi-
bility is the more critical measure of complex system stability;
compared to linear stability, feasibility is lost at smaller values
of complexity.

Here we seek to strengthen the links between RMT [3,19]
and feasibility analyses by calculating how the feasibility of
an ecosystem changes with complexity [13,17,18,20] when
additional species interaction structure is accounted for [6,19].
It was shown by Bunin [10] that feasible systems lose sta-
bility above a certain interaction strength by transitioning to
a phase with multiple attractors. The interaction strength of
this phase transition increases as predator-prey interactions
increase. Numerical results by Clenet et al. [15] also show
that systems biased towards predator-prey interactions lose
feasibility at larger interaction strengths than systems without
interaction structure, and those biased towards competition
and mutualism lose feasibility at smaller interaction strengths
than systems without interaction structure. They also obtained

FIG. 2. Plots showing the joint distribution of x∗
1 and x∗

2 for the GLV model Eq. (5) with n = 2, σ = 0.01, and C = 1. Blue markers
represent 104 numerical solutions of the GLV model, obtained as described in Supplemental Material IV [14]. Contours are analytical
predictions for the joint distribution of x∗

1 and x∗
2 calculated using Eqs. (12)–(14).
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an analytical result for the interaction strength above which
feasibility is lost, in the limit of large n. In this limit the effect
of the correlation parameter ρ, the parameter that governs
the proportion of predator-prey or competition/mutualistic
interactions, disappears [15]. In this paper, we instead work
in the large but finite n limit in order to explore the effect of ρ

on the probability of feasibility Pfeas. In order to calculate Pfeas,
we must also obtain an approximation for the distribution of
fixed points. This approximation opens up the possibility of
leveraging recent results [21,22] to determine the probability
of stability of the GLV model with interaction structure.

II. ANALYSIS

Following Stone [23], we obtain an analytical approxima-
tion of Pfeas(γ ) via the distribution of equilibrium species
abundances P(x∗). In particular, Stone [13] applied the Cen-
tral limit theorem to x∗ in Eq. (9) to argue that P(x∗) is normal
as n → ∞, and this normality remains a good approxima-
tion when n is large but finite (see Supplemental Material,
Sec. VIII [14]). The task of calculating the feasibility prob-
ability is then equivalent to calculating

Pfeas =
∫ ∞

x∗=0
P(x∗)dx∗ ≈

∫ ∞

x∗=0
N (μx∗�x∗ )dx∗ , (8)

where μx∗ and �x∗ are respectively the mean and covari-
ance matrix of the species abundances at equilibrium. Note
that by symmetry, we can see that for interaction matrices
randomly generated according to Eq. (3), μx∗ and �x∗ are
themselves highly symmetric, with [μx∗ ]i = [μx∗ ] j , [�x∗ ]ii =
[�x∗ ] j j , and [�x∗ ]i j = [�x∗ ] ji for all i, j ∈ [1, n] (i.e., μ∗

x is
a constant vector and the variance-covariance matrix �x∗ is a
double constant matrix [24]).

We now calculate approximations for μx∗ and �x∗ . For
simplicity we focus on the case ri = 1 ∀ i in Eq. (5). Recall
that following Ref. [19], the elements of the interaction matrix
Ai j and Aji have correlation ρ. Writing A = σE − I, our fixed
point in Eq. (6) can be expressed as a Neumann series [25] for
||σE || < 1:

x∗ = (I − σE )−1r ≡
( ∞∑

j=0

(σE ) j

)
r. (9)

This enables us, in principle, to calculate x∗
i up to an arbitrary

order in σ . In our work, we approximate E (x∗
i ), Var(x∗

i ), and
Cov(x∗

i , x∗
j ) taking into account ρ and C. Using Eq. (9), we

approximate E (x∗
i ) and Var(x∗

i ) up to and including order σ 6.
Using the fact that the product of an odd number of normal
random variables with zero mean have zero expectation, we
know that all terms of E (x∗

i ) at odd orders of σ vanish. From
Eq. (9), we find that the expression for x∗

i at this given order is

E (x∗
i ) = E

⎛
⎜⎜⎝1 + σ 2

n∑
j=1
j �=i

n∑
k=1
k �= j

κai ja jk

⎞
⎟⎟⎠ + e4σ

4 + e6σ
6, (10)

where e4 and e6 are coefficients of σ 4 and σ 6, respectively, in
the expectation of x∗

i , and

κ =
{

C if i = k,

C2 if i �= k,
(11)

since i = k corresponds to the case where a jk = a ji, which
corresponds to the case where Ai j and Aji are both nonzero
with probability C ( see Eq. (3) and Allesina and Tang [19] ) .
We use Eq. (10) to illustrate how we obtain our approximation
of E (x∗

i ). Since E (ai ja ji ) = ρ, E (ai j ) = 0, and E (ai ja jk ) = 0
if k �= i, Eq. (10) is equal to

E (x∗
i ) = 1 + (n − 1)ρCσ 2 + e4σ

4 + e6σ
6, (12)

where through direct calculation, it can be shown that e4 =
(n − 1)(C + ρ2(2C + 2C2(n − 2))), given by Eq. (S12). Sim-
ilarly we can calculate e6, which is given by Eq. (S53) of the
Supplemental Material [14].

An analogous approach can be used to obtain an ap-
proximation for Var(x∗

i ) and Cov(x∗
i , x∗

j ) (see Supplemental
Material, Sec. I), with Var(x∗

i ) given by

Var(x∗
i ) = (n − 1)Cσ 2 + v4σ

4 + v6σ
6 + O(σ 8), (13)

where v4 and v6 are the coefficients of σ 4 and σ 6, respectively,
which depend on n, ρ, and C. Specifically, v4 is the coeffi-
cient of σ 4 in Eq. (S20) and v6 is given by Eq. (S60) in the
Supplemental Material [14]. The formulas for v4 and v6 are
too lengthy to produce here, however of particular note is the
fact that they, along with coefficients e4 and e6, are nontrivial
polynomials that do not preserve the simple dependence on
the complexity parameter γ observed in Refs. [3] or [6].
Cov(x∗

i , x∗
j ) is given by

Cov(x∗
i , x∗

j ) = ρCσ 2 + c4σ
4 + O(σ 6), (14)

where c4 = (3 + (6 + C(5n − 11))ρ2). While we could ex-
tend this approximation to order σ 6, we note that this makes
little quantitative difference to the approximation. In the ex-
pression for Cov(x∗

i , x∗
j ), the coefficient of each order of σ

is a factor of n smaller than the corresponding coefficients
in the expression for E (x∗

i ) and Var(x∗
i ) (see Supplemental

Material, Sec. VII [14]). This implies that for a fixed value of
large but finite n, Cov(x∗

i , x∗
j ) increases more slowly with σ

than E (x∗
i ) and Var(x∗

i ), and thus Cov(x∗
i , x∗

j ) plays a smaller
role in governing how P(x∗), and similarly Pfeas, varies with
σ . It is therefore possible to approximate Cov(x∗

i , x∗
j ) to order

σ 4 without sacrificing the accuracy of the analytical prediction
of Pfeas. The slower increase in Cov(x∗

i , x∗
j ) with σ is verified

numerically in Fig. S7. Since an analytical approximation of
Cov(x∗

i , x∗
j ) to order σ 6 requires considerably more algebra

(see Supplemental Material, Sec. ID5 [14]) without conferring
significant improvements to the accuracy of Pfeas, we restrict
our analysis to the order σ 4 approximation given in Eq. (14).

Equations (12)–(14) are then used to construct μx∗ and �x∗

in Eq. (8). Note that we expect our approximation to hold
when n is large [such that P(x∗) is approximately normal,
see Eq. (8)] and when σ is small [such that the expansions
in Eqs. (12)–(14) remain sufficient]. When these conditions
are not met, the approximations given in Eqs. (12)–(14) break
down at lower values of |ρ|. For instance in a 25 species
(n = 25) system, the analytical approximation of Var(x∗

i ) in
Eq. (13) loses accuracy when |ρ| > 0.25, while for a 100
species system Var(x∗

i ) remains accurate up to |ρ| = 0.5 (see
Supplemental Material, Sec. II [14]).

The fact that our normal distributions feature such a high
degree of symmetry, with μx∗ a constant vector and �x∗
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a double constant matrix, allows us to further simplify the
calculation of Pfeas. This provides ease of computation for
large systems. Using the results of Ref. [26], which expresses
integrals over the cubic region of the variable space, Eq. (8)
can be reduced to an expression involving a single integral,
given by

Pfeas =
∫ ∞

−∞

{
n∏

i=1

�

(
yi − biu

(1 − b2
i )1/2

)}
φ(u)du, (15)

where φ(u) is the density function of a standard normal ran-
dom variable u and �(v) denotes the cumulative distribution
function of a standard normal random variable v. In our an-
alytical prediction of Pfeas, we have that yi = E (x∗

i )√
Var(x∗

i )
and

bi =
√

Cov(x∗
i ,x∗

j )

Var(x∗
i ) (see Supplemental Material, Sec. III [14]). In

other words, Pfeas is the expression obtained by substituting
these expressions for yi and bi into Eq. (15). (see Supplemen-
tal Material, Sec. III). Interestingly, note that in the results of
Refs. [3,19], C appears as a compound parameter with σ 2,
but in Eqs. (12)–(14), C appears in a complicated polyno-
mial form. The analytical prediction of Pfeas(γ ) is shown in
Figs. 3 (a)–(b). Moreover, the fact that Cov(x∗

i , x∗
j ) is a factor

of n smaller than Var(x∗
i ) partly explains the observation of

Clenet [15] that as n → ∞, the effect of ρ on Pfeas completely
disappears.

III. RESULTS

A. Predator-prey interactions increase the feasibility
of random ecosystems

The qualitative difference in how Pfeas changes with the
complexity γ as the correlation ρ is varied is shown analyt-
ically in Fig. 3. For a given value of n, when ρ is positive
(blue), feasibility is lost at a smaller complexity compared
to the case where ρ = 0 (red). However when ρ is negative
(green), we observe the opposite effect whereby feasibility is
lost at a larger complexity than the case ρ = 0.

It can be seen in Fig. 3 that the magnitude of the difference
between Pfeas(γ , ρ) and Pfeas(γ , 0) also varies with γ . For
instance when γ is sufficiently small, there is no difference
between Pfeas(γ , ρ) and Pfeas(γ , 0), since Pfeas is 1 regardless
of ρ. The bottom panels of Fig. 3 below plot this difference,
demonstrating how it varies with γ . The difference between
Pfeas(γ , ρ) and Pfeas(γ , 0) is the greatest for intermediate
values of complexity γ , where the system is transitioning
rapidly away from feasibility. For a given system size n, the
magnitude of this difference (|Pfeas(γ , ρ) − Pfeas(γ , 0)|) also
increases with the magnitude of ρ.

In Supplemental Material IE [14], we see that for all values
of ρ, the loss of feasibility in the GLV model with Allesina
and Tang type interaction matrices occurs at a smaller com-
plexity than the loss of stability in the corresponding linear
model. As an extreme example, in linear systems comprising
all predator-prey interactions (ρ = −1) stability is guaranteed
regardless of ecosystem complexity [see Eq. (4)]; conversely,
feasibility is still lost above a critical value of the complexity
parameter γ (see Fig. S2 of Supplemental Material [14]).
Figure 3 demonstrates that the analytical results in Eqs. (12)–
(14) can be used to accurately predict Pfeas as a function

(a) (b)

(c) (d)

ρ=0
ρ>0

ρ<0

FIG. 3. Panels (a) and (b) plot the feasibility probability
Pfeas as a function of complexity γ for systems with ecologi-
cally motivated interaction structure: Blue (ρ > 0) biased toward
competitive/mutualistic interactions; red (ρ = 0) unbiased inter-
actions; green (ρ < 0) biased towards predator-prey interactions.
Panels (c) and (d) plot the difference between Pfeas in systems with
ρ �= 0 and Pfeas in systems where ρ = 0 [Pfeas(γ , ρ ) − Pfeas(γ , 0)] as
a function of γ , with lines the prediction derived from Eq. (15) and
markers the results of numerical simulation. In panel (c), n = 25 and
hollow circles show the results of numerical simulations for the case
|ρ| = 0.25. In panel (d), where n = 100 (and our approximations
are valid for larger values of ρ) hollow circles again represent the
case |ρ| = 0.25, while asterisks are numerical simulations for the
case |ρ| = 0.5. Numerical simulations are obtained by sampling 104

random interaction matrices A parameterized according to Eq. (2)
and calculating the proportion of those that give rise to a feasible
equilibrium solution of the GLV model Eq. (5) (see Supplemental
Material, Sec. IV [14]).

of γ in the case where C = 1. Furthermore, Supplemental
Material, Sec. V [14] shows that the same analytical results
remain highly accurate for predicting Pfeas as a function of
γ in the case where C = 0.3. By comparing the feasibility
probabilities of such a system with that of a fully connected
system, we see that a sparsely connected system of n = 100
shows an almost identical feasibility-complexity relation as a
fully connected system.

Most importantly, in Eqs. (12)–(14) we have analytically
approximated the distributions of x∗

i for nonlinear GLV mod-
els Eq. (5) where the underlying interaction matrix A is
constructed according to Eq. (3). This opens up the possibility
to extend these results to predict the stability of GLV mod-
els with ecologically motivated interaction structures. Such a
stability analysis is beyond the scope of this work, but would
be attainable through detailed analysis of the GLV Jacobian.
In the next section we investigate how this might be achieved
within the scope of existing methods.
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FIG. 4. Top row: Orange ellipses are eigenvalue distributions of A where A is parameterized according to Eqs. (2)–(3). Yellow boundaries
are predicted by Allesina and Tang. Black markers represent 50 realisations of the eigenvalue distribution of the GLV Jacobian J = x∗A where
the exact x∗ corresponding to each given A is used. Bottom row: 50 realisations of the eigenvalue distribution of J = x∗A where elements of
x∗ are sampled independently of A, from the multivariate normal distribution characterized by Eqs. (12)–(14). Parameter values are σ = 0.01,
n = 500, and C = 1. Given these parameters, Eqs. (12)–(14) predict that in the left panel Pfeas = 0.993, middle panel Pfeas = 0.997, and right
panel Pfeas = 1.000.

B. Comparing RMT predictions with GLV Jacobian matrices

Gibbs et al. [21] studied the eigenvalue distribution of a
matrix that is assumed to be of the same structure as the GLV
Jacobian [Eq. (6), right], where J is decomposed into a prod-
uct of an interaction matrix A and fixed points x∗. However,
for simplicity, they assume that the distribution from which x∗

is drawn is independent of A, whereas this is clearly not the
case [ Eq. (6), left].

Gibbs’ assumption of independence between the random
elements of A and x∗ means that cross-correlations between
them need not be considered, thereby simplifying the analysis.
We test whether this assumption holds, in order to determine
whether Gibbs’ method may be applicable to calculating the
eigenvalue distribution of the GLV Jacobian [Eq. (6)]. To
do so, we first calculate the eigenvalue distribution of J =
x∗A where the elements of x∗ are sampled independently to
those of A. The distribution from which we sample the ele-
ments of x∗ is a normal distribution with E (x∗

i ), Var(x∗
i ), and

Cov(x∗
i , x∗

j ) given by Eqs. (12)–(14), which we approximated.
A is constructed according to Eq. (3). We then compare this
eigenvalue distribution (shown in Fig. 4, bottom panels) to
that of the GLV Jacobian where the exact x∗ corresponding
to each given A is used (shown in black markers of Fig. 4, top
panels).

By comparing the black markers on the top panels with
those of the bottom panels of Fig. 4, we see that our method
of sampling x∗ independently of A from our distribution of
x∗ works well in predicting the eigenvalue distribution of

the GLV Jacobian. This comparison is conducted in a region
where feasibility is almost surely guaranteed. From the top
panels, we see that when the correlation parameter is negative,
i.e., ρ < 0, the bulk eigenvalue distribution of J gets stretched
in the Im(λ) plane, and when ρ > 0 in the Re(λ) plane. This
qualitative effect is consistent with the result of Allesina and
Tang [19]. It is shown numerically in Supplemental Material,
Sec. VI [14] that increasing ρ decreases the average resilience
of the GLV model.

The average maximum outlier eigenvalue (averaged over
multiple realizations of the interaction matrix A) is also cor-
rectly predicted by our theory, which relies on the assumption
of statistical independence between A and our calculated dis-
tribution of x∗ [see Eqs. (12)–(14)], as illustrated in Fig. S6(a).
However, our theory does not correctly predict the maximum
outlier eigenvalue of individual realizations of the GLV Jaco-
bian. This suggests that cross-correlations between the entries
of A and x∗ may be quantitatively important in calculating
the stability of individual realizations of the GLV model. As
the stability of a system is governed solely by the eigenvalue
with the largest real part, a stability analysis of the GLV
model must be preceded via calculating such an eigenvalue.
Below, we provide an insight into some possible techniques
for calculating the stability of the GLV model with Allesina
and Tang type interaction matrices.

Stone [20] showed that, provided that ||σE || is sufficiently
small, the eigenvalue with the largest real part (outlier eigen-
value of J) is approximately equal to minus the abundance
of the least abundant species, i.e., λmax ≈ −mini∈{1,n}x∗

i ; in
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which case we have the weak condition whereby feasibil-
ity corresponds to the local asymptotic stability of the GLV
model. In the case where ρ = 0 or |ρ| is small, −mini∈{1,n}x∗

i
is an accurate estimate of the outlier eigenvalue of J , however
this accuracy breaks down as we increase |ρ| (see Supplemen-
tal Material, Sec. VI [14]).

Relying on Gibbs’ assumption allows us to accurately cap-
ture the bulk eigenvalue distribution of J and the effect that
the correlation parameter ρ has on the average resilience over
a large number of realisations [see Fig. S6(a)], although it fails
to accurately calculate the outlier eigenvalue of J correspond-
ing to a specific realization of A.

IV. DISCUSSION

We have obtained an analytical prediction of the feasibil-
ity probability as a function of complexity γ = σ

√
nC for

random GLV models with interaction matrices of Allesina
and Tang type [19]. By extending the analytical result of
Ref. [15] to the case of large but finite n, we have shown
that a positive value of ρ reduces the feasibility probability
for a given complexity, while a negative value of ρ increases
the corresponding feasibility probability, an effect not quan-
tifiable in the infinite n limit. We have also accounted for the
connectance C. Since natural ecological systems are sparsely
connected [27], both these generalizations mentioned above
add biological realism to the result of Stone (2016) [23]. Re-
lationships between complexity and feasibility have also been
studied by Ref. [28], where they characterized feasibility by
how freely one could choose the intrinsic growth rate vectors
to allow the system to remain feasible. As a whole, these
results strengthen connections between feasibility and RMT
systems, whilst also adding biological realism.

Along the way, we managed to analytically approximate
the distribution of x∗ as a function of the system parameters n,
C, σ , and ρ. In doing so, we emphasize how the small covari-
ance between the abundances of species can partly explain the
observation of Ref. [15] that the effect of interaction structure
on feasibility completely disappears as n → ∞. Most impor-
tantly, our approximation of the distribution of x∗ has allowed
us to check the utility of Gibbs’ assumption of independence
between x∗ and A in predicting the eigenvalue distribution
of the GLV Jacobian for systems with Allesina and Tang
type interaction matrices [20,21]. Figure 4 shows that Gibbs’
assumption can be used to accurately predict the effect of
interaction structure [19] on the eigenvalue distribution of
feasible random GLV models. However, relying on this as-
sumption does not allow us to accurately calculate the outlier
eigenvalue of the GLV Jacobian for a particular realization.

It is of note that our method for calculating the feasibility
probability relies on several assumptions on the parameter
values to ensure accuracy (see Supplemental Material, Secs. I
E and II [14]). We also assumed that x∗

i is normally dis-
tributed. Since the Neumann series approximation for x∗

i is
normal in the limit n → ∞, and is convergent if and only if

σ
√

nC < 1, our method is accurate for large n and small σ

(see Supplemental Material, Sec. VIII). Since the Neumann
series expansion is precise, it is straightforward to extend our
analysis to arbitrary orders of precision by working to higher
orders in σ [see Eq. (9)].

The concept of feasibility has been associated with the ex-
tinction probability. It was summarized by Stone (1988) [13]
that a higher feasibility probability is linked to the reduction
in the probability of extinction following structural distur-
bances, which are changes in interaction strengths caused
by environmental change. Our results imply that increasing
predator-prey interactions reduces the chance of extinction
following structural disturbances.

We have used the assumption of May (1972) that all species
are self-regulating [3]. This is representative of natural ecosys-
tems since they require 50 percent of species to self-regulate
to allow for stability [29]. However, the assumption that ri = 1
∀i ∈ [1, n] may not be biologically realistic, as natural ecosys-
tems contain consumer species which do not grow in isolation.
This is an interesting area for future investigation, however it
was suggested by Song et al. [30] that this assumption gives
the parameter region where feasible systems are likely to be
present.

Having generalized the distribution of x∗ to account for
arbitrary ρ, we have opened up the possibility for extending
the results of Gibbs et al. [21] to analytically predict the
boundary of the eigenvalue distribution of the GLV Jacobian
of such systems. This would enable us to calculate the stability
of such GLV models. One potential method to perform this
calculation is by applying the cavity method as detailed in
Ref. [21]. It may also be possible to calculate the expected
value of −mini∈{1,n}x∗

i by applying order statistics as detailed
in Ref. [31], and thus the expected resilience of a GLV model
with a given value of ρ, although this is only applicable to
systems where |ρ| is small. We note, also, that the analytical
approaches central to this study lead to predictions of normal
distributions of steady-state species abundances. Empirical
evidence is typically scale dependent and points to a range of
more complex possible species-abundance distributions [32]
and the development of scale-dependent theory to bridge this
gap with models may be a fruitful line of further enquiry.

Overall, our analyses, combined with Refs. [15,19,31],
show that increasing the proportion of predator-prey inter-
actions not only increases feasibility, but also the resilience
of feasible GLV models. This provides greater support
to Allesina and Tang’s [19] conclusion that predator-prey
interactions are stabilizing whilst competitive/mutualistic in-
teractions are destabilizing.
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