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Reconstruction of intermittent time series as a superposition of pulses
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Fluctuations in a vast range of physical systems can be described as a superposition of uncorrelated pulses
with a fixed shape, a process commonly referred to as a (generalized) shot noise or a filtered Poisson process. In
this paper, we present a systematic study of a deconvolution method to estimate the arrival times and amplitudes
of the pulses from realizations of such processes. The method shows that a time series can be reconstructed for
various pulse amplitude and waiting time distributions. Despite a constraint on positive-definite amplitudes, it is
shown that negative amplitudes may also be reconstructed by flipping the sign of the time series. The method
performs well under moderate amounts of additive noise, both white noise and colored noise having the same
correlation function as the process itself. The estimation of pulse shapes from the power spectrum is accurate
except for excessively broad waiting time distributions. Although the method assumes constant pulse durations,
it performs well under narrowly distributed pulse durations. The most important constraint on the reconstruction
is information loss, which limits the method to intermittent processes. The ratio between the sampling time and
the average waiting time between pulses must be about 1/20 or smaller for a well-sampled signal. Finally, given
the system forcing, the average pulse function may be recovered. This recovery is only weakly constrained by
the intermittency of the process.
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I. INTRODUCTION

Intermittent and seemingly random fluctuations of order
unity compared to the mean value are found in a vari-
ety of nonlinear physical systems, such as turbulence in
neutral fluids [1–4] and atmospheric winds [5,6], water re-
sources and hydrology [7,8], complex fluids [9], fission
chambers [10], physiology [11–13] and biophysics [14], and
plasma turbulence—both simulations [15–18] and measure-
ments from magnetically confined plasmas [19–27]. While
such fluctuations may be extremely challenging to investigate
from first-principles-based models, many fruitfully admit phe-
nomenological modeling. One particularly useful reference
model for time-series measurements from these systems is a
stochastic model based on a superposition of localized pulses
[4,7–10,13,14,18,22,25]. This model is called a shot noise
process [28,29] or a filtered Poisson process (FPP) [30]. If
all pulses have the same functional shape and duration, the
process can be written as a convolution between the pulse
function (which may be considered a system response) and
a random forcing. In the simplest case, the random forcing is
driven by a Poisson process, giving the FPP its name.

In many cases, it is of interest to extract amplitude and
waiting-time statistics of the pulses or, alternatively, the aver-
age pulse function if the forcing is known. One popular family
of methods is conditional averaging [31–33], used, for exam-
ple, in Refs. [2,6,20,22,34–36]. Here, an amplitude threshold

*sajidah.ahmed@uit.no
†odd.erik.garcia@uit.no
‡audun.theodorsen@uit.no

is set, and each time the signal crosses above this threshold,
the time and amplitude of the peak are recorded along with
the shape of the signal around the peak. Different authors use
slightly different methods, and to the best of our knowledge,
a systematic study of conditional averaging for the statistics
of overlapping pulses in single-point time series is not avail-
able, although the case for nonoverlapping structures has been
investigated [33,37] as has the case for two-dimensional struc-
tures with multipoint measurements [31,38]. It is clear that
both pulses overlap, and threshold requirements may influ-
ence the results and applicability of the conditional averaging
method.

If the pulse function is known or may be estimated, some
form of deconvolution may be performed to recover the forc-
ing from realizations of the process. A method based on
iterative deconvolution of the FPP has been shown to be
robust in this problem [4,23,39]. This algorithm, referred to
as the Richardson-Lucy (RL) algorithm for Poissonian noise
[40,41] or the iterative space reconstruction algorithm (ISRA)
for normally distributed noise [42] is not new; it was origi-
nally developed for image data in astronomy [40,41] but has
seen use in several other imaging applications [42–45]. This
method requires a known or estimated common pulse function
for all arrivals in the time series and reproduces the forcing in
the maximum-likelihood sense under normally distributed and
uncorrelated additive noise.

In this paper, we estimate pulse amplitudes and arrival
times from the forcing by applying an iterative deconvolution
on realizations of the process. Our main aim is to report accu-
rately on the prospects and limitations of using this procedure
as a tool for time-series analysis. A wide variety of assump-
tions regarding pulse overlap, pulse functions, amplitude and
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waiting time distributions, additive noise, and correlations
between these may be made in different contexts and applica-
tions. Further, noise, pulse superposition, and distribution of
pulse shapes put limits on the estimation of pulse amplitudes
and arrivals. To limit the scope of this paper, we will focus on
assumptions relevant for time-series measurements in turbu-
lent fluids and plasmas, and, in particular, at the boundary of
magnetically confined fusion plasmas which are characterized
by broad and positive definite amplitude distributions, close
to Poisson distributed arrivals and asymmetric, positive, and
exponentially decaying pulses [20–27,34,35,39].

We note that the deconvolution algorithm may also be
used the other way around: If the forcing is known, the
pulse function may be estimated using the same algorithm.
In this way, it may be used to find the system response to
a controlled input forcing, if the assumption of linearity is
satisfied.

This contribution is structured as follows: In Sec. II, we
review the stochastic model, define the base case of the model
which will be modified during the following investigations,
and present the deconvolution algorithm. In Sec. III, the limi-
tations of the signal reconstruction from estimated amplitudes
and arrival times due to sampling and pulse overlap are inves-
tigated. In Sec. IV, we assess the ability of the algorithm to
reproduce various amplitude and arrival times for a known
pulse function. Then, in Sec. V distortions due to additive
noise, both uncorrelated and correlated, are investigated and
a criterion for noise removal is established. Following this,
in Sec. VI we report on the effect of estimating the pulse
shape assuming a known functional form. Both the effects of
over- and underestimating the pulse duration are considered,
as well as the effect of a narrow distribution of pulse durations.
Lastly, we turn the question around in Sec. VII and look at
how well an unknown pulse function can be estimated if the
pulse arrivals and amplitudes are known. Finally, we discuss
the results and conclude in Sec. VIII. In this contribution, we
will not consider the effects of statistical convergence: we
will always use long time series to avoid large uncertainty
or bias in parameter estimates and will always run the de-
convolution algorithm to convergence. Effects of short time
series on moment estimation were previously investigated in
Refs. [46,47]. Sections III–VII are largely independent; the
reader may consult the problem of particular interest. The
numerical implementation of this method with its library of
functions is openly available on the GitHub page of the UiT
Complex Systems Modelling group [48].

II. THEORY

In this section, we first review the stochastic model given
by a superposition of pulses with fixed shape and dura-
tion. This is followed by a presentation of the deconvolution
algorithm. The section concludes by discussing how pulse am-
plitudes and arrival times can be recovered from realizations
of the stochastic process using the deconvolution algorithm.
Throughout this paper, we adopt the notation that angular
brackets 〈·〉 refer to a theoretical mean value, while an over-
line · refers to a sample mean. Quantities estimated by the
deconvolution method use the est-subscript ·est.

A. The stochastic model

The basic stochastic model considered here is a superposi-
tion of pulses with a fixed shape defined as

�K (t ) =
K (T )∑
k=1

Akϕ

(
t − sk

τk

)
. (1)

Here, K (T ) denotes a point process on the interval [0, T )
with sorted event arrival times sk and waiting times wk =
sk − sk−1 with mean value 〈w〉. We will, in general, restrict
K (T ) to be a renewal process, where the waiting times are
independently and identically distributed [30]. The amplitudes
Ak are randomly distributed with mean value 〈A〉 and, in
general, assumed to be positive definite. The pulse function
ϕ is assumed to be the same for all events but may have
randomly distributed duration times τk . The average pulse
duration time is denoted by τd = 〈τ 〉. In the following, we
take all Ak , wk , and τk to be independent random variables,
and each variable family is independently and identically
distributed.

The fundamental parameter of the stochastic model is γ =
τd/〈w〉, referred to as the intermittency parameter. It describes
the degree of pulse overlap and quantifies how intermittent
the fluctuations are through the skewness and flatness mo-
ments [49]. In general, the influence of γ on the qualitative
appearance and features of the process is the following: For
γ of order unity or smaller, pulses appear well separated due
to the waiting times between pulses being long compared to
the duration time. When γ < 1, the process � will thus have
a small mean value compared to the mean pulse amplitude
and large relative fluctuation levels. For γ much larger than
one, there is a significant pulse overlap due to short waiting
times and long pulse durations. This results in a process that
is near normal distributed, where � will have a large mean
value and small relative fluctuation levels [49]. In Sec. III,
we will see that it is not the intermittency parameter which
determines our ability to estimate the amplitudes and arrival
times of the process but the ratio between the sampling time
and the average waiting time. We write this ratio as γ θ , where
θ = �t/τd is the sampling time �t normalized by the average
pulse duration.

Here, some care must be taken regarding the sampling pro-
cess. If we consider a sampling method which instantaneously
measures a value at regular intervals, pulses which are only a
few sampling times in duration may be undersampled, such
that the true amplitude of the pulse is not captured. Thus, the
process may contain an artificially low number of pulses or
have an artificially low mean value compared to an adequately
sampled process. If the sampling time is an integration time
such as a camera exposure time, all pulses will be identified.
However, there may be distortions in the pulse shape due
to the integration, as the integration smears out the pulse
function. In either case, the deconvolution method described
in Sec. II B reproduces the sampled time series and is not
designed to make inferences regarding missing or distorted
pulses. Thus, an accurate reconstruction of the true process
also depends on a sufficiently high sampling rate to resolve
the pulses. Our testing suggests that for the exponential pulse
function in Eq. (2) (below), a sampling time of ten times
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the typical pulse duration time or better is sufficient, that is,
�t/τd � 10−1.

We take the following as the base case:
(1) K (T ) is a Poisson process. Therefore, it follows that

the arrival times are independent and uniformly distributed on
the interval [0, T ), and the waiting times wk = sk − sk−1 are
independently and exponentially distributed with mean value
〈w〉 [30]. The mean value of the Poisson process is then given
by 〈K (T )〉 = T/〈w〉.

(2) Degenerate distribution of pulse durations, τdPτ (τ ) =
δ(τ − τd), so all pulses have the same duration, τk = τd.

(3) Fixed one-sided exponential pulse function for all
events given by a jump followed by an exponential decay:

ϕ(x) =
{

0, x < 0
exp(−x), x � 0.

(2)

(4) Exponentially distributed amplitudes with mean value
〈A〉, 〈A〉PA(A) = exp (−A/〈A〉) for A > 0.

Some consequences of this base case are of interest
[49–52]:

(1) The probability distribution function (PDF) of � is
a gamma distribution with shape parameter γ = τd/〈w〉 and
scale parameter 〈A〉:

P�(�; γ , 〈A〉) = �γ−1

〈A〉γ �(γ )
exp

(
− �

〈A〉
)

, � > 0. (3)

(2) The four lowest order moments are the mean
〈�〉 = γ 〈A〉, variance �2

rms = γ 〈A〉2, skewness S� =
〈(� − 〈�〉)3〉/�3

rms = 2/
√

γ , and flatness (or excess kurtosis)
F� = 〈(� − 〈�〉)4〉/�4

rms − 3 = K� − 3 = 6/γ , where K� is
the kurtosis.

(3) The frequency power spectral density (PSD) of � has
a Lorentzian shape:

	�(ω) = �2
rms

2τd

1 + τ 2
d ω2

+ 2π〈�〉2δ(ω). (4)

In the base case, there are three fundamental model param-
eters: γ , 〈A〉, and τd. From realizations of the process, the
first two may be estimated from the PDF given by Eq. (3).
From this follows the mean value and standard deviation of
the process. The final parameter τd may be estimated from the
autocorrelation function or from the frequency PSD given by
Eq. (4).

In the case that all pulses have the same duration τd, we
may express the stochastic model as a convolution between
the pulse function ϕ and a forcing fK ,

�K (t ) = [ϕ ∗ fK ]

(
t

τd

)
, (5)

where fK is given by

fK (t ) =
K (T )∑
k=1

Akδ

(
t − sk

τd

)
. (6)

Hence, one can say that �K is a train of delta pulses, given
by fK , arriving according to the point process K (T ) which
is passed through a filter ϕ. The FPP may be considered
a linear model for highly nonlinear phenomena, where the
nonlinearity has been baked into the distributions of A and s

and the pulse function ϕ. Given an estimate of the pulse func-
tion, it is therefore possible to estimate fK by deconvolving a
realization �K with the pulse function ϕ. Further discussions
on estimation of model parameters from realizations of the
process are given in Refs. [39,46,47,50].

B. Deconvolution method

To estimate the pulse arrival times sk and amplitudes Ak

from realizations of the stochastic process, the “iterative im-
age space reconstruction algorithm” (ISRA), is presented in
Ref. [42], and we point the reader to this publication for a
more thorough discussion of the details of the algorithm. Here,
we consider �, ϕ, and f to be discretized with a uniform
sampling time �t and an odd number of data points N . Fur-
thermore, � is assumed to be corrupted by uncorrelated white
noise denoted X , so we may write for 0 � j < N ,

� j = (ϕ ∗ f ) j + Xj, (7)

where f j is a sum of Kronecker deltas weighted by the
pulse amplitudes, f j = ∑K (T )

k=1 Akδ j, jk , and by abuse of nota-
tion ϕ j = ϕ( j�t/τd). We have suppressed the subscript K on
� and f for simplicity of notation and jk is sk/�t rounded to
the nearest integer. In the following, the hat symbol ·̂ is used
to denote a flipped vector, ϕ̂ j = ϕN−1− j .

The maximum-likelihood estimation applied to the above
model leads to the optimization problem

J�( f ) = 1
2‖ϕ ∗ f − �‖2 (8)

subject to f � 0. (9)

The iteration scheme

f (n+1)
j = f (n)

j

(� ∗ ϕ̂) j + b

( f (n) ∗ ϕ ∗ ϕ̂) j + b
(10)

is known to converge asymptotically to the least-squares so-
lution of the optimization problem under certain conditions
on ϕ [42]. For our purposes, ϕ(t ) � 0 and ϕ(t = 0) > 0 are
sufficient conditions. Here, b is a free parameter chosen such
that (� ∗ ϕ̂) j + b > 0 ∀ j. The method is designed to extract
a non-negative signal f from a measurement described by
Eq. (7), where the only negative parts of the signal are due
to noise. The effect of negative pulse amplitudes is explored
in Sec. IV. We note that the standard deviation of the noise X ,
or alternatively the signal-to-noise ratio, plays no role in the
iteration scheme.

Numerical testing reveals that the choice of the initial
guess f (0) as well as the exact value of b may play a role
in the rate of convergence but do not affect the result of the
iteration given by Eq. (10) if b is small compared to the
mean signal value. Consequently, we set the initial guess to
a positive constant and the b parameter to b = 10−10 − bmin,
where bmin = min[0, min (� ∗ ϕ̂)]. The small constant 10−10

is added to avoid issues with the division of numbers close to
zero in the denominator in Eq. (10).

C. Extracting amplitudes and arrival times

The result of the deconvolution is the maximum-likelihood
estimate of the forcing, denoted fres, where the subscript ·res
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FIG. 1. Flow chart to show the procedure applied in this study of the deconvolution algorithm. The flow chart is detailed in the main text.
For experimental data, the processes in (b)–(d) would be applied. In this contribution, the focus is on the effect of (c) and (d).

stands for result. In this paper, we are interested in estimating
the amplitudes and arrival times that define the forcing f .
For the realizations investigated in this paper, the delta-train
forcing is estimated as a series of sharply localized peaks.
Therefore, a peak-finding algorithm must be applied to re-
cover the pulse arrival times and amplitudes. We have chosen
to employ a simple three-point running maxima, so a data
point fres, j is classified as a peak if it is larger than both
neighboring points: fres, j > fres, j±1 for all 1 � j < N − 1.
The estimated arrival time sest is the location of the maxima
and the estimated amplitude Aest is the value of the maxima.

Using the found maxima directly leads to far too many
detected events for small (γ < 1) intermittency parameters
(six times the true number of events for γ = 1/10). This is due
to numerical noise in sections of fres without true pulses. To
remove these spurious pulses, we introduce a small amplitude
threshold equal to 10−2〈A〉, which corresponds to the size of
| fres − f | for γ = 1/10. The presence of this threshold does
not influence the results in the absence of additive noise,
as investigated below. In the presence of additive noise, a
stricter amplitude threshold is placed on local maxima. This
amplitude threshold is discussed further in Sec. V.

The entire reconstruction process is described by the flow
diagram in Fig. 1. In Fig. 1(a), the synthetic signal � is
generated. The waiting times w are randomly drawn until
their sum exceeds the specified signal duration T . The arrival
times s are computed from the waiting times, and a number of
amplitudes A matching the arrival times are randomly drawn.
The synthetically generated forcing f consists of the ampli-
tudes A and the arrival times s, and convolving this forcing
with the specified pulse function ϕ gives the synthetic signal
�. In Fig. 1(b), we perform the ISRA specified in Eq. (10),

where fres is the result of the deconvolution. Here, it may
be necessary to estimate ϕ, for example, from the PSD as
discussed in Sec. VI. In Fig. 1(c), Aest, sest, and west refer to
the amplitudes, arrival times, and waiting times extracted us-
ing the three-point maxima method described above. Finally,
in Fig. 1(d), the signal is reconstructed. Here, fest refers to
forcing which consists of Aest and sest. �est refers to the signal
reconstructed by using the estimated amplitudes and arrival
times. For the model realizations considered in this paper, it
will be shown that the process in Fig. 1(b) captures f very
well. Thus, the focus of this contribution is the prospects and
limitations of Figs. 1(c) and 1(d).

To check that the mean values of the estimated variables
have converged, we employ a bootstrapping technique [53].
For a given data set X containing N samples, we first estimate
the sample mean X . Then we draw 3N/4 random samples
with replacement (that is, we are allowed to draw the same
sample multiple times) and estimate the sample mean X 3N/4.
Repeating this procedure 100 times gives a data set containing
100 samples of X 3N/4. Estimating the standard deviation of
this data set gives a measure of how well X has converged. A
large standard deviation would indicate that we have too few
samples N , and should repeat our estimate with a larger data
set. We chose 3N/4 samples instead of N for the random draw
to err on the side of overestimating the standard deviation.
Estimates for higher moments proceed analogously. In all
cases, this produced standard deviations within 6% of the cor-
responding mean values, indicating well-converged statistics.

Since the parameter values (in particular γ ) are varied over
an order of magnitude, we report the bias in the estimate as the
ratio between the estimated value and the true value instead
of the more common difference between the estimated value
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FIG. 2. Comparison between original forcing f and the estimated forcing fest for two different intermittency parameters, (a) γ = 10 and
(b) γ = 102, no noise X = 0, exponentially distributed pulse amplitudes, and a normalized sampling time of �t/τd = 10−2. The exponential
pulses are uncorrelated and have a uniform distribution of arrival times. The markers denote the original amplitudes A and the estimated
amplitudes Aest .

and the true value. This lets us compare estimates for different
input parameters directly. In this contribution, a deviation of
more than 10% from the true value is considered significant
and is indicated with italic numbers in the tables. This will be
the basis for our discussion of the results.

III. ESTIMATING AMPLITUDES AND WAITING TIMES

Two effects lead to loss of information of the true pulse
arrivals in realizations of the process: (1) The point process
K (T ) is continuous but, as we are working with discrete time
series, pulses closer than a sampling time cannot be separated.
These will be counted as one pulse arrival with amplitude
equal to the sum of their amplitudes, corrupting the resulting
estimated amplitude distribution and number of pulses. (2) As
the peaks of fest may have finite widths, a peak-finding al-
gorithm must be employed. A straightforward and permissive
method, a three-point maxima, compares each data point to
its neighboring points and flags it as a peak if it is bigger
than both neighbors. This method retains only the highest
amplitude event if two or more pulses arrive closer than two
sampling times to each other.

In Appendix A, it is shown that in the base case, the average
number of three-point maxima M in f as compared to the
average number of pulses 〈K〉 is given approximately by

〈M〉
〈K〉 ≈ 1 − exp (−3γ θ )

3γ θ
. (11)

Here, θ = �t/τd is the normalized sampling time and γ θ =
�t/〈w〉. To recover approximately 90% of the pulses using
the three-point maxima, γ θ < 0.075 is necessary, while to
recover approximately 95% of the pulses, γ θ < 0.035 is nec-
essary. This suggests an approximate threshold of γ θ � 1/20
to recover most (above 90%) of the pulses. In this paper, we
have set �t = 10−2τd, leading to an assumed approximate
condition γ < 5 for reconstruction of amplitude and arrival
time distributions within 10% variation in average values.
We will see that, in general, γ = 10 gives too much overlap
while, in some cases, γ � 1 is required, which corresponds to
approximately 98.5% pulse recovery. This threshold should be
seen as a guideline, dependent on the precision and objectives
required for application of the method.

The sampling and local maxima issues are illustrated in
Fig. 2, which shows results from deconvolution for fixed θ

FIG. 3. Comparison between normalized original time series �̃(t ) and the normalized reconstructed time series �̃est (t ) for two different
intermittency parameters, (a) γ = 10 and (b) γ = 102, using amplitudes and arrival times estimated with the deconvolution method. The
forcing for the first 0.4 normalized time units is presented in Fig. 2 and is gray shaded here.
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TABLE I. Table showing the sample moments of the recon-
structed time series for various intermittency parameters γ as
compared to the sample moments of the model realization. 105

iterations were used for parameters θ = 10−2, T/τd = 104 and no
noise was added. The theoretical expressions for the moments are
given directly below Eq. (3).

Moments

γ �est/� �2
rms,est/�

2
rms S�,est/S� (F�,est − 3)/(F� − 3)

10−1 1.00 0.99 1.00 1.00
1 0.99 0.97 0.99 0.99
5 0.97 0.94 0.99 0.97
10 0.94 0.78 0.98 0.94
50 0.78 0.60 1.02 0.58
102 0.68 0.50 1.13 1.32

and two different values of γ . Although the estimated forcing
(the orange solid line) is a good approximation of the original
forcing signal (the black dotted line), even for γ = 102, the
same cannot be said of the estimated amplitudes (the or-
ange triangles) when compared to the original amplitudes (the
black triangles). In the case of γ = 10, the error is moderate
and mainly caused by the three-point maxima not identifying
arrivals at neighboring points. The effect is more severe in
the case γ = 102, where it is evident that fest is given by a
superposition of multiple arrivals closer than one time step of
each other.

The corresponding original and reconstructed time se-
ries are presented in Fig. 3 for one-sided exponential pulses
and an exponential pulse amplitude distribution. Here and
in the following, �̃ denotes the normalized variable �̃ =
(� − 〈�〉)/�rms. For these high γ values, the FPP resembles a
normally distributed process. The reconstructed signal largely
follows the overall path of the original signal but deviates
in detail due to finite sampling rate and pulse overlap as
described above. These differences may have a profound in-
fluence on the estimation of the amplitude and waiting time
statistics, as investigated in detail below.

In Table I, the first four moments as estimated from the
reconstructed time series are presented for various values of

the intermittency parameter. The estimated moments are nor-
malized by the sample moments of the original time series.
In all cases, one-sided exponential pulses with an exponential
amplitude distribution are used. For γ � 5, there is at most
6% disagreement between the estimated and sample moments,
within our allowed tolerance. For γ � 10, both the mean
value and standard deviation are underestimated, with values
below the 10% threshold. The underestimation is worse for
larger intermittency parameters. Higher-order moments are
wrongly estimated for γ � 50, as evidenced by the three
values in the lower right-hand corner of the table. Thus, we
conclude that Table I provides evidence for the condition
γ θ � 1/20 for accurate reconstruction.

The deviation in the first two moments may be explained
by the following: Due to pulse overlap and the three-point
maxima, several true events are discounted. This leads to
an underestimation of the mean value and the standard de-
viation, more severely for higher intermittency parameters.
As the discounted events are preferentially small, the small-
amplitude variations are decreased, leading to a lower overall
rms-level of the signal. By taking the square root of the sec-
ond column and dividing it by the first column, it is seen
that the relative fluctuation level, however, is robust. The
deviations in the higher moments are less systematic and a
Monte Carlo study should be carried out to put reasonable
error bars on these values. The important conclusion from
this table is that it supports the approximate condition γ θ �
1/20 and therefore a time-consuming Monte Carlo study for
the largest intermittency parameters has not been performed
here.

The effects of varying the sampling time are presented in
Figs. 4 and 5. Here we keep γ = 1 fixed for various values of
θ . In these figures, a realization of the FPP with normalized
sampling time θ = 10−3 was downsampled by using only a
portion of the data points in the time series. The downsampled
signals were then deconvolved with a similarly downsampled
pulse function, and the signals were reconstructed. In Fig. 4,
the estimated forcing is presented. As expected, increasing
the sampling time leads to fewer arrivals identified as not all
pulses can be separated. The result is similar to the effect
of keeping θ fixed and increasing γ , as expected from the
theoretical prediction presented in Appendix A.

FIG. 4. Estimated forcing fest (solid line) and estimated amplitudes (markers) for γ = 1 and two different normalized sampling times,
(a) θ = 10−1 and (b) θ = 1. The original forcing (black dotted line) with θ = 10−3 is shown for comparison.
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FIG. 5. Comparison between reconstructed time series using the estimated amplitudes and arrival times (solid line) and downsampled
original signals (dashed line) for γ = 1 and two different normalized sampling times, (a) θ = 10−1 and (b) θ = 1.

In Fig. 5, the reconstructed signals are compared to the
downsampled original time series without noise, X = 0. Note
that the downsampled time series with θ = 10−1 is here vi-
sually similar to the original time series with θ = 10−3. The
reconstruction is reasonable, even for θ = 1, when compared
to the downsampled signal. However, while the amplitudes
and arrival times might be reasonably estimated in the case
θ = 10−1, this is obviously not possible in the case θ = 1, as
expected.

IV. AMPLITUDE AND WAITING TIME DISTRIBUTIONS

In this section, we investigate the ability of the deconvolu-
tion algorithm to reconstruct the amplitude and waiting time
distributions for the case where the pulse function is known.
In all the following cases, we use θ = 10−2, T/τd = 104 and
we have not added any noise term. For this value of the
sampling time, the condition γ θ � 1/20 becomes γ � 5. The
deconvolution ran for 105 iterations, leading to convergence
for γ < 10 and marginal convergence for γ � 10.

A. Base case

First, we consider the effects of varying γ in the base
case on the estimated amplitude and waiting time distribu-
tions from the deconvolved forcing. The plot symbols used
for various intermittency parameters are presented in Fig. 6.
The resulting distributions are presented in Fig. 7 and the
estimated parameters are presented in Table II. Here, the
found number of maxima, the estimated average amplitudes,
and the estimated average waiting times are compared to the
theoretical number of maxima in Eq. (A6) and the theoretical
mean values of the process. In the figures, the distributions are
well estimated for γ � 10, while the mean values are within
10% of their theoretic values for γ � 5. The expected number
of maxima is well estimated by Eq. (A6).

For γ = 50, the mean amplitude and waiting time are
significantly overestimated compared to the other cases. For
the amplitudes, this effect is mainly due to multiple events
being added as a result of being closer than a sampling time.
The resulting distribution has a shallower slope and is more
concave when compared to the original distribution. For the
waiting times, a significant number of true waiting times are
below one sampling time (the probability Pr[w < θ ] ≈ 0.39
for γ = 50). As the smallest waiting time resolvable by the
deconvolution method is 2θ , this introduces a cutoff in the
estimated distribution which increases the mean value of the
estimated waiting times. Moreover, the waiting times only
take values that are low-integer multiples of the sampling
time. For consistency between different values of the inter-
mittency parameter, we use the same bins for all distributions
shown in these figures, chosen such that each bin contains a
single integer multiple of the sampling time in the γ = 50
case. Although it is elevated, due to discounting the shortest
waiting times, the distribution for γ = 50 decays with the
same slope as the original distribution.

In the following, we will investigate the robustness of the
method to nonexponential amplitude and waiting time distri-
butions. We have chosen to test the Rayleigh distribution due
to its Gaussian tail, the Pareto distribution as an example of
a much broader distribution than the exponential, the uniform
distribution for its discontinuous cutoff toward large values,
and the extreme case of the degenerate distribution. Defini-
tions of these distributions are presented in Appendix B.

B. Amplitude distributions

In Fig. 8, we present the amplitude distributions estimated
from the deconvolution procedure for various pulse amplitude
distributions and exponentially distributed waiting times. In
all cases, the different symbols denote the estimated distri-
butions corresponding to the intermittency parameter values
given in Fig. 6. The black dashed line gives the analytical

FIG. 6. List of plot symbols for various intermittency parameters used for estimating pulse amplitude and waiting time statistics.
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FIG. 7. Probability distributions of (a) estimated amplitudes and (b) estimated waiting times for various intermittency parameters in the
base case with exponentially distributed pulse amplitudes and waiting times. In both cases, the distributions are normalized by the original
sample mean values. The plot symbols are defined in Fig. 6.

distributions. Note that the Rayleigh distribution is presented
with a semilogarithmic scale, the Pareto distribution is pre-
sented with a double-logarithmic scale, and the uniform and
degenerate distributions are presented with a linear scale, with
a semilogarithmic scale in the inset. Table III aggregates mean
values for the distributions in Fig. 8.

We see that all distributions are well estimated for γ � 1.
The estimates for Rayleigh distributed amplitudes are visi-
bly affected by pulse overlap for γ � 5, showing elevated
and close to exponential tails for large amplitudes. Pareto-
distributed amplitudes are reliably identified for all tested
intermittency parameters, likely due to the large range of
probable values leading to little distortion due to pulse over-
lap. For uniformly distributed amplitudes, it is clear from the
inset of Fig. 8(c) that while the implications of pulse overlap
are visible even for γ = 1, there is a jump of order 10−2

from the originally allowed values to the larger values. As a
consequence, the uniform distribution is well estimated and
within the variation around the straight line expected for the
uniform distribution. For a degenerate distribution of pulse
amplitudes, the main contribution to the estimated amplitude
distribution is the expected delta peak, with corrections at
higher integer values, as seen in the inset. Only for γ = 50
is there a significant contribution of normalized amplitudes
larger than two and for noninteger amplitudes.

TABLE II. Ratio of (top) number of maxima in the forcing esti-
mated from the deconvolution to the theoretical number of maxima,
(middle) mean estimated amplitudes to the original sample mean,
and (bottom) mean estimated waiting times to the original sample
waiting times. Results are from the base case and for various inter-
mittency parameters. The corresponding distributions are presented
in Fig. 7.

Estimated
γ

averages 10−1 1 5 10 50

M/〈M〉 1.02 1.01 0.98 0.98 0.95
A ∼ exponential Aest/A 1.01 1.02 1.06 1.11 1.58
w ∼ exponential west/w 1.01 1.03 1.10 1.19 2.03

In Table III, the number of found maxima is very close to
the expected number corrected by effects of discretization and
taking the three-point maxima, as discussed in Sec. III. This
distortion is reflected in the deviation of the average estimated
waiting time from the theoretical waiting time. There is only
a small effect on the average amplitudes for γ � 10, irrespec-
tive of amplitude distribution.

C. Waiting time distributions

Realizations of the process have also been made for various
pulse waiting time distributions and intermittency parameters,
with an exponential amplitude distribution in all cases. The
estimated waiting time distributions from deconvolution of
these realizations are presented in Fig. 9 and mean amplitudes
and waiting times as well as the number of maxima in the
forcing are presented in Table IV. For γ � 10, all distributions
show agreement with the true distribution for low (west < 3w)

TABLE III. In each row: Ratio of (top) found number of maxima
in the forcing estimated from the deconvolution to the theoretical
number of maxima, (middle) mean estimated amplitudes to the orig-
inal sample mean, and (bottom) mean estimated waiting times to the
original sample waiting times. Results are for the various amplitude
distributions used in Fig. 8, exponentially distributed waiting times,
and for various intermittency parameters.

Estimated
γ

PA averages 10−1 1 5 10 50

Rayleigh M/〈M〉 1.03 1.02 1.00 1.00 0.99
Aest/A 1.00 1.01 1.03 1.07 1.41
west/w 1.00 1.02 1.08 1.16 1.95

Pareto(3) M/〈M〉 1.03 1.02 1.00 1.00 0.99
Aest/A 1.00 1.01 1.03 1.07 1.45
west/w 1.00 1.02 1.08 1.16 1.95

U (0, 2) M/〈M〉 1.02 1.01 0.99 0.99 0.97
Aest/A 1.00 1.01 1.04 1.08 1.46
west/w 1.01 1.03 1.09 1.17 1.99

Degenerate M/〈M〉 1.03 1.02 1.00 1.00 0.96
Aest/A 1.00 1.00 1.02 1.04 1.32
west/w 1.00 1.02 1.08 1.16 2.01
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FIG. 8. Probability distributions of estimated pulse amplitudes normalized by the sample mean amplitude for various intermittency
parameters and distributions of pulse amplitudes in realizations of the process. (a) A ∼ Rayleigh, (b) A ∼ Pareto(3), (c) A ∼ U (0, 2), and
(d) A ∼ degenerate. The insets in (c) and (d) show the distributions with semilogarithmic scaling. In all cases, exponentially distributed
waiting times were used. The black dashed lines represent the analytical amplitude distribution of the various realizations. The plot symbols
are defined in Fig. 6.

waiting times. The mean amplitudes and waiting times are
well estimated for γ � 10, the largest deviation being a fac-
tor 1.11 increase for uniformly distributed waiting times and
γ = 10.

Rayleigh distributed waiting times display an elevated,
exponential-like tail toward large values. Despite this, the
mean values are better estimated than in the base case, pos-
sibly due to the clear peak of the Rayleigh distribution,
ensuring most events are well separated. The distortion to the
Rayleigh distribution for γ = 50 follows the pattern seen for
exponentially distributed waiting times, as discussed in the
introduction to Sec. IV. Again, we have chosen bins such that
each bin contains one integer multiple of the sampling time
in the case γ = 50. We see that the tail of the distribution is
elevated with respect to the original Rayleigh distribution and
with respect to the lower γ cases. The inflated mean values in
Table IV are due to the loss of waiting times shorter than two
time steps and corresponding enhanced pulse overlap.

Pareto-distributed waiting times are identified in all cases,
and the corresponding mean amplitudes and waiting times
are almost perfectly estimated. This is due to pulse overlap
not being a factor, even at these high intermittency levels:
For w ∼ Pareto(3), there is a cutoff w/τd � 1/2γ , see Ap-
pendix B. With θ = 10−2, γ = 50 corresponds to a minimal
waiting time of two data points. There is an arrival at least
every second data point, and this can just about be resolved

by the three-point maxima. A higher γ would result in an arti-
ficial cutoff in the same manner as for the Rayleigh distributed
waiting times.

For the degenerate distribution, θ = 10−2 and γ = 50 cor-
responds to a (degenerate) waiting time of two data points,
again just at the edge of resolvability. Here, the (small)
probability of larger waiting times is likely due to very
small amplitudes not being picked up by the deconvolution
or being removed by the 10−2 numerical noise threshold.
As seen in Table IV, this has some effect on the aver-
age waiting time, but hardly any effect on the average
amplitudes.

For the uniform distribution, the deconvolution cutoff
w/w ≈ w/〈w〉 � 2�t/〈w〉 = 2θγ . In the γ = 50 case, this
condition is w/w � 1 and is evident in Fig. 9(c): the prob-
ability of waiting times below this value is practically zero,
and there is a corresponding positive probability for values
larger than the original maximal value. The effect on the mean
amplitude and waiting time is comparable to the effect in the
case of Rayleigh-distributed waiting times.

Comparing Table IV to Table II, we see that the theoretical
〈M〉 is only valid for exponentially distributed waiting times,
although the uniformly distributed waiting times are within
the 10% margin for all γ . The most severe deviation is for
Pareto-distributed waiting times, where the number of events
found is wrong by approximately a factor 1/γ . This error
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FIG. 9. Probability distributions of estimated waiting times normalized by the sample mean waiting time for various intermittency
parameters and distributions of waiting times in realizations of the process. (a) w ∼ Rayleigh, (b) w ∼ Pareto(3), (c) w ∼ U (0, 2), and
(d) w ∼ degenerate. The insets in (c) and (d) show the distributions with semilogarithmic scaling. In all cases, exponentially distributed
amplitudes were used. The black dashed lines represent the analytical waiting time distribution of the various realizations. The plot symbols
are defined in VI.

is to be expected, as the exponential shape of the waiting
time distribution, nonzero probability of evens closer than
two time steps, and the memory-less property of the Poisson
process were central to the calculations in Appendix A. For
the nonexponential waiting time distributions, at least two of
these assumptions are false.

These results may indicate that the deconvolution proce-
dure distorts amplitudes more than waiting times. Even if
a cluster of arrivals is counted as a single arrival by the
estimation algorithm, the time between such clusters is not
distorted much by the algorithm, and the tail in the waiting
time distribution should be well estimated if there is no cutoff
for large waiting times. The most significant source of error is
the loss of events closer than two time steps.

D. Negative pulse amplitudes

All the amplitude distributions investigated above were
positive definite. Now, we consider realizations with zero
mean, normally distributed amplitudes to see if they are
reproducible, and to investigate the robustness of the deconvo-
lution to negative pulse amplitudes in the process. Symmetric
Laplace-distributed amplitudes were also tested with simi-
lar results but are not presented here. As the deconvolution
algorithm works under the constraint that the forcing is non-

negative, we first straightforwardly estimate the amplitudes
and arrival times. This gives estimates of the positive am-
plitudes with corresponding arrival times. Then we multiply
the signal by −1 and redo the deconvolution, giving estimates
of the negative amplitudes with corresponding arrival times.
In Fig. 10, the results are presented for normally distributed
amplitudes. In Fig. 10(a), the resulting amplitude distribu-
tions are presented, where the vertical black line indicates
the separation between positive and negative amplitudes. The
overall shape of the normal distribution is well recovered. In
Fig. 10(b), an example of the reconstructed signal is compared
to the original signal. It is clear that while large pulse ampli-
tudes, both positive and negative, are identified, the method
struggles for small amplitudes. Adding positive and negative
pulses in quick succession leads to a signal shape which
cannot be recognized by the deconvolution as a sum of just
positive or just negative amplitudes, and this effect is more
severe for small amplitudes.

E. Conclusion

In this most favorable case of a known pulse function
and no noise added, the deconvolution method performs well
overall, only limited by pulse overlap, as expected from the
theory. Different distributions of pulse amplitudes and waiting
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FIG. 10. Reconstruction of a realization with normally distributed pulse amplitudes. (a) Probability distribution function of the amplitudes
of found events from the deconvolution. Refer to Fig. 6 for the legend. The analytical distribution (dashed line) is shown for reference, whereas
the vertical solid lines show the separation between the negative found events and positive found events. (b) Reconstructed time series (solid
line) using estimated amplitudes and arrival times for γ = 1. The original time series (dashed line) is shown for comparison.

times are well reproduced and mean amplitudes and wait-
ing times are reliably estimated with an error of less than
10% for intermittent signals, γ � 5, lending credence to the
approximate condition for pulse recovery γ θ � 1/20. Even
signals with both positive and negative pulse amplitudes allow
reconstruction of large amplitude events.

V. EFFECTS OF NOISE

In this section, we investigate the effects of adding nor-
mally distributed noise to the FPP in two different ways.
Additive noise consists of uncorrelated noise, while dynamical
noise has the same correlation function as the base case FPP,
achieved by convolving uncorrelated noise with the pulse
function. Some effects of these forms of noise, including
methods for estimating parameters, are discussed further in

TABLE IV. Each row shows the ratio of (top) found number
of maxima in the forcing estimated from the deconvolution to the
theoretical number of maxima, (middle) mean estimated amplitudes
to the original sample mean and (bottom) mean estimated waiting
times to the original sample waiting times. Results are for the various
waiting time distributions used in Fig. 9, exponentially distributed
amplitudes and for various intermittency parameters.

Estimated
γ

Pw averages 10−1 1 5 10 50

Rayleigh M/〈M〉 1.01 1.02 1.05 1.11 1.21
Aest/A 1.01 1.01 1.01 1.02 1.28
west/w 1.01 1.01 1.02 1.05 1.60

Pareto(3) M/〈M〉 9.76 1.01 0.21 0.11 0.04
Aest/A 1.01 1.01 1.01 1.01 1.01
west/w 1.01 1.01 1.01 1.01 1.01

U (0, 2) M/〈M〉 1.01 1.01 1.02 1.05 1.07
Aest/A 1.01 1.02 1.03 1.06 1.33
west/w 1.01 1.02 1.06 1.11 1.64

Degenerate M/〈M〉 0.99 1.00 1.06 1.13 1.72
Aest/A 1.01 1.01 1.01 1.01 1.03
west/w 1.01 1.01 1.02 1.03 1.13

Refs. [50,52]. For both noise types, we use the base case FPP
with uncorrelated, one-sided exponential pulses with expo-
nentially distributed amplitudes. The noise-to-signal ratio is
defined as ε = X 2

rms/�
2
rms, where Xrms is the standard deviation

of the noise process. Here and in the following, Xadd refers to
additive noise, Xdyn refers to dynamic noise and � = � + X
refers to the process with noise.

In Fig. 11, we present excerpts of the original and re-
constructed time series for both types of noise and the case
with no noise. In all cases, the same realization of the FPP
was used. It is evident that additive noise, at least for the
given noise variance and FPP intermittency, does not lead to
major distortions in the reconstruction. This is expected, as the
deconvolution algorithm takes normally distributed, additive
noise into account and does not depend on the noise level.
In Fig. 11, a few small, spurious events can be seen, likely
where the noise by chance approximately reproduces the pulse
shape. For dynamical noise, we see more significant spurious
events as the algorithm can no longer reliably separate the
noise from the small amplitude pulses in the signal. This is
seen in Fig. 12, where estimated amplitude and waiting time

0 20 40 60

t/τd

0

20

Φest

0

20

Ψadd,est

0

20

Ψdyn,est

˜ Ψ

FIG. 11. Original time series (black lines) and reconstructed time
series shown by the colored (gray) lines from the deconvolution
for no noise (lower panel), additive noise (middle panel), and dy-
namical noise (upper panel). The intermittency parameter was set to
γ = 10−1, while the noise to signal ratio was set to ε = 1.
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FIG. 12. Probability distributions of (a) estimated amplitudes and (b) estimated waiting times without thresholding. The black dashed line
gives an exponential distribution. The symbols represent the values of γ and ε used, whereas the colors correspond to the noise type.

distributions are presented, using only the small amplitude
threshold discussed in Sec. II C to avoid spurious arrivals. It
is clear that many noise events are identified as pulses, and
that this also influences the waiting time distribution. In all
cases, the tail of the amplitude distribution follows the ex-
pected exponential decay. For low γ and ε, the effect of noise
is largely concentrated in excessively many small-amplitude
events, which is reflected in the sharper decay of the waiting
time distributions as compared to the original exponential
distribution. For high γ and ε, the estimated amplitudes and
waiting times are moderately affected, and, in particular, dy-
namical noise has little effect on these distributions. In the
following, we will discuss how to improve the results by
removing the events with the smallest amplitudes.

Based on the exponential pulse amplitude and normal noise
distributions, we have that Xrms = √

γ ε〈A〉, so we introduce a
threshold where we reject all events with amplitude less than
this value. From realizations of the process, these parameters
may be estimated from the moments, probability distribution,
or characteristic function as described in Refs. [50,52]. To
simplify the analysis, we take γ , ε, and 〈A〉 as given for
setting the threshold level. In Figs. 13 and 14, we present
estimated amplitude and waiting time distributions after ap-

plying the amplitude criterion Aest >
√

γ ε〈A〉, discarding all
events with smaller amplitudes. Note that for these figures,
we normalize by the sample mean of the estimated values
instead of the sample mean of the original values to highlight
the similarity in distribution. The result is that we have good
agreement in distribution in all cases of pulse overlap and
noise levels investigated. Removing the arrivals due to noise
also realigns the waiting time distributions to the expected
exponential.

In Tables V and VI, the estimated mean amplitudes and
waiting times for all cases presented in Figs. 13 and 14 are
presented. To accurately assess mean values of amplitudes and
waiting times, the threshold must be taken into account. The
mean value of the truncated amplitudes is, assuming expo-
nentially distributed amplitudes, just the threshold subtracted
from the sample mean value of the estimated amplitudes.
Therefore, we report (Aest − √

γ ε〈A〉)/A. For waiting times,
pulses are rejected if they have an amplitude A <

√
γ ε〈A〉,

thus the number of found pulses after thresholding is reduced
by a factor 1 − Pr[A <

√
γ ε〈A〉] = exp(−√

γ ε). Here, the
last equality holds for exponentially distributed amplitudes.
This in turn implies that the estimated waiting time is pro-
longed and should be multiplied by this same factor, leading

FIG. 13. Probability distributions of estimated amplitudes with thresholding in the presence of (a) additive noise and (b) dynamical noise.
The colored markers represent the different noise-to-signal ratios ε, corresponding to different intermittency parameters γ represented by the
shape of the markers. Light blue (light gray) refers to ε = 10−1, medium blue (medium gray) refers to ε = 1/2, and dark blue (dark gray)
represents ε = 1. The black dashed line is an exponential distribution.
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FIG. 14. Probability distributions of estimated waiting times with thresholding in the presence of (a) additive noise and (b) dynamical
noise. The colored markers represent the different noise-to-signal ratios ε, corresponding to different intermittency parameters γ represented
by the shape of the markers. Light blue (light gray) refers to ε = 10−1, medium blue (medium gray) refers to ε = 1/2, and dark blue (dark
gray) represents ε = 1. The black dashed line is an exponential distribution.

us to report exp(−√
γ ε)west/w. Note that this argument relies

on an assumption of no pulse overlap and will be less accurate
for intermittency parameters of order unity or larger.

In the case of the amplitudes, presented in Table V, we
recover the mean value well when we correct for the threshold
used, although additive noise leads to underestimation of the
amplitudes while dynamic noise leads to overestimation of
amplitudes in most cases investigated. The estimated waiting
times, presented in Table VI, are, in general, much more
affected by the noise than the amplitude distribution, reaching
close to twice the original sample mean value. In both cases, it
appears like moderate pulse overlap, γ = 1, is more affected
by noise than either low or high pulse overlap. It may be
that for low pulse overlap, noise is effectively filtered out,
while for high degrees of pulse overlap, the threshold is so
restrictive (see below) that only the largest amplitude pulses
are identified. We also recall that west/w = 1.19 is expected
for γ = 10. Thus, the errors due to noise dominate for low and
moderate γ , while for high γ , the errors due to pulse overlap
are more significant.

In Fig. 15, we present the reconstructed time series from
the deconvolution in the most extreme case considered, γ =
10 and ε = 1. The original forcing (without noise) is com-
pared to the forcing estimated from the signal with additive
noise (orange dotted lines) and dynamical noise (green dashed
lines) in Fig. 15(a). The horizontal black dashed line gives

TABLE V. Estimated average amplitudes in the case of ampli-
tude noise thresholding corrected to (Aest − √

γ ε〈A〉)/A correspond-
ing to Fig. 13.

γ

ε 10−1 1 10

Additive 10−1 0.90 0.90 0.89
1/2 0.90 0.87 0.89
1 0.92 0.84 0.94

Dynamic 10−1 1.01 1.03 1.07
1/2 1.00 1.02 1.05
1 0.98 1.02 1.04

the amplitude threshold
√

γ ε. It is clear that many small
amplitude pulses are rejected as a result of the thresholding.
Also note that additive noise appears to more severely affect
large amplitudes than dynamical noise. In particular, note the
large, spurious peak at normalized time 6.6. The reconstructed
signals using the estimated forcing are compared to the origi-
nal signal without noise in Fig. 15(b). It is clear that since only
the largest amplitude pulses are identified, the method fails to
reconstruct realizations of the process.

We have shown that the deconvolution recovers the forcing
well in the case of normally distributed noise. To estimate
amplitudes and arrival times, an amplitude threshold must be
introduced. For high degrees of pulse overlap, this threshold
significantly affects signal reconstruction, but, by properly
taking the threshold into account, we may recover the tails
of the amplitude and waiting time distributions as well as es-
timating their mean values. The mean amplitude is accurately
recovered, while the mean of the estimated waiting times is
within a factor 2 of the original sample waiting time, even for
severe noise levels.

VI. ESTIMATING THE PULSE DURATION

For any given measurement time series, the pulse function
and duration may not be known and so must be estimated
to apply the deconvolution method. For pulses with fixed
duration arriving in accordance to a Poisson process, the

TABLE VI. Estimated average waiting times in the case of
amplitude noise thresholding corrected to exp(−√

γ ε)west/w cor-
responding to Fig. 14.

γ

ε 10−1 1 10

Additive 10−1 1.02 1.24 1.36
1/2 1.17 1.63 1.36
1 1.32 1.89 1.22

Dynamic 10−1 1.12 1.25 1.25
1/2 1.25 1.55 1.41
1 1.37 1.82 1.52
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FIG. 15. (a) Excerpt of the original forcing (black solid line) with γ = 10 and ε = 1, compared to the estimated forcing using additive
noise (orange dotted line) and dynamical noise (green dashed line) where the noise threshold is shown (horizontal black dashed line). The
reconstructed time series (b) is shown using the estimated amplitudes and arrival times from the three-point maxima. The shaded background
corresponds to the time axis shown on the left.

pulse function can be obtained from the frequency PSD [51].
Alternatively, the conditionally averaging method for large-
amplitude events may be used in the case of weak pulse
overlap [22,39,54].

In this section, we investigate how different pulse dura-
tion and waiting time distributions distort the estimated pulse
function and thereby the estimated amplitude and waiting time
distributions. We will estimate the average duration from the
frequency power spectra of the process, which, in contrast to
the autocorrelation function, are very robust to a distribution
of pulse durations [51]. We restrict ourselves to the one-sided
exponential pulse function, as it has a clearly identifiable
Lorentzian power spectrum. We further restrict ourselves
to deviations from the base case which produce reasonable
Lorentzian-like power spectra. This means that degenerate
and uniform waiting time distributions are not considered,
as they produce pronounced peaks in the spectra. Pareto-
distributed waiting times produce mild deviations in the tail,
which are considered acceptable. Exponentially distributed
pulse durations will not be considered due to the signifi-
cantly increased zero-frequency value in the PSD [51] and
neither will Pareto-distributed durations due to their drastic

effects on the power spectra [55]. Both uniformly distributed
and Rayleigh-distributed durations give Lorenzian-like power
spectra. To include a narrow (compared to the Rayleigh)
unimodal distribution that is still positive definite, we use a
gamma distribution with shape parameter 20.

In Fig. 16, we present the PSD of the normalized synthetic
time series without added noise for the various selected dis-
tributions of durations and waiting times. The intermittency
parameter has very little visible effect on the power spectra, so
figures for other intermittency parameters are not presented.
Indeed, for the base case with a degenerate distribution of
pulse durations and an exponential waiting time distribution,
the PSD of the normalized process �̃ does not depend on the
intermittency parameter [51]. The theoretical expectation for
the base case is apparently very close to the spectra for all
cases presented in Fig. 16. This will be quantified by estimates
of the average duration in Secs. VI B and VI C.

A. Wrongly estimated pulse duration

Before investigating the effect of a distribution of pulse
durations and waiting times on the deconvolution method,

FIG. 16. Power spectral densities of normalized original time series for γ = 10 with (a) fixed pulse duration and different waiting time
distributions and (b) exponential waiting time distribution and different pulse duration distributions. The black dashed line is the Lorentzian
spectrum for the base case.
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FIG. 17. Probability distribution function of estimated (a) waiting times and (b) amplitudes for γ = 10 and various assumed values of
τd, wrong. The black dashed lines show an exponential distribution. � represents τd, wrong/τd = 1/10, � shows the data for τd, wrong/τd = 1/2, •
shows the data for τd, wrong/τd = 1 �, shows the data for τd, wrong/τd = 2, and � represents τd, wrong/τd = 10.

we consider the isolated effect of misidentifying the correct
duration for the base case process. Here, we deconvolve a base
case realization with a pulse function with a wrong duration
time in the case of no noise added. We will keep the notation
τd = 〈τ 〉 for the true duration of the process and use τd, wrong

for the assumed wrong duration.
In Fig. 17, the estimated amplitude and waiting time dis-

tributions are presented for various assumed τd, wrong. The
intermittency parameter for all realizations is γ = 10. Simi-
lar results are present, but with a weaker effect, for γ = 1.
We observe deviations from the exponential distribution of
waiting times when τd, wrong > τd and deviations for an ex-
ponential amplitude distribution for the two most extreme
cases with τd, wrong/τd = 1/10 and τd, wrong/τd = 10. This is
complemented by Tables VII and VIII, where the estimated
average waiting time and amplitude are compared to their
respective original sample mean values. Large τd, wrong/τd

leads to overestimation of the average waiting time and this is
more pronounced for larger intermittency parameters. Large
τd, wrong/τd also leads to underestimation of the average am-
plitude and this is most pronounced for small intermittency
parameters. Small τd, wrong/τd has very little effect on the av-
erage waiting time but leads to overestimation of the average
amplitude, in particular, for large intermittency parameters.

We interpret these results as follows. The deconvolution
preserves the integral of the signal (at least before the three-
point maxima is applied) and the integral of the pulse function
is equal to the duration time. Therefore, overestimating or
underestimating the pulse duration leads to decreased or in-
creased mass in the estimated forcing, respectively. Increased

TABLE VII. Table of the estimated average pulse waiting times
normalized by the mean of the sample waiting times, west/w, for
different pulse durations at different intermittency values.

τd, wrong/τd

γ 10−1 1/2 1 11/10 5/4 3/2 2 10

10−1 1.01 1.01 1.01 1.02 1.04 1.06 1.12 1.78
1 1.02 1.01 1.03 1.09 1.18 1.33 1.60 4.53
10 1.17 1.16 1.19 1.28 1.44 1.71 2.22 9.22

mass in the forcing raises the zero level of the entire forcing,
increasing the amplitudes but not causing any events to be lost.
Decreased mass in the forcing can only be achieved by de-
creasing pulse amplitudes, which also eliminates some pulses
entirely. Hence, overestimating the duration time leads to
lost pulse arrivals, while underestimating the duration mainly
leads to increased pulse amplitudes, which is moderate unless
the underestimation is extreme or there is significant pulse
overlap. These effects suggest that in application of the decon-
volution method, where the pulse duration must be estimated,
one should favor doing the deconvolution with a slightly lower
duration than the estimated one. Noise, different distributions
of amplitudes, waiting times, or durations, or correlations
between these random variables could change this conclusion,
however.

B. Effect of waiting time distribution

Here we will consider how various waiting time distribu-
tions affect the estimated pulse duration, and in turn how this
influences the estimated amplitude and waiting time statistics
using the deconvolution method. In Table IX, the estimated
pulse duration for the cases in Fig. 16(a) are presented. These
estimated durations were found by performing a least-square
minimization using the curve_fit function of the SciPy module
in Python, in the normalized frequency range τdω between
10−1 to 102. The pulse duration is well estimated for the case
of exponentially and Rayleigh distributed waiting times. The
pulse amplitude and waiting time distributions estimated from
the deconvolution method are not affected by the duration
estimate in these cases, and are therefore not presented.

TABLE VIII. Table of the estimated average pulse amplitudes
normalized by the sample mean amplitudes, Aest/A, for different
pulse durations at different intermittency values.

τd, wrong/τd

γ 10−1 1/2 1 11/10 5/4 3/2 2 10

10−1 1.02 1.01 1.01 0.97 0.91 0.82 0.70 0.25
1 1.10 1.01 1.02 1.00 0.97 0.93 0.86 0.50
10 1.97 1.20 1.11 1.11 1.10 1.09 1.07 0.88
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TABLE IX. Ratio between estimated pulse duration τd, est and the
pulse τd for different waiting time distributions, corresponding to the
spectra presented in Fig. 16(a).

γ

τd, est/τd 10−1 1 10

w ∼ exponential 1.00 1.08 0.96
w ∼ Rayleigh 0.93 1.04 0.99
w ∼ Pareto(3) 1.51 1.41 1.42

Pareto-distributed waiting times gives an overestimation of
the pulse duration, and we expect this to have effects on the
subsequently estimated amplitude and waiting time distribu-
tions using the deconvolution method. The case γ = 10−1 has
the largest overestimation and will therefore be investigated
in more detail. In Fig. 18, we present estimated amplitude
and waiting time distributions from deconvolution for pulse
durations τd, τd, est, and τd, est/2. The first is included as a
baseline reference, while the third is included to demonstrate
the effect of using a shorter duration than the estimated one.
The amplitude distribution is not visibly affected, but the es-
timated waiting time distributions show elevated tails at large
waiting times (>10w) and in the case where we used τd, est,
the distribution is elevated for waiting times greater than w.

The mean values of all distributions presented in Fig. 18 are
presented in Table X. The mean amplitudes are consistently
underestimated, both for τd, est > τd and for τd, est/2 < τd,
in contrast to the results in Table VIII. We see that the
deconvolution significantly overestimates west for τd, est, and
underestimates west for τd, est/2. In agreement with the results

TABLE X. Comparison of rescaled estimated parameters from
Fig. 18 for Pareto waiting times, γ = 10−1, using different duration
time values in the deconvolution.

Estimated averages τd τd, est/2 τd, est

Aest/A 1.01 0.91 0.88
west/w 1.01 0.91 1.28

TABLE XI. Estimated averages of the amplitude and waiting
times using different pulse duration distributions with the same aver-
age duration for all cases.

γ

Pτ Estimated averages 10−1 1 10

Rayleigh Aest/A 0.86 0.88 0.88
west/w 0.99 1.03 1.00

Gamma(20) Aest/A 0.96 0.97 1.06
west/w 1.02 1.05 1.16

U (0, 2) Aest/A 0.80 0.83 0.80
west/w 1.00 1.01 0.92

reported in the previous section, using a slightly lower pulse
duration than the estimated one improves the estimated aver-
age amplitude and waiting time.

C. Distribution of pulse durations

Consider now the situation where there is a distribution of
pulse durations. The deconvolution method assumes all pulses
to have the same duration, so it is of interest to investigate
how it performs for a distribution of pulse durations. We
first establish a baseline for the performance of the method
using the theoretical average duration time. In Table XI, we
present estimated average amplitudes and waiting times for
three different pulse duration distributions. Table II describes
the results for a degenerate distribution of pulse durations.
While gamma-distributed durations with shape parameter 20
are narrow enough for the parameters to be well estimated, in
both the Rayleigh and uniform cases, the amplitudes are un-
derestimated for all intermittency parameters. For small inter-
mittency parameters, this agrees with the results in Table VIII:
the amplitudes of pulses with duration greater than τd are
accurately reconstructed, while amplitudes of pulses with du-
rations smaller than τd are underestimated. Pulse overlap mod-
ifies this relationship, leading to more robustly underestimated
amplitudes for the case of randomly distributed durations.

The estimated average duration from fitting to the PSD is
presented in Table XII for various duration distributions and

FIG. 18. Estimated (a) amplitude distributions and (b) waiting time distributions for Pareto-distributed waiting times, w ∼ Pareto(3), and
γ = 10−1. These plots compare the results from deconvolution performed using the true duration (orange circles) and the estimated duration
(green triangles) from Table IX. The black dashed lines are the references of the input distributions.
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TABLE XII. Ratio between estimated pulse duration τd,est and
sample mean of the durations τ d using different duration time
distributions.

γ

τd,est/τd 10−1 1 10

τd ∼ Rayleigh 1.43 1.27 1.28
τd ∼ gamma(20) 1.02 1.10 0.98
τd ∼ U (0, 2) 1.54 1.45 1.39

intermittency parameters. The case of degenerately distributed
pulse durations is equivalent to the case of exponentially
distributed waiting times presented in Table IX. Again, a
gamma(20) distribution of durations does not appear to sig-
nificantly affect the results, but the average pulse duration is
overestimated in both the other cases. The case of uniformly
distributed durations give the largest deviation in the estimated
average pulse duration and will again be investigated in more
detail.

The estimated pulse amplitude and waiting time distri-
butions for the case of uniformly distributed durations are
presented in Fig. 19, and the estimated average amplitudes and
waiting times are presented in Table XIII. Again, we compare
results from deconvolution with pulses using τd, τd, est, and
τd, est/2 as pulse duration. Both the amplitude and waiting
time distributions are well estimated. The estimated average
waiting time is within 10% of the original sample mean value
for both estimated pulse durations used for deconvolution.
However, the deconvolution with the reduced estimated pulse
duration captures the average amplitude better than the full
estimated duration time, consistent with the previous cases.

D. Conclusion

In this section, we have investigated the effect of estimating
the pulse duration time from the PSD in the case of nonexpo-
nentially distributed waiting times, as well as for a distribution
of pulse durations. If the shape of the power spectrum is
similar to that of a single pulse (as it will be for uncorre-
lated pulses with an exponential waiting time distribution), the
pulse duration is accurately estimated and there are no issues

TABLE XIII. Table showing the rescaled estimated parameters
from Fig. 19 for uniformly distributed pulse durations using different
average duration values in the deconvolution for γ = 10−1. The
corresponding estimated duration can be found in Table XII.

Estimated averages τd τd,est/2 τd,est

Aest/A 0.80 0.80 0.72
west/w 1.00 0.93 1.08

in applying the deconvolution method. Likewise, a narrow
distribution of pulse durations [gamma(20) in our case] gives
reliable estimates of amplitudes and waiting times. However,
broadly distributed pulse durations will lead to errors in the
estimated averages, even if the average duration time is known
exactly. It is again demonstrated that using a smaller duration
time than the one estimated from the frequency spectrum is
preferable, but did not improve on using the mean duration
time.

VII. RECONSTRUCTION OF THE PULSE FUNCTION

In some applications, the forcing is known or may be
estimated, while the pulse function (or system response to the
forcing) is unknown. It is clear from Eq. (7) and the iteration
scheme given by Eq. (10) that the particular interpretation
of the vectors f and ϕ does not affect the deconvolution
algorithm if the known vector satisfies the conditions of non-
negativity and a positive value at t = 0. As such, we may
consider f a known forcing and ϕ an unknown pulse func-
tion and obtain the deconvolution algorithm by switching the
symbols f and ϕ in Eq. (10):

ϕ
(n+1)
j = ϕ

(n)
j

(� ∗ f̂ ) j + b

(ϕ(n) ∗ f ∗ f̂ ) j + b
. (12)

Here, we are interested in the direct result of the deconvolu-
tion, and so we do not expect the value of the intermittency
parameter to significantly influence the result. This is con-
firmed by Fig. 20, where we present reconstructions of the
one-sided exponential pulse for different intermittency param-
eters from realizations of the model in the base case. In all
cases with a finite intermittency parameter, the pulse recon-

FIG. 19. Estimated (a) amplitude distributions and (b) waiting time distributions for uniformly distributed duration times, τ ∼ U (0, 2) and
γ = 10−1, using various assumed constant duration times. The black dashed lines are the references of the input distributions.
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FIG. 20. Reconstruction of a one-side exponential pulse function
with different intermittency parameters without noise added. The
inset shows the differences between the pulse reconstructions with
semilogarithmic axes. The black dashed line shows the true one-
sided exponential pulse function.

struction is reliable, although in the inset it is seen how a lager
intermittency parameter pushes up the noise floor, thereby de-
creasing the time window of accurate reconstruction. Still, for
γ = 10, the effects are only seen two decades below the max-
imal pulse value. In Fig. 20, we have also indicated the case
γ → ∞ by letting the forcing signal consist of independently
and identically normally distributed random variables, with
a constant added to make the forcing positive. In this most
severe case, the pulse function is significantly affected, with a
slight rise before the peak and correspondingly a faster decay
after the peak. In the following, we will only consider the case
of moderate pulse overlap, given by γ = 1. For the results
presented in this section, we use a portion of the synthetic
time series and its known forcing, where both have a length of
219 + 1 data points. The initial guess for estimating the pulse
function is an array, also of size 219 + 1 data points, contain-
ing a boxcar function centered at zero with an amplitude of
one and a width of 217 + 1 data points, equivalent to about
1300 pulse duration times. All values outside the boxcar are
set to zero. The boxcar is used to improve stability; allowing
positive values over the entire estimated pulse function array
can sometimes lead to spurious positive values at the far ends
with a corresponding degradation of the pulse function in the
center. Since zeros remain zero during the iteration of the
algorithm, such effects are removed by the boxcar. Note that
the boxcar is still huge compared to the expected size of the
pulse it contains.

In Fig. 21, reconstructed pulse functions from deconvolu-
tion of downsampled model realizations using down-sampled
forcing is presented. Here it is seen that the pulse function
is not accurately reproduced if the process is undersampled.
Note that for the comparison, the pulse functions have been
rescaled to match the amplitude of the original pulse function.
For θ = 10−1, the maximum value is 0.93 and, for θ = 1, the
maximum value is 0.62. Thus, the reconstructed amplitude
is affected as well as the pulse function. We note, however,
that this result is sensitive to how undersampling affects the
forcing, and, in particular, whether undersampling leads to
losses of entire pulses or not. In the case presented here,
loss of pulses in the forcing but not the signal is the major
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FIG. 21. Reconstruction of a one-sided exponential pulse func-
tion (solid colored line and dotted colored line) for variously
downsampled signals with intermittency parameter γ = 1 and no
noise added. The black dashed line shows the true one-sided expo-
nential pulse.

discrepancy between the original down-sampled forcing and
the forcing estimated from the down-sampled signals.

We consider the effect of noise in Fig. 22. Additive noise
leads to noise in the tail, worse for higher ε. Still, we reach
noise rms two times the signal rms without significant devi-
ations from the pulse function. Dynamical noise also distorts
the pulse function, but not significantly, likely due to the noise
in this case being convolved with the same pulse function as
the forcing.

In Fig. 23, we present reconstruction of the pulse function
in the case of broad distribution of durations. The deconvolu-
tion method assumes all pulses have the same duration, but is
shown to accurately reproduce the pulse function with largely
the correct average duration. Narrower duration distributions
[Rayleigh, gamma(20)] were also attempted, but gave results
indistinguishable from the true pulse function. Attempting to
fit the result of the Pareto case to a single exponential on a
linear scale gives τd, est = 0.85, which is easily seen in the
inset not to capture the correct pulse function.

In conclusion, the deconvolution method can be used re-
liably to recover the pulse function from a given forcing.
Only severe noise, undersampling, or excessively broad pulse
duration distributions lead to significant deviations from the
average pulse function.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a method for extract-
ing pulse amplitudes and arrival times from realizations of
a stochastic process given by a superposition of pulses with
fixed shape. The method relies on the ISRA deconvolution
algorithm,which produces the maximum-likelihood solution
to the deconvolution problem � = ϕ ∗ f + X , where � is a
known signal, ϕ is a known pulse or kernel function, f is the
forcing to be estimated, and X is normally distributed noise.
Since the result of the deconvolution algorithm is the forcing
time series f , a three-point maxima is used to estimate pulse
amplitudes and arrival times.

For realizations of an intermittent process with high tem-
poral resolution (sampling time 1/20 times the average time
between pulses or better and 1/10 times the average pulse
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FIG. 22. Reconstruction of a one-sided exponential pulse function using the modified RL-deconvolution for γ = 1 and different values
of the noise to signal ratio ε. (a) Additive noise. (b) Dynamic noise. The black dashed lines represent the true one-sided exponential pulse
function.

duration time or better), amplitude and waiting time distri-
butions are well recovered in a variety of cases. Coarser
sampling or more pulse overlap both lead to several pulses
being counted as one, which distorts the estimated ampli-
tude distribution and leads to overestimation of the average
amplitude and waiting time. We note that this condition on
the sampling time still allows for pulse overlap and pulses
which are separated by two sampling times or more robustly
separated by the algorithm. Based on studies of numerous
model realizations, it is recommend to use the approximate
conditions γ θ = �t/〈w〉 � 1/20 and θ � 1/10 to determine
if the deconvolution will give reasonable estimates of mean
values of pulse amplitudes and waiting times, and γ θ � 1/10
if only the functional shape of the corresponding distributions
are desired.

While the deconvolution method is only designed for posi-
tive valued signals and forcings, negative signal values may
be accounted for by a straightforward modification of the
algorithm. If negative values are present, we may recover both
positive and negative parts by using the method on both the
signal and its sign reversed version separately, and combine
the results. While the method is not able to accurately resolve
parts of data time series where fluctuations of different sign
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FIG. 23. Pulse reconstruction with randomly distributed pulse
durations for γ = 1 and no added noise. The inset shows the same
with semi-logarithmic axes. The dotted line gives the best fit to the
pulse function in the Pareto case. The black dashed line is the true
one-sided exponential case.

arrive close together, parts of the signal where one sign domi-
nates are well reconstructed.

Noise may be handled, and relies at present on introduc-
ing an amplitude threshold in the three-point maxima. The
threshold performs well recovering the tail of the amplitude
and waiting time distributions. Average pulse amplitudes are
estimated to within 15% of their true value, while mean wait-
ing times are estimated to within a factor of 2.

If the pulse duration is not known before applying the de-
convolution method, it may be estimated from the frequency
PSD of the process. The spectrum is insensitive to pulse
overlap and amplitude distribution and robust to nonexpo-
nential waiting time distributions as well as distributions of
the pulse duration. It is demonstrated that for intermittent
processes, underestimation of the pulse duration has little to
no effect on the estimation of pulse amplitudes and arrivals,
while overestimation of the pulse duration has significant im-
plications. Broad distributions in waiting times or durations
lead to overestimation of the average duration, which in turn
distorts average amplitude and waiting time estimated from
the deconvolution. It is shown that in these cases, performing
the deconvolution with a pulse duration half the estimated
value from the PSD improves the results.

Lastly, if the forcing is known but the pulse function is
unknown, the ISRA algorithm may be employed straightfor-
wardly. We have demonstrated that the reproduction of the
pulse function is excellent for all but the most severe under-
sampling or noise. Even if there is a narrow distribution of the
pulse durations, the algorithm recovers the pulse function with
the average duration time.

For real data, we advise a procedure as in Refs. [23,39].
First, the analysis leading to estimates of the stochastic model
parameters is performed. Then, the deconvolution is per-
formed on the empirical data. Finally, synthetic data from
model realizations with the estimated model parameters is
made and analyzed in the same manner as the empirical data.
Results from analysis of the synthetic data should then be
compared to the results of the measurement time series. Ide-
ally, this should be carried out as a Monte Carlo study with
multiple model realizations, demonstrating that the results of
the deconvolution are within the expected errors for synthetic
data.
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In conclusion, the deconvolution algorithm is shown to
recover amplitude and waiting time distributions from real-
izations of an intermittent process even in the presence of
significant pulse overlap, addition of noise, and deviations
from the expected pulse function. For all signals considered
in this contribution, the underlying ISRA method recovers the
forcing admirably and only the basic information loss associ-
ated with the finite sampling of a continuous signal affects the
reconstruction of amplitude and waiting time distributions.
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APPENDIX A: EFFECT OF SAMPLING
ON EVENT RECOLLECTION

In this Appendix, we investigate the information loss as-
sociated with poor sampling of the FPP. Consider a Poisson
point process K (T ) on the interval [0, T ) with rate parameter
1/γ . For a given realization, the arrivals of K events are uni-
formly distributed on the interval. The interval is discretized
into N time steps of size �t = T/N . For reference, we note
that

〈K〉 = γ θN, (A1)

where θ = �t/τd. We only record if events occur in a given
time step, not how many events occur. We therefore move
from the process K (T ) to the process F (N ), denoting loca-
tions with events. By necessity, F � K and F � N . For each
of the N time steps, the probability of receiving events is
1 − Pr[No events in time θ ], which from the Poisson distri-
bution of K is 1 − exp(−γ θ ). Therefore, the probability mass
function of F is a Binomial distribution over N trials with
success probability 1 − exp(−γ θ ):

PF ( f ; γ , θ, N ) =
(

N

f

)
exp(−γ θ )N− f [1 − exp(−γ θ )] f .

(A2)

The mean value is given by

〈F 〉 = N[1 − exp(−γ θ )]. (A3)

For γ θ  1, the exponential in Eq. (A3) can be ex-
panded and 〈F 〉 ≈ 〈K〉. However, γ ≈ 1/θ gives 〈K〉 ≈ N but
〈F 〉 ≈ 0.6N as many events arrive at the same discrete time
location.

Let us now investigate the effect of the three-point maxima
peak finding algorithm. Letting M denote the number of max-
ima, we do the following approximation (here, cluster of size
k means k consecutive filled time steps with empty time steps
at each end):

M =
∑

c

∑
m

(number of maxima in cluster m of size c),

〈M〉 ≈ N
∑

c

Pr[cluster of size c]

× 〈number of maxima in clusters of size c〉. (A4)

FIG. 24. Comparison of the expected number of events 〈K〉, the
expected number of time steps with events 〈F 〉 and the expected
number of events found after a three-point maxima 〈M〉 as a function
of γ θ . In all cases, the number of data points was N = 105 and the
normalized time step was θ = 10−2. The lines give analytical approx-
imations, and the symbols are results from numerical simulations.

Letting C be the cluster size, the probability of having a cluster
of size c is given by

Pr[cluster of size c] = Pr[C = c] = (1 − e−γ θ )c(e−γ θ )2.

(A5)

To find the number of maxima per cluster, we argue as fol-
lows: As the amplitudes are independently and identically
distributed, so are the values of the forcing at neighboring
time steps. As such, all permutations of the forcing values
in a cluster are equally likely. For c = 1 and c = 2, there is
obviously just one maximum. For c = 3, there are six permu-
tations, two of which give two maxima and the rest give one,
for an average of 4/3 maxima in the cluster. By going from
two to three data points, we had a 1/3 chance of adding an
extra maximum. Adding further data points to the end of the
sequence, each time gives an additional 1/3 chance of a new
maxima, so the average number of maxima should increase by
1/3 per new data point. Aided by brute force investigation of
all ordered sequences up to c = 10, we guess that the average
number of maxima in an ordered sequence of size c � 2 is
(c + 1)/3, including the end points. Adding 1/3 to this gives
((c + 1) + 1)/3, the average number of maxima in a sequence
of c + 1 data points. We therefore have that the approximation
in Eq. (A4) can be written as

〈M〉
N

≈ Pr[C = 1] +
∞∑

c=2

Pr[C = c]
c + 1

3
,

〈M〉
N

≈ 1 − e−γ θ

3
[1 + e−γ θ + (e−γ θ )2], (A6)

where we have used Pr[C = c] from Eq. (A5). This expression
fits our expectations: For very small γ θ , we mainly expect
clusters of size 1, and Eq. (A6) approaches Eq. (A3). For very
large γ θ , the entire time series is likely to be filled, so we
expect about N/3 maxima following the discussion above.

In Fig. 24, we compare the analytical results of this sec-
tion with results from a Monte Carlo study. The lines give the
analytical predictions, while the points give mean values of
20 realizations of the base case with N = 105 and θ = 10−2
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for various γ . One standard deviation would give error bars
smaller than the plot symbols. Equation (A6) is an excellent
approximation to the average number of maxima for large N ,
and that the full distribution of the number of events is narrow,
justifying the use of 〈M〉 instead of the full distribution.

For the deconvolution method, 〈M〉/〈K〉 is the most signifi-
cant number, as this gives a measure of how well we may hope
to recreate the individual pulses in the time series. The lower
this ratio is, the more separate pulses are counted as one. If we
had a way of avoiding the three-point maxima, we would still
have the coarse-graining introduced by discretizing the time
series. In this ideal case, 〈F 〉/〈K〉 is the important ratio.

APPENDIX B: DEFINITION OF DISTRIBUTIONS

In this Appendix, we list the distributions used in this
paper. In all cases, we give the distributions in terms of their
mean value 〈X 〉 = μ, so for any realization {Xk}K

k=1 listed
here, we may get amplitudes, waiting times, or pulse durations
by setting μ = 〈A〉, μ = τw, or μ = τd, respectively. Unless
otherwise noted, all distributions used are positive definite, so
we only give the distributions for x > 0. For x < 0, we have
PX (x) = 0.

(a) The exponential distribution is given by

PX (x) = 1

μ
exp

(
− x

μ

)
. (B1)

We denote an exponentially distributed random variable by
X ∼ exponential

(b) The gamma distribution is given by

PX (x; k) = kk

�(k)μk
xk−1 exp

(
−kx

μ

)
. (B2)

This distribution has one free parameter, the shape parameter
k. For k = 1, this coincides with the exponential distribution.
In the main text, the gamma distribution is denoted by X ∼
gamma(k).

(c) The Rayleigh distribution is given by

PX (x) = πx

2μ2
exp

(
−πx2

4μ2

)
. (B3)

We denote a Rayleigh distributed random variable by X ∼
Rayleigh

(d) The Pareto distribution is given by

PX (x) = (α − 2)α−1

(α − 1)α−2

μα−1

xα
, x � α − 2

α − 1
μ. (B4)

As we require a well-defined mean for all random variables,
we demand α > 2. We denote a Pareto distributed random
variable by X ∼ Pareto(α). Note that following this definition,
the PDF decays as x−α , while in the standard definition, it is
the cumulative distribution function which decays as x−α .

(e) The degenerate distribution is given by

PX (x) = δ(x − μ). (B5)

We denote a degenerately distributed random variable by
X∼degenerate.

(f) The uniform distribution is given by

PX (x) =
{

1
2μ

, 0 � x � 2μ

0, else.
(B6)

Note that this is the broadest possible non-negative uniform
distribution with mean μ. We denote the uniform distribution
by X ∼ U (0, 2).

APPENDIX C: PEARSON CORRELATION COEFFICIENTS

In Tables XIV–XIX, we present Pearson correlation coef-
ficients between the true forcing f and the forcing fest from
estimated amplitudes and arrival times. These results are pre-
sented for completion; in general, the conclusions that may be
drawn from these tables are the same as may be drawn from
the distributions and mean values in the main text. To guide
the eye and highlight this correspondence, we have marked
correlations below 0.9 in italics.

Comparing Tables XVII (for noisy signals without thresh-
olding) and XVIII (for noisy signals with thresholding), we
see that the thresholding, although it improves the estimate of
the amplitude- and waiting time distributions, uniformly lead
to larger differences between f and fest. If the thresholding
were able to separate between events and noise, we would
expect the thresholding to improve the correlation. From the
tables, it is evident that it removes many true events as well.

TABLE XIV. Table of the Pearson correlation coefficients be-
tween the true forcing and the forcing from estimated amplitudes
and arrivals corresponding to the the base case, Fig. 7 and Table II.

γ

1/10 1 5 10 50

A ∼ exponential 0.95 0.93 0.92 0.91 0.86
w ∼ exponential 0.95 0.93 0.92 0.91 0.86

TABLE XV. Pearson correlation coefficients between the true
forcing and the forcing from estimated amplitudes and arrivals
for different amplitude distributions, corresponding to Fig. 8 and
Table III.

γ

10−1 1 5 10 50

Rayleigh 0.94 0.92 0.91 0.90 0.82
Pareto(3) 0.92 0.93 0.96 0.92 0.90
U (0, 2) 0.94 0.92 0.91 0.90 0.82
Degenerate 0.93 0.92 0.90 0.88 0.77
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TABLE XVI. Pearson correlation coefficients between the true
forcing and the forcing from estimated amplitudes and arrivals for
different waiting time distributions, corresponding to Fig. 9 and
Table IV

γ

10−1 1 5 10 50

Rayleigh 0.90 0.93 0.92 0.92 0.87
Pareto(3) 0.92 0.93 0.92 0.92 0.91
U (0, 2) 0.91 0.93 0.91 0.91 0.87
Degenerate 1.00 1.00 0.93 0.93 0.90

TABLE XVII. Table showing the values of the Pearson correla-
tion coefficients between the true forcing and the estimate forcing for
different noise to signal ratios, corresponding to Fig. 12.

γ

ε 10−1 1 10

Additive 10−1 0.99 0.95 0.74
1/2 0.97 0.83 0.43
1 0.95 0.73 0.30

Dynamic 10−1 1.00 0.99 0.97
1/2 0.98 0.93 0.88
1 0.96 0.88 0.78

TABLE XVIII. Pearson correlation coefficients between the true
forcing and the forcing using estimated amplitudes and arrival times
with thresholding, for various intermittency parameters and noise to
signal ratios corresponding to Figs. 13 and 14 and Tables V and VI.

γ

ε 10−1 1 10

Additive 10−1 0.95 0.89 0.67
1/2 0.93 0.77 0.37
1 0.92 0.68 0.24

Dynamic 10−1 0.95 0.91 0.85
1/2 0.94 0.85 0.65
1 0.93 0.78 0.49

TABLE XIX. Pearson correlation coefficients between the true
forcing and the estimated amplitudes and arrival times using three-
point maxima for various pulse duration times and intermittency
values. This table corresponds to Fig. 17 and Tables VII and VIII.

τd, wrong/τd

γ 10−1 1/2 1 2 10

10−1 0.95 0.95 0.95 0.94 0.77
1 0.92 0.93 0.93 0.88 0.61
10 0.87 0.91 0.91 0.84 0.53
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