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Flow-driven control of pulse width in excitable media
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Models of pulse formation in nerve conduction have provided manifold insight not only into neuronal
dynamics but also the nonlinear dynamics of pulse formation in general. Recent observation of neuronal
electrochemical pulses also driving mechanical deformation of the tubular neuronal wall, and thereby generating
ensuing cytoplasmic flow, now question the impact of flow on the electrochemical dynamics of pulse formation.
Here, we theoretically investigate the classical Fitzhugh-Nagumo model, now accounting for advective coupling
between the pulse propagator typically describing membrane potential and triggering mechanical deformations,
and thus governing flow magnitude, and the pulse controller, a chemical species advected with the ensuing fluid
flow. Employing analytical calculations and numerical simulations, we find that advective coupling allows for
a linear control of pulse width while leaving pulse velocity unchanged. We therefore uncover an independent
control of pulse width by fluid flow coupling.

DOI: 10.1103/PhysRevE.107.054218

I. INTRODUCTION

Neural networks are one of the most widely studied
contemporary fields of research. We may untangle the com-
plexities involved in the underlying biology and in the
emergent pattern formation due to simplistic yet faithful
models for the description of neutral action potentials. The
Hodgkin-Huxley model [1], published in 1952, was the first
to successfully model action potentials dynamics along the
nerve fibre of the squid giant axons. Until today, the Hodgkin-
Huxley model is still being used and expanded to accurately
describe neural action potentials [2–4]. A simplified version
of the Hodgkin-Huxley model is the FitzHugh-Nagumo model
(FHN), which was developed independently by FitzHugh [5]
and Nagumo et al. [6] in 1961 and 1962, respectively. While
not a direct physical mapping anymore, the advantage of
the FHN model is that it qualitatively retains the nonlinear
dynamics of the Hodgkin-Huxley model, yet it consists only
of two variables, the propagator representing axon membrane
potential and the controller describing the chemical species
driving propagator dynamics. The reduction to two variables,
instead of the original four in the Hodgkin-Huxley model,
allows for direct analytical insight into the mechanisms of
nonlinear coupling [7–10]. Yet, experimental observations
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challenge the classical description of nerve conduction as the
impact of cytoplasmic flows arising from membrane deforma-
tion triggered by the pulse are unaccounted for.

The propagation of an action potential along a nerve fiber
is accompanied by mechanical deformations of the nerve,
including volume expansion and compression [11,12], short-
ening [13], and a radial change of the nerve fiber [14–17].
These mechanical effects are not incorporated in classi-
cal Hodgkin-Huxley or FitzHugh-Nagumo models, and have
thus initiated a renewed interest [18] in model development
[19,20]. The considerable transverse membrane displacement
of simulations of the Garfish olfactory nerve and the squid
giant axon by El Hady et al. [21], are expected to drive ensuing
fluid flows, due to conservation of fluid volume, within the
Hodgkin-Huxley model [21] and thus within the FHN model
as well [22,23]. Yet, mechanistic insight of how a coupling via
fluid flow affects pulse dynamics is missing.

There has been a growing interest in studying the impact of
fluid flows on pattern formations through advection coupling.
Recent work on Min proteins [24] shows that consideration
of advective forces yields controllable surface-pattern prop-
agation, demonstrated both numerically and experimentally.
Specifically for cytoskeletal dynamics, pulsatory patterns
have been shown to form in models incorporating species
advection in thin active film [25,26]. Flow coupling in trav-
eling wave kinetics has also been studied in the context of
the self-sustained contraction pattern in active porous gels
[27–29] and also in tubular geometries [30]. Mechanistically,
the flow coupling here unfolds as follows [30]: The gradient of
deformation of the tube membrane creates flow. The flow it-
self creates a flux of chemical species, which in turn affects the
gradient of the tube deformation. Within the FHN model, we
identify the controller as the chemical species concentration
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and the propagator as the membrane potential, and address
the impact of their additional advective coupling.

Here, we employ analytical derivations and numerical
simulations to investigate the role of an advective coupling
arising from mechanical deformations resulting from a prop-
agator and ensuing flows advecting the controller within the
FitzHugh-Nagumo-model. We derive a linear dependence of
the width of traveling pulses on the advection term and ana-
lytically predict the pulse velocity to be independent of the
advection term. Both phenomena are corroborated by our
numerical simulations, which we further employ to address
the effect of model parameters on the impact of the advective
coupling. Our results show that advective coupling allows an
independent control of pulse width and pulse velocity within
the FitzHugh-Nagumo model.

II. RESULTS

A. FitzHugh-Nagumo model with propagator-driven advection
of the controller

To account for the interaction between propagator u(x, t )
(membrane potential) and controller v(x, t ) (chemical stimu-
lus concentration) arising due to the change of the membrane
potential and resulting deformation of the membrane [21],
and thus the ensuing fluid flows due to conservation of fluid
volume, we assume the velocity of flow to scale as η ∂

∂x u(x, t ).
The fluid flow is advecting and dispersing the controller.
Therefore, we incorporate an additional advection term that
reflects the dependence of the chemical flux on the gradient of
the membrane potential − ∂

∂x (v(x, t )η ∂
∂x u(x, t )), consisting of

a generic advection term combined with the above introduced
flow velocity, into the FitzHugh-Nagumo equations

∂u

∂t
= Du

∂2u

∂x2
+ u(1 − u)(u − a) − v, (1a)

∂v

∂t
= bu − γ v − η

∂

∂x

(
v
∂u

∂x

)
, (1b)

where Du � 0 denotes the diffusivity of the propagator, η

the mobility of the fluid, a > 0 governs the kinetics of the
propagator, and b � 0 and γ � 0 the kinetics of the controller
and thus the stability of the entire system.

Given an initial perturbation of the system, either a trav-
eling pulse or front may form. Here, we are interested in the
impact of the advection term on the traveling pulse solution.
A pulse may form when the system is monostable, which is
the case when the two nullclines of the system defined by
∂
∂t u(x, t ) == 0 and ∂

∂t v(x, t ) == 0 only cross at the point
(0,0), as u = 0 and v = 0 is the trivial solution of the system of
nullclines, see Fig. 1(a). In the case of three crossings of the
nullclines the system is bistable, and thus may be perturbed
out of one of its resting states into a traveling front until it
reaches its second stable resting state. Monostability is given
when [31]

4b

γ (1 − a)2
> 1, (2)

while bistability is given when the left-hand side of Eq. (2) is
less than 1.

A pulse forms when the system is sufficiently perturbed out
of its resting state. Once a pulse is formed, its dynamics are in-
dependent of the initial conditions and follow a choreography
only dependent on the systems parameters. The dynamics of a
pulse can be dissected into four steps, see Figs. 1(a) and 1(b):
the pulse front, where the system is perturbed out of its sta-
ble resting state and the propagator increases quickly until it
reaches the vicinity of its nullcline again, the pulse excited do-
main which corresponds to the peak of the propagator, when
dynamics are following the propagators nullcline, the pulse
back when the propagator drops again sharply back to the
other branch of its nullcline, and finally the refractory domain
where dynamics follow again the nullcline and recover back
into the stable resting state. This four-stepped choreography
of a traveling pulse remains unchanged under the addition of
the advective coupling, see Fig. 1(a), yet at closer inspection
the dynamics of the individual steps does seem to be affected
by the advection coupling. To gain mechanistic insight on
how the advection coupling alters pulse dynamics we turn
to analytical derivations on pulse velocity and subsequently
pulse length.

B. Pulse velocity derived to be independent
of advection strength

In order to derive closed expressions for the pulse veloc-
ity we simplify the dynamical equations Eq. (1) by linearly
approximating the third order polynomial with a Heaviside
function and a linear term, see Ref. [32]. We further incorpo-
rate that the dynamics of the propagator u are much faster than
the dynamics of the controller v, see Fig. 1(a), by rescaling
the fast kinetics of the propagator with the nondimensional
parameter ε � 1 to match time scales of propagator and con-
troller kinetics [31], together resulting in

∂u

∂t
= Du

∂2u

∂x2
+ 1

ε
[H (u − a) − u − v]. (3)

As we are seeking a traveling pulse solution, we reduce
the number of variables with the common ansatz of defining
the generalized variable z = x − ct with c being the velocity
of the pulse. In order to remove the explicit ε dependence in
the first FHN equation, we introduce the stretching coordinate
ξ = z

ε
, arriving at

0 = D̃u
∂2u

∂ξ 2
+ c

∂u

∂ξ
+ H (u − a) − u − v, (4a)

0 = c
∂v

∂ξ
+ ε(bu − γ v) − εη̃

(
∂u

∂ξ

∂v

∂ξ
+ v

∂2u

∂ξ 2

)
, (4b)

where we rescaled both D̃u = Du/ε
2 and η̃ = η/ε2 as both

terms describing spatial dynamics should stay unaffected by
the unequally fast kinetic terms. As discussed, at the front and
back of the pulse the dynamics of ∂u

∂t are much faster than
∂v
∂t , implying very small ε. We can therefore evaluate Eq. (4)
at the front andback in the limit of ε → 0. Equation (4b)
then reduces to a first order differential equation, solved by
constant v. At the front the constant value of the controller
equals its stable fixed point value v = 0, while it takes a finite
value of v = vb at the back of the pulse, see Fig. 1(b). For the
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FIG. 1. Advection coupling leaves pulse velocity unchanged but controls pulse width. (a) Phase portrait of FitzHugh-Nagumo (FHN)
without η = 0 (black, dots) and with advection coupling between propagator and controller η = 1 (red, dots) along the nullclines (blue:
propagator nullcline, red: controller nullcline) being perturbed out of their single stable point. The dots are equitemporal, illustrating the
dynamics of the FHN equations. Controller nullcline giving rise to bistability in yellow for reference. (b) Spatial dynamics of propagator and
controller of a leftwards traveling pulse (η = 0) and its subdivision into four phases: front, excited domain, back, and refractory domain. Pulse
width is defined as the difference between the front, marked by the initial increase from zero of the controller, and the back, marked by the
controller’s maximum value (dashed lines). (c) Numerical solutions for the pulse velocity measured as the number of traveled grid points
per unit time. Velocity shows only a small linear dependence (gradient of 0.0082) on advection η, much smaller than typical variations for
changing nonlinear parameter a. (d) Pulse width decreases linearly with η. Dashed lines in (c) and (d) are linear fits of the numerical data.
System parameters set to a = 0.02, b = 0.01, γ = 0.02, and Du = 0.5 if not specified otherwise.

front,

D̃u
∂2u f

∂ξ 2
+ c

∂u f

∂ξ
+ H (u f − a) − u f = 0. (5)

We make the Ansatz u f (ξ ) = Ceξλ and require u f (ξ ) to con-
verge for ξ → ±∞. Using the jump and continuity condition
at ξ = a

Aeξa
−c+

√
c2+4D̃u

2D̃u = Beξa
−c−

√
c2+4D̃u

2D̃u + 1, (6a)

Aeξa
−c+

√
c2+4D̃u

2D̃u = Beξa
−c−

√
c2+4D̃u

2D̃u
−c −

√
c2 + 4D̃u

−c +
√

c2 + 4D̃u

, (6b)

we derive the velocity of the pulse at the front as

c f = ±
√

D̃u
1 − 2a√
a(1 − a)

. (7)

Analogously, the dynamics for the propagator at the back of
the pulse follow from Eq. (4) to be determined by

D̃u
∂2u f

∂ξ 2
+ c

∂u f

∂ξ
+ H (u f − a) − u f − vb = 0. (8)

Again employing the Ansatz ub = Ceξλ and respecting jump
and continuity condition Eq. (6), we obtain the velocity for the
back of the pulse

cb = ±
√

D̃u
1 − 2(a + vb)√

(a + vb)(1 − a − vb)
. (9)

Note, that we seek solutions where the shape of the pulse
remains constant as it travels through space. This implies that
the front and the back need to travel at the same velocity.
Since the back is a reversed front [31], we obtain the condition
c f = −cb = c. This relation of the front and back velocities
determines the controller at the back of the pulse vb

vb = 1 − 2a, (10)
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and finally the velocity of a traveling pulse

c(D̃u, a) =
√

D̃u
1 − 2a√
a(1 − a)

. (11)

Strikingly, the advection coupling does not affect the pulse
velocity to zeroth order. A result that we indeed confirm in
numerical integration of the full set of equations, see Fig. 1(c).
We note here that the increase with η, see Fig. 1(a), is not
reflected in Eq. (10), as this effect is due to higher order
corrections in ε. Intuitively, this can be understood by con-
sidering the positive impact of the second order derivative in
the advection term in Eq. (1) on ∂v

∂t , resulting in an increased
peak of the controller.

C. Pulse width analytically predicted to shrink
with advection strength

To analytically derive the pulse width, we aim to solve for
the trajectory of the controller v. For low order in ε the pulse
follows the propagator nullcline during the excited domain of
the pulse, thereby tracing out the change in controller from
v = 0 at the front of the pulse to v = vb at the back of the
pulse. Thus, the propagator along the nullcline is given by u =
1 − v for 0 < v < vb. The dynamics of the controller along
the excited domain of the pulse then follow as a function of
the spatial coordinate z from Eq. (4) to be determined by

c
∂v

∂z
− (b + γ )v + b + ε2η̃

(
v
∂2v

∂z2
+

(
∂v

∂z

)2
)

= 0. (12)

We can solve the dynamics for the controller at zeroth order in
ε, i.e., without the advection term, simplifying the differential
equation to

c
∂v

∂z
− (b + γ )v + b = 0, (13)

which is solved by

v(z) = b

b + γ
+ Qe

b+γ

c z, (14)

where Q = − b
b+γ

e− b+γ

c z1 is an integration constant, defined by
v(z1) = 0. We define the pulse width as the distance traveled
during the excited domain of the pulse. In the dynamics of
the controller this translates to the distance traveled between
v(z1) = 0 and v(z2) = vb for a rightward traveling pulse.
Therefore, the pulse width is given by λ = z1 − z2, following
from

v(z2) = vb = b − be
b+γ

c (z2−z1 )

b + γ
= b − be− b+γ

c λ

b + γ
. (15)

To explicitly solve for the pulse width λ we consider the order
of magnitude of model parameters. In our simulations, we
take b, γ ∼ O(0.01), obtaining c ∼ O(0.1) and λ ∼ O(10),
motivating a Taylor-expansion in b+γ

c λ � 1 of Eq. (15) to first
order. Simplifying, we obtain

λ = cvb

b
. (16)

As we are interested in the effect of the advection term on the
pulse width, we now consider Eq. (12) with finite but small

ε. Simulations show that ∂2

∂z2 v(z) and ( ∂
∂z v(z))2 do not change

considerably with varying z and we therefore define

C2
1 ≡

(
∂v(z)

∂z

)2

≈ constant, (17a)

C2 ≡ ∂2v(z)

∂z2
≈ constant. (17b)

Equation (12) then becomes

c
∂v(z)

∂z
− (b + γ )v(z) + b + ε2η̃

(
v(z)C2 + C2

1

) = 0. (18)

The general solution to this first order differential equation is

v = ε2η̃C2
1 + b

b + γ − ε2η̃C2
+ Pe

b+γ−ε2 η̃C2
c z, (19)

with P an integration constant, that is defined by v(z1) = 0,
obtaining

P = − ε2η̃C2
1 + b

b + γ − ε2η̃C2
e− b+γ−ε2 η̃C2

c z1 . (20)

Using v(z2) = vb we obtain

vb = ε2η̃C2
1 + b

b + γ − ε2η̃C2
(1 − e− b+γ−ε2 η̃C2

c λ). (21)

We can rewrite Eq. (21) as

e
λ
c (b+γ−ε2η̃C2 ) = 1

1 − α
, (22)

with α = vb
b+γ−ε2η̃C2

b+ε2η̃C2
1

. Because the term ε2η̃C2 is very small
and generally vb < 1, see Fig. 1(b), we obtain

α ≈ vb
b + γ

b
. (23)

With b and γ being of the same order and vb generally smaller
than one, we infer α to be small as well. Taking the logarithm
of Eq. (22) and assuming α to be sufficiently small

b + γ − ε2η̃C2

c
λ = ln(1) − ln(1 − α) ≈ α. (24)

Solving for λ we obtain

λ = cvb

b + ε2η̃C2
1

≈ cvb

b

(
1 − ε2η̃C2

1

b

)
. (25)

Assuming that C1 ≈ ∂
∂z v(z1), Eq. (19) yields

C1 ≈ ∂

∂z
v(z1) = b + γ − ε2η̃C2

c

ε2η̃C2
1 + b

b + γ − ε2η̃C2
. (26)

Simplifying we obtain

C1 ≈ ε2η̃C2
1 + b

c
, (27)

which is solved by

C1 = −c ±
√

c2 − 4bε2η̃

2ε2η̃
. (28)

Because ε2 � 1, we Taylor expand C1 to first order

C1 ≈ −b

c
, (29)
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and thus obtain a closed expression for the width of a pulse

λ = c(1 − 2a)

b

(
1 − ε2 bη̃

c2

)
. (30)

Thus, we find that in contrast to the pulse velocity, the pulse
width is affected by advective coupling, see Fig. 1(d). The
higher the fluids mobility η̃ the smaller the pulse width. To
test the validity of the analytical expressions we next turn to
numerical integration of the full set of Eq. (1).

D. Implicit integration of advection coupled dynamics system
required for stability

To integrate excitable media dynamics with an advec-
tion term we employ a θ -weighted Crank Nicolson scheme
[33–35]. The algorithms’ basic structure follows that of a
Newton method, but differs from it by dynamically adjusting
the time steps and evaluating the dynamic equations not at a
time step i but at time steps i + θ . To illustrate the basics of the
algorithm, we consider the general set of differential equations

∂

∂t
	y = 	f (	y), (31)

which correspond to Eq. (1) in our implementation. We denote
yn

i to be the variable y at time n and on grid point i, with n ∈
{0, t f }, for some final time t f and i ∈ {0, N}, for some num-
ber of equally spaced grid points N in the one-dimensional
system. We now consider the residual that we obtain, when
approximating the function 	f (	y) to linear order:

	r(	yn+1) = 	yn+1 − 	yn


t
− 	f (	yn+θ ), (32)

with 0 � θ � 1. For θ = 0 we obtain a fully explicit and for
θ = 1 a fully implicit method. For our simulations we will
take θ = 0.55, as it has been found to improve stability at the
cost of only slightly less accuracy [33]. We are looking for
values of 	yn+1 such that the residuals become 	r = 0. For this
we use Newton’s method. A good initial guess is assuming
	yn+1 − 	yn to be equal to 	yn − 	yn−1. In order to dynamically
adjust the efficiency of the simulation, we allow time steps to
vary in magnitude, obtaining

	yn+1
est ≈ 	yn + (	yn − 	yn−1)


tn→n+1


tn−1→n
. (33)

We correct our initial estimate by subtracting the inverse of
the product of the Jacobian, a matrix containing all first or-
der derivatives of every grid point, and the residuals of our
estimate

	yn+1 = 	yn+1
est − J−1	r(	yn+1). (34)

The inversion of the Jacobian is the costliest part of the al-
gorithm, as we use a grid with order O(1000) grid points.
Because of this, we only make one correction with the Jaco-
bian per iteration. To ensure that this correction is sufficient,
we ensure that our initial guess is not far off from the actual
value, by keeping the time steps 
tn→n+1 small. This adjusting
can be done automatically, by letting the algorithm calculate
the time step thrice. Once for a step size 
t and twice suc-
cessively for step size 
t

2 . The two half steps will result in a
more accurate approximation. If the relative error between the

two steps is smaller than a threshold χ for say 10 steps, we
increase the step size by a factor 2

1
4 , reducing the calculation

cost without sacrificing much accuracy. If the error is larger
than threshold χ we decrease the step size by a factor 1

2 ,
ensuring a good accuracy of the simulation.

E. Limitations of pulse generation in parameter
space due to advective coupling

Before employing our numerical scheme to assess the im-
pact of advective coupling on pulse dynamics we first sweep
the parameter space numerically to identify when pulses form.
There is a clear cutoff of pulse formation at the transition
from monostability to bistability and thus front formation
given by Eq. (2). Further, from the calculation of pulse ve-
locity Eq. (11), we find that the pulse velocity vanishes as a
approaches 1

2 , additionally establishing an upper theoretical
limit a < 1

2 .
For all simulations we have taken the diffusion constant

to be Du = 0.5. Sweeping parameter space b − γ at fixed
a = 0.02, we first of all recover the analytic prediction of the
transition between front and pulse, see Fig. 2(a). Increasing
fluid mobility η and therefore advective coupling keeps the
transition to front formation unaffected yet reduces the pa-
rameter space for traveling pulses, see Fig. 2(b). Inspection of
pulse trajectories in phase space, see Fig. 1(a), suggest that
advective coupling decreases pulse formation as the advective
term positively reinforces the controller, which in turn reduces
the propagator. The reduced propagator switches earlier from
the excited domain to the back, resulting in a narrower pulse.

To explore the limit on parameter a we sweep the η-a
parameter space for b = 0.01, γ = 0.02, see Fig. 2(c). We
observe pulse generation only for small values of η and a and
note a cutoff at about a = 0.12, a value much smaller than
the theoretical limit. Yet, decreasing the magnitude of b and
γ by one order, significantly increases the parameter space
for pulse generation, see Fig. 2(d). Even smaller values of b
and γ achieve pulse generation for a close to 0.5. The pulse
generation in this regime is limited by numerical instabilities.
As a one-order magnitude decrease in b and γ increases the
pulse width by roughly one order of magnitude, the relative
changes of the propagator and controller between grid points
becomes smaller, ensuring stability over a larger parameter
space.

Even though a bit more convoluted, the above arguments
also explain pulse formation along the sweeps through the pa-
rameter space spanned by η-b and η-γ , see Figs. 2(e) and 2(f)
respectively. Here the clear cutoff at the transition from pulse
to front formation is again exemplified. We here numerically
explored the pulse formation broadly within the parameter
space and next turn to explicitly test our analytical prediction
on pulse velocity and pulse width as a function of advection
strength.

F. Pulse width governed by advective coupling while pulse
velocity unaffected

According to our analytical results, advection strength has
disparate impacts on pulse velocity and pulse width. Pulse
velocity is predicted to be independent of advection strength,
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FIG. 2. Pulse formation and pulse width as function of system parameters. (a), (b) Pulses (green) form above analytical predicted condition
for monostability [dashed lines, see Eq. (2)], separating them from traveling fronts. The upper limit for pulse formation shrinks with increasing
advection coupling, as can be seen when comparing zero coupling η = 0 in (a) and finite coupling η = 3 in (b), respectively. Blue indicates
parameters where no traveling pulse forms. (c) and (d) Pulse width as a function of η and a. The blue region indicates no pulse generation.
(c) Shows the space for b = 0.01 and γ = 0.02 and (d) for b = 0.001 and γ = 0.002. (e) Pulse width as function of parameters η and b, with
a = 0.02, γ = 0.02. (f) Pulse width as function of parameters η and γ , with a = 0.02, b = 0.01. In both (e) and (f) the yellow points at large
η correspond to numerical artifacts. The vertical cutoff at small b and large γ , respectively, indicates the transition to front [dashed line, see
Eq. (2)]. The front forming phase space is indicated by wavelengths of λ = −20.

see Eq. (11), while pulse width is derived to linearly decrease
with advection strength, see Eq. (30). Indeed our numerical
results confirm that pulse velocity is well-described as being
independent of advection strength, see Fig. 3(b). We however
find that the analytical prediction overestimates the precise
value of the pulse velocity. Mapping out in particular the
analytically obtained pulse velocity as a function of model
parameter a, see Fig. 3(a), we find that the analytical and
numerically obtained velocities agree in the limit of a → 0.5,
where both decay to zero, yet a divergence for vanishing a is
predicted analytically. Therefore the analytical pulse velocity
agrees best with numerical simulations for large a. This is to
be consistent as we approximated the third order polynomial

f (u, v) with a Heaviside function H (u − a). The approxima-
tion works best for a close to 0.5, explaining disagreements
in the pulse velocity between analytical and numerical results
for small a.

Assessing the pulse width functional dependence on ad-
vection strength, we numerically confirm that the pulse width
scales linearly with η, see Fig. 3(c). This holds for varying
system parameters. We note that the numerical simulations
show the system parameters to have a strong effect on the
gradient in Fig. 3(c) and the y intercept, not depicted here
but seen in different parameter ranges, which is not captured
by the prefactors of the analytical result in Eq. (30). We
have found no discernible trend for these effects, yet for
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FIG. 3. Comparison of analytical and numerical pulse velocity and pulse width reveals success of analytical prediction of pulse width
governed by advection strength. (a) The numerical and analytical, see Eq. (11), pulse velocity as function of parameter a. Both coincide well
for large values of a, as both vanishing for a → 0.5, but the analytical result predicts a divergence for small a. (b) The pulse velocity shows
a small but negligible dependence on the advection strength η as predicted analytically, which is maintained for small and large values of
a. (c) Pulse width dependence on η with rescaling factors from Eq. (30) versus numerical results. As predicted, there is a linear dependence
between λ and η, however the slope is not unitary, but rather strongly dependent on other model parameters like b.

all observed parameter ranges, the linear dependence on η

remained. We note a trend of decreasing pulse width for in-
creasing b and decreasing γ , in accordance with their positive
or negative impact on controller dynamics, see Eq. (1). The
deviations between analytical and numerical results regard-
ing the model parameters b and γ are therefore likely to
stem from v = 0 at the pulse front not being fully fulfilled
numerically. That said, the functional prediction on the im-
pact of advection strength is unaffected by these quantitative
differences.

G. Pulse generation for negative coupling of the advection term

To give a holistic insight into our model, we also want to
discuss the effect of negative values of η. This parameter range
does not hold for the biomechanical motivation of the advec-
tion term, however as the focus of this paper is to present a
model that allows for dynamical changes to a usually constant
pulse width, it is worth considering its effect on the whole
theoretical parameter range.

Following a naive consideration of the linear dependence
of pulse width on advection strength, we would expect to find
a linear increase of the pulse width for larger negative values
of η. Numerical simulations, shown in Fig. 4, indicate that

this is indeed the case, however with a change of pulse width
much smaller than for positive η. The difference in gradients
can be explained by the effect that the advection term has on

0.02 0.04 0.06 0.08 0.1 0.12 0.14
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0

10

20

30

FIG. 4. Pulse width for negative advective coupling in η-a pa-
rameter space. The dark blue area indicates parameter sets resulting
in no pulse generation representing either “no traveling wave” or
numerical instability. The yellow points indicate numerical artifacts,
arising due to the formation of wave trains and other unexpected
wave formations at the edge of the pulse generating area.
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the controller. For positive values, it reinforces the controller
by steepening its peak, which in turn increases the magnitude
of the advection term, due to its dependence on ∂v

∂x . Negative
coupling values result in a reduced controller, leading to a split
into two peaks for large enough values of η. The decreased
gradient of the controller results in a weaker advection term,
explaining the smaller gradient for negative coupling.

In Fig. 4, we further see that the parameter space for pulse
solutions is confined to small values of η and a. For larger a
we observe a transition into the state of “no traveling wave”,
while for larger negative η we observe numerical instabilities.
While methods such as decreasing the initial amplitude and
having a system with an even number of grid points help
numerical stability, we still observe a numerical limitation of
the parameter space. The theoretical upper limit for the pulse
width is the size of the system, resulting in an upper limit
of η that scales with the system size, however our numerical
simulations are unable to remain stable for large pulse widths
rendering this limit beyond the scope of the present work.

III. CONCLUSION

In this paper, we have shown that accounting for advection
coupling in the FitzHugh-Nagumo equations leads to novel

qualitative properties of its traveling pulse solutions. While
the velocity of a pulse is independent of the advection term,
the pulse width is now tunable, changing linearly with the
coupling parameter of the advection term.

Our simulations have shown that one can reliably generate
pulses for a large area of the parameter space, however with
a different order of magnitude of the gradient than predicted
analytically. Lastly, we numerically demonstrated the linear
dependence of the pulse width for negative coupling.

Our model allows for a wider application of the stan-
dard FitzHugh-Nagumo model now incorporating flow-based
advection of the controller species, thereby accounting for
mechanical changes of nerve fibers driving fluid flows under
action potentials. The additional degree of freedom to adjust
the pulse width by modulating the advection strength in these
systems may help to form more comprehensive models.
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