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The paper is devoted to analytical and numerical studies of the effects of nonlinearity on the two-path
phonon interference in the transmission through two-dimensional arrays of atomic defects embedded in a lattice.
The emergence of transmission antiresonance (transmission node) in the two-path system is demonstrated
for the few-particle nanostructures, which allow us to model both linear and nonlinear phonon transmission
antiresonances. The universality of destructive-interference origin of transmission antiresonances of waves of
different nature, such as phonons, photons, and electrons, in two-path nanostructures and metamaterials is
emphasized. Generation of the higher harmonics as a result of the interaction of lattice waves with nonlinear
two-path atomic defects is considered, and the full system of nonlinear algebraic equations is obtained to describe
the transmission through nonlinear two-path atomic defects with an account for the generation of second and
third harmonics. Expressions for the coefficients of lattice energy transmission through and reflection from the
embedded nonlinear atomic systems are derived. It is shown that the quartic interatomic nonlinearity shifts the
antiresonance frequency in the direction determined by the sign of the nonlinear coefficient and enhances in
general the transmission of high-frequency phonons due to third harmonic generation and propagation. The
effects of the quartic nonlinearity on phonon transmission are described for the two-path atomic defects with a
different topology. Transmission through the nonlinear two-path atomic defects is also modeled with the simula-
tion of the phonon wave packet, for which the proper amplitude normalization is proposed and implemented. It
is shown that the cubic interatomic nonlinearity red shifts in general the antiresonance frequency for longitudinal
phonons independently of the sign of the nonlinear coefficient, and the equilibrium interatomic distances (bond
lengths) in the atomic defects are changed by the incident phonon due to cubic interatomic nonlinearity. For
longitudinal phonons incident on a system with the cubic nonlinearity, the new narrow transmission resonance on
the background of a broad antiresonance is predicted to emerge, which we relate to the opening of the additional
transmission channel for the phonon second harmonic through the nonlinear defect atoms. Conditions of the
existence of the new nonlinear transmission resonance are determined and demonstrated for different two-path
nonlinear atomic defects. A two-dimensional array of embedded three-path defects with an additional weak
transmission channel, in which a linear analog of the nonlinear narrow transmission resonance on the background
of a broad antiresonance is realized, is proposed and modeled. The presented results provide better understanding
and detailed description of the interplay between the interference and nonlinearity in phonon propagation through
and scattering in two-dimensional arrays of two-path anharmonic atomic defects with a different topology.
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I. INTRODUCTION

Transmission of lattice waves through two-dimensional ar-
rays of atomic-scale defects in crystal lattices and interfaces
has attracted attention in view of various possible applica-
tions in nanoscience and nanotechnology. Since heat is carried
mainly by acoustic lattice waves with high group velocity,
investigation of such process can give important data for un-
derstanding and modeling of thermal conductivity in different
metamaterials and thermal conductance through different ma-
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terial interfaces or metasurfaces [1,2]. Prediction of the impact
of the extended, including two-dimensional (2D), arrays of
lattice defects on the thermal conductivity and thermal in-
terface conductance and on propagation of lattice waves in
different frequency domains is the challenging task, which is
important both for the theoretical and experimental studies of
energy transport properties of crystal and phononic lattices
and for different applications [3].

Among other dynamic phenomena, the existence of the
transmission antiresonance, at which the plane lattice wave
(phonon) is completely reflected by extended 2D atomic-
scale defects with effective thickness much smaller than the
relevant wavelength, such as a single crystal plane with
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embedded atomic defects, is unexpected and interesting. This
phenomenon is related to the destructive interference be-
tween the waves propagating through two different wave
paths, through the defect atoms and through the host atoms.
Transmission antiresonance and substantial change of the
transmission spectrum due to the presence of a discrete defect
plane (metasurface) in a bulk material can be observed both in
acoustic systems (in transmission of phonons) and in optical
systems (in transmission of photons). It is worth noting that
in optical systems this effect is similar to the cancellation
of the photon output due to the coalescence of the two sin-
gle photons which interfere destructively after propagation
through two different photon paths (the Hong-Ou-Mandel
interference) [4–7]. Transmission antiresonances of photons
in optical chains with defects and in metasurfaces with 2D
nanostructures were studied, e.g., in Refs. [8,9]. Effects of
destructive interference between two photons can be also ob-
served in microwave systems [10].

Transmission antiresonances for acoustic phonons in crys-
tals with embedded defect planes and in coupled atomic
chains were first observed in Refs. [11,12]. The important fea-
ture of the described transmission antiresonances is the small
(subwavelength) effective thickness of the planar crystal de-
fect in comparison with the incident phonon wave length [11],
which allows the continuous description of strong resonance
reflection or absorption of acoustic waves at the nanoscale
metasurfaces; see also Refs. [13–16]. The mechanism of the
two-path phonon interference can be explained with the use
of few-particles models (see Sec. II). The effects of acoustic
phonon transmission antiresonances on thermal conductance
through the crystal planes with 2D arrays of embedded
atomic defects with complex structure were considered in
Refs. [9,16–23]. It was shown that the sparse 2D arrays of de-
fects or defect-atom nanoparticles, in which the defect atoms
or defect-atom nanoparticles substitute only a part of the host
atoms in a crystal plane and are located periodically, can result
in substantial suppression of thermal interface conductance.
Transmission antiresonances of long acoustic waves were
also observed and studied in single- and multilayer elastic
composites with local resonances of periodically embedded
heavy particles, with a lattice constant two orders of magni-
tude smaller than the relevant wavelength [24,25]. In optical
systems, transmission antiresonances at terahertz frequencies
were observed in single- and double-layer 2D periodic ar-
rays of metallic nanostructures on a transparent substrate
(optical metamaterials and stereometamaterials); see, e.g.,
Refs. [26,27]. In such two-path periodic nanostructures, the
lattice constants are also much smaller that the relevant wave-
lengths, and the two photon paths pass through the local
metallic nanoplasmonic resonators and through the transpar-
ent substrate surrounding the nanoresonators. It is important
to emphasize that the concept of destructive interference in the
transmission through two different wave paths is universal and
is applied to transmission antiresonances of waves of different
nature, such as phonons, photons, and electrons; see Ref. [9]
and Sec. II below.

Although destructive interference of the wave propagating
through two different paths and the related phenomenon of
total reflection (transmission antiresonance) is a linear ef-
fect, the nonlinearity (even weak) of the interatomic bonds

in the atomic defect structure can substantially change the
phonon transmittance. While the linear case can be resolved
analytically in many cases (see, e.g., Refs. [16,21]), the pres-
ence of nonlinearity makes the task much more difficult and
multilateral [28]. For instance, the phonon transmission co-
efficient cannot be explicitly calculated within the atomistic
Green’s function approach for the anharmonic (nonlinear)
interface [29–33]. This fact makes the analysis, within the
nonlinear lattice-dynamics approach, of the effects of non-
linearity on phonon transmittance through the embedded
two-path atomic defects with different internal structure one
of the main motivations of the present study. The influence of
quartic nonlinearity on the transmission spectrum in an optical
chain with a side nonlinear defect was studied in Ref. [8],
and it was shown that the antiresonance frequency is shifted
and transmission line shape is changed by the nonlinearity.
However, as in the most of the papers dedicated to the study of
the effects of nonlinearity, the rotating-wave approximation,
in which the third harmonics is neglected, was used in Ref. [8].
This approximation is well applied in optical systems but
cannot be fully justified in nonlinear phononics because of the
presence of higher harmonics in lattice dynamics. The contri-
bution of the multi- and subharmonic phonon transmission to
the Kapitza conductance between crystals with very different
vibrational spectra and with nonlinear interface resonant layer
was calculated in the continuum limit in Ref. [28]; see also
Ref. [31]. As for the crystal lattices with discrete 2D arrays of
atomic defects, to the best of our knowledge only the molec-
ular dynamics (MD) simulations of such nonlinear systems
have been reported in Refs. [16,18,19].

The present paper is dedicated to the investigation of the
effects of the cubic and quartic nonlinearity of interatomic
bonds in 2D arrays of atomic defects embedded in a lattice
on the two-path phonon interference and transmission beyond
the rotating-wave approximation. In the proposed nonlinear
lattice-dynamics approach, the full system of nonlinear alge-
braic equations for the amplitudes of the transmission through
and reflection at nonlinear two-path atomic defects with an
account for the generation of second and third harmonics is
derived. The nonlinear algebraic equations are further solved
numerically. We show that in the nonlinear case the an-
tiresonance is still present, but the shape of spectral lines
and antiresonance frequency can be drastically changed and
the antiresonance is accompanied by the enhancement of
phonon transmission in high-frequency domain due to higher
harmonics generation and propagation. The effect of higher
harmonics generation is important in general; for instance,
the harmonics generation at the nanoscale allows to interro-
gate matter in extremely confined volumes [34] while modern
nonlinear optical technique of second harmonic generation is
employed to probe the biologically relevant lipid bilayers and
other living systems [35].

The phenomenon of the two-path antiresonance can be
useful while constructing the atomic-scale metamaterials with
the predictable phonon transmittance. Since our techniques
can be applied to any realistic system with the two-path atomic
defects, we consider several different systems. The destructive
phonon interference is the most notable when the defect atoms
are heavier that host lattice atoms, but the opposite case is also
considered. One of the considered systems is the 2D array of
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heavy atomic defects (a layer of Ge-like atoms) in a simple cu-
bic lattice of light (Si-like) atoms, which can be regarded as a
quasi-one-dimensional (1D) lattice for the normal phonon in-
cidence. Another model system is a quasi-1D lattice of atomic
defects with weak coupling and/or light masses. An example
of such system can be the 2D array of light atomic defects (a
single layer of Si-like atoms) in a simple cubic lattice of heavy
(Ge-like) atoms. Both crystal lattices with an embedded 2D
array can be regarded asquasi-1D atomic chains for the normal
phonon incidence, and their quasi-1D model is shown in Fig. 2
below. In the system with the heavy atomic defects, both the
antiresonance frequency and the high-frequency domain are
influenced by the quartic nonlinearity. In the system with the
weak coupling, the antiresonance frequency almost does not
depend on the quartic nonlinearity, but the shape of transmis-
sion spectral line changes drastically. It is worth noting in this
regard that the two-path transmission antiresonances in sparse
2D arrays of atomic defects are also present in the case of
oblique phonon incidence if the deviation from the normal
incidence is not very large [36].

In the systems with the cubic nonlinearity for the incident
longitudinal wave, a new narrow transmission resonance on
the background of a broad antiresonance can appear, which
we relate to the opening of the additional transmission chan-
nel for a phonon second harmonic through the embedded
nonlinear atomic defects. We determine the conditions of the
existence of the new nonlinear transmission resonance and
demonstrate them for different embedded two-path nonlinear
atomic systems. We also propose and model the 2D array of
embedded three-path defects with an additional weak trans-
mission channel, in which a linear analog of the nonlinear
narrow transmission resonance on the background of a broad
antiresonance is realized. The linear analog helps to under-
stand the origin of the new nonlinear resonance. It is worth
mentioning that the narrow transmission resonance close to
the antiresonance frequency, such as shown in Figs. 13, 14,
and 16, recalls the narrow pass band in the transmission stop
band, which can appear in phononic crystals made of periodic
arrays of thin-walled hollow elastic cylinders embedded in
water or air; see Refs. [37–39].

We also describe transmission antiresonances in a topo-
logically different embedded nonlinear atomic system, which
we relate to the structure of the two-path 2D planar defect
in a diamond-like cubic lattice with two host atoms per unit
cell. We consider the corresponding two-monolayer atomic
defect as a realistic model for the 2D array of defects, formed
by heavy Ge atoms embedded in a diamond-like cubic lat-
tice of lighter Si atoms; see Ref. [21]. Two antiresonances
are present in the transmission spectrum in such a two-path
two-monolayer 2D array of defects, and here we analyze the
effects of quartic nonlinearity on them. It is important to
emphasize that in the linear case the two phonon transmis-
sion antiresonances in the two-path two-monolayer 2D system
have the same destructive-interference origin as the two pho-
ton transmission antiresonances in the two-path double-layer
stereometamaterials [27].

Within the proposed nonlinear lattice-dynamics approach,
the spectra of lattice waves transmission can be calculated not
only for single-frequency extended plane waves (phonons) but
also for the Gaussian phonon wave packets (WPs) with finite

frequency domains and finite spatial localization (coherence)
lengths, which are routinely simulated within the molecular
dynamics approach [40]. Simulations of WP transmission in
a different nonlinear atomic system have been reported in
several papers; see, e.g., Refs. [8,16,18,19]. However if one
intends to compare these results with the lattice-dynamics
prediction for the transmission of plane waves in the nonlinear
atomic system, the very important question of WP amplitude
normalization arises because the change of WP amplitude (or,
the same, of WP energy) induces the change of the effective
nonlinear coefficient. We propose and apply the method of
WP amplitude normalization, which properly determines the
WP amplitude, energy, and nonlinear parameter, and provides
a good conformity between the results of lattice-dynamics
calculations of the plane wave and WP transmission spectra.

The paper is organized as follows. In Sec. II we demon-
strate the underlying mechanism of the transmission antireso-
nance on the example of several two-path few-particle systems
and compare the considered systems with the one-path two-
particle system, which was proposed earlier as a classical
analogy of the Fano resonance. In Sec. III and Appendixes A,
B, and C, we describe our lattice-dynamics approach, based
on a system of nonlinear algebraic equations for the complex
transmission and reflection amplitudes of the normal-incident
(longitudinal) lattice waves at the 2D two-path nonlinear
atomic systems embedded into the (simple cubic) lattice. In
Sec. IV we present the results on the effect of quartic non-
linearity of the embedded atomic system on the transmission
of the plane wave or phonon WP through such system. In
Sec. V we present the results of the effect of cubic nonlinearity
of the embedded atomic system on the (longitudinal) plane
wave transmission through and reflection from such a sys-
tem. Here we also describe the transmission spectra with the
new nonlinear sharp transmission resonance or antiresonance,
produced by the phonon second harmonic generated in the
embedded atomic defect system with cubic nonlinearity. In
Sec. VI we describe the effects of quartic nonlinearity on the
transmission through the topologically different 2D two-path
atomic system, embedded in a lattice with two host atoms
per unit cell, which is characterized by the emergence of two
antiresonances. In the Conclusion we summarize the main
results presented in the paper.

II. MECHANISM OF THE TWO-PATH DESTRUCTIVE
INTERFERENCE

It is easy to demonstrate the mechanism on the example
of a few-particle system. We consider a system consisting
of four particles; see Fig. 1(a). Hereinafter blue lines denote
linear bonds while green zig-zags denote nonlinear bonds.
All particles (atoms) beside the d-atom are connected by
linear (blue) bonds, and the d-atom is connected by nonlinear
(green) bonds with the nearest neighbors. The mass of the
0-atom is m0, the mass of the d-atom is md , and the mass
of the side particles (1-st and −1-st) is m. Rigidity of the
bonds connecting the 0-atom (blue ones) with its neighbors
is k0, while linear rigidity of the bonds connecting the defect
atom with its neighbors is kd (green ones), and these bonds in
general also have the nonlinear contribution. The Lagrangian
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FIG. 1. Structure of two-path few-particle systems.

of the considered four-particle system is the following:

L =
+1∑

i=−1

mu̇2
i

2
+ m0u̇2

0

2
+ md u̇2

d

2

−
(

1

2
k0(u0 − u1)2+ 1

2
k0(u0 − u−1)2+ 1

2
kd (ud − u−1)2

+ 1

2
kd (ud − u1)2 +1

4
K4(ud − u−1)4+ 1

4
K4(ud − u1)4

)
,

(1)

where the nonlinear coefficient K4 describes the quartic non-
linearity of the d-atom bonds with the nearest neighbors.

Other few-particle two-path atomic systems can be built
from the one above: (a) by putting m0 = 0, which is equivalent
to the introduction of the direct bond between the −1-st and
1-st atoms with the k0/2 force constant [Fig. 1(b)]; and (b) by
introducing the direct bond ks between the 0- and d-atoms and
“cutting” the kd bonds, which produces the Helmholtz-type
atomic side-attached oscillator with mass md and ks coupling
with the three-atom chain [Fig. 1(c)]; see also Ref. [9]. All
these two-path few-particle systems are different from the two
weakly coupled on-site oscillators connected in series, which
present an apparent one-path system that was proposed for the
classical-mechanics modeling of the Fano-like sharp asym-
metric line shape in the absorption and scattering spectra;
see, e.g., Refs. [41–46].

All the aforementioned two-path few-particle systems, be-
ing embedded in an atomic chain such as shown in Fig. 2,
are characterized by the presence of the transmission antires-
onance (zero transmission dip) within the chain phonon band.
With the few-particle systems, shown in Fig. 1, the trans-
mission antiresonance can be modeled with the frequency at
which the amplitude of the 1-st particle turns to zero when
the harmonic driving force ∝ cos(ωt ) is applied to the −1-st
particle. The aforementioned one-path two-particle systems,
such as that discussed in Refs. [41–46], do not produce such
transmission antiresonance.

FIG. 2. Quasi-1D model of lattice system with the two-path non-
linear atomic defect with two connected-in-parallel atoms and bonds.

Antiresonance in two-path few-particle systems

First, we consider the linear case when it is easy to
demonstrate and explain the phenomenon of the transmis-
sion antiresonance. One can just let nonlinear coefficient be
zero K4 = 0 in Eq. (1). For convenience, we introduce the
following notations: ω2

1 = k0/m, ω2
0 = k0/m0, ω2

d = kd/md ,
ω2

2 = kd/m.
When the left, −1-st, particle is exposed to an external har-

monic driving force Am cos(ωt ), the dynamics of the system
with Lagrangian (1) is governed by the following equations:

ü0 + ω2
0(2u0 − u−1 − u+1) = 0, (2)

üd + ω2
d (2ud − u1 − u−1) = 0, (3)

ü1 + ω2
1(u1 − u0) + ω2

2(u1 − ud ) = 0, (4)

ü−1 + ω2
1(u−1 − u0) + ω2

2(u−1 − ud ) = A cos ωt . (5)

We are looking for the harmonic solution in the form

u−1 = C−1eiωt , u1 = C1eiωt , ud = Cd eiωt , u0 = C0eiωt .

(6)

Using Eqs. (2)–(5) with these substitutions, we obtain a
linear system for the coefficients Ci. Resolving it, we get an
equation on the amplitude of the right (1-st) particle:

C1

[
−ω2 + ω2

1 + ω2
2 − 2

(
ω2

0ω
2
1

2ω2
0 − ω2

+ ω2
2ω

2
d

2ω2
d − ω2

)]

= A

−ω2 + ω2
1 + ω2

2

(
ω2

0ω
2
1

2ω2
0 − ω2

+ ω2
2ω

2
d

2ω2
d − ω2

)
. (7)

So we get an analytical expression for the amplitude of
the right particle depending on the frequency ω and reduced
amplitude A of the external harmonic driving force, which
is applied to the left atom. In other words, this equation de-
scribes the portion of the external driving force that has passed
through the two-path atomic system.

Several resonances exist in the system. The phenomenon
of the transmission antiresonance corresponds to the case of
C1 = 0 when the right atom does not move in spite of the
forcing of the left atom. We can find the antiresonance fre-
quency from Eq. (7). The amplitude C1 = 0 if the following
equation holds:

ω2
0ω

2
1

2ω2
0 − ω2

R

+ ω2
2ω

2
d

2ω2
d − ω2

R

= 0, (8)
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from which we obtain the expression for the antiresonance
frequency:

ωR
2 = 2

ω2
0ω

2
d

(
ω2

1 + ω
2
2

)
ω2

0ω
2
1 + ω2

2ω
2
d

. (9)

The defect depicted on Fig. 1(b) can be considered as
a limiting case of the defect shown in Fig. 1(a) by setting

m0 = 0, that is 1/ω2
0 = 0. This means that Eq. (9) will be

written as

ωR
2 = 2

ω2
d

(
ω2

1 + ω
2
2

)
ω2

1

.

The case of the defect depicted in Fig. 1(c) is different.
Equation (7) is written in this case as

C1 = A
ω2

0ω
2
1

ω2
1 − ω2

· ω2
d − ω2[(

ω2
1 − ω2

)(
ω2

s − ω2
) − 2ω2

0ω
2
](

ω2
d − ω2

) − ω2
dω

2
s

(
ω2

1 − ω2
) , (10)

with ω2
d = ks/md , ω2

s = ks/m0, ω2
0 = k0/m0, ω2

1 = k0/m.
Equation (10) shows that for the defect depicted on Fig. 1(c),
the antiresonance frequency is ωR = ωd = √

ks/md , provided
that the product ωdωs is nonzero and ωd is finite. In the case of
zero product ωdωs, which corresponds to zero bond stuffiness
ks or infinite mass md or m0, the transmission antiresonance is
absent. Zero bond stiffness ks describes a one-path system of
three coupled atoms, the −1, 0, and +1. A one-path system
is realized for finite stiffness ks, zero mass md , and infinite
ωd when a massless spring with stiffness ks is attached to
the 0-th atom in the three-atom one-path chain. Infinite mass
md describes the 0-th atom as an oscillator with an on-site
frequency ωs in a one-path three-atom system. Infinite mass
m0 describes the 0-th atom as a phonon-impenetrable obstacle
when u1 = 0 for all frequencies (including the resonance at
ω = ω1 with an account for oscillations damping) because of
ω0 = ωs = 0, as Eq. (10) shows.

The notion of the Fano resonance [47] covers a great va-
riety of different resonance effects; see, e.g., Refs. [43,45,48]
for recent reviews. However, we do not consider the described
phenomenon of the transmission antiresonance as the Fano
resonance, as was done, for instance, in Ref. [8], because
the transmission antiresonance and the Fano effect in the
absorption and scattering spectra generally have different ori-
gins. The considered phonon transmission antiresonance is a
result of the destructive interference of the waves propagat-
ing through the two different wave paths in the atomic-scale
metastructure embedded in a crystal, in the absence of wave
damping as well; see also Refs. [9,11,16–20,22]. It is also
important that in the considered transmission antiresonances,
the states in both wave paths are in the phonon continuum
of the system (the resonance states): there is no interference
between the localized and continuum states, which is consid-
ered to be the main source of the Fano resonance [41–43,49].
Transmission antiresonances were also observed and studied
in acoustic metamaterials without direct connection with the
Fano resonance; see, e.g., Ref. [25] for a recent review. On
the other hand, the classical Fano effect of a sharp asymmetric
line shape with a narrow dip in the absorption spectrum (the
frequency of almost zero total loss) is well described by the
spectrally narrow cancellation of the total loss in a system
of two connected-in-series weakly coupled oscillators or two
weakly coupled modes with very different damping rates (fi-
nite and almost zero of the “bright superradiant” and “dark
subradiant” modes), which is accompanied by the narrow
transmission resonance, instead of transmission node, and
therefore this effect is associated with the classical analog of

electromagnetically induced transparency, see, e.g., Ref. [50].
[In fact, the model with two weakly coupled oscillators (op-
tical phonons) with very different damping rates (finite and
almost zero) was proposed for the first time in Ref. [51] for
the modeling of a narrow dip in the infrared absorption and
reflection spectra in high-dielectric-constant materials without
making the connection to Fano’s paper; see also Ref. [52].] It
is important to underline in this connection that the transmis-
sion antiresonance, which is presented in Ref. [42], clearly
shows that in the considered electron waveguide with an
asymmetrically embedded quantum dot there are two different
electron wave paths around the quantum dot, which become
identical for the symmetric position of the quantum dot on
the central line of the waveguide when the antiresonance
disappears. This observation confirms the universality of the
destructive-interference origin of transmission antiresonances
of waves of different nature, including electron waves, in
two-different-path structures.

For the system shown in Fig. 1(a), the oscillation wave,
which passes through the 0-atom, “annihilates” at the trans-
mission antiresonance with the wave that passes through the
d-atom. From the physical point of view, this can be explained
by the fact that when there is only one wave path (or two
identical wave paths), the transmitted wave cannot be blocked
in a finite (compact) few-particle system by the superposition
(interference) with another wave. The celebrated total Bragg
reflection, caused by one-path destructive interference, can be
realized only in infinite periodic systems.

The absence of the transmission antiresonance in the one-
path few-particle system can also be demonstrated with the
use of Eqs. (8) and (10). The one-path case corresponds to
the limit when the two paths in Fig. 1(a) are identical, that
is, when md = m0, kd = k0 and ωd = ω0, ω1 = ω2 in result.
Then Eq. (8) transforms into the equation

2ω2
0ω

2
1

2ω2
0 − ω2

R

= 0, (11)

which obviously has no solution for the finite ωR. The absence
of the solution u1 = C1 = 0 for finite frequency in the case
of ωd = ω0 and ω1 = ω2 also follows directly from Eq. (7).
As was explained above, Eq. (10) also shows the absence of
transmission antiresonance in the cases of zero bond stiff-
ness ks and zero or infinite mass md in the system shown
in Fig. 1(c), and all these cases describe different one-path
three-particle systems. The inclusion of the on-site potentials
for the particles in such one-path few-particle systems, similar
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to that discussed in Refs. [41–46], also does not produce
transmission antiresonance in the corresponding systems.

It is important that the two-path transmission antires-
onance can be spectrally broad and may have an almost
symmetric line shape, such as the antiresonances shown in
Figs. 18(a) and 18(b). Narrow, Fano-like, antiresonances with
sharp asymmetric line shapes are present in the transmission
spectra through the systems with two different (asymmetric)
paths, weakly split in eigenfrequencies or damping constants,
or when one of the paths is weak (rare in average), such as the
systems with the transmission spectra shown in Figs. 5 and 7
in Ref. [16]. Examples of the transmission spectra with sharp
asymmetric in general line shapes, which we relate with the
opening of the additional transmission channel for a relatively
weak phonon second harmonic through the embedded nonlin-
ear defect atoms, are presented in Sec. V. The narrow Fano-
like transmission antiresonances with asymmetric line shapes
can be considered as a particular case of the antiresonance in
the transmission through the embedded system with two very
different wave paths, such as the system shown in Fig. 2.

One may ask: how does nonlinearity influence the trans-
mission antiresonance? For a nonlinear system with the
Lagrangian (1), the transmission spectrum of the four-particle
system (see Fig. 3) can be obtained within the approach for the
two-path defects in a chain, which will be described in the fol-
lowing section. As one can see in Fig. 3, the nonlinearity shifts
the antiresonance frequency. However, the antiresonance sur-
vives in the presence of relatively weak nonlinearity.

III. NONLINEAR LATTICE-DYNAMICS APPROACH FOR
THE STUDY OF PLANE WAVE TRANSMISSION AND

REFLECTION IN QUASI-1D CHAIN WITH NONLINEAR
ATOMIC DEFECT

Let us consider quasi-1D chain with the embedded
two-path defect; see Fig. 2. Such system models a three-

FIG. 3. Spectrum of normalized amplitude of 1-st particle in
linear (blue line) and nonlinear (with parameter K4A2 = 0.005, green
line) four-particle systems shown in Fig. 1(a), for k0 = kd = 0.5,
m0 = 0.5, md = 1.3, m = 1. The lines are indicated from left to right.

dimensional crystal with one defect crystal plane (the chain
axis corresponds to the direction normal to defect plane) with
alternating in checkerboard order the host and defect atoms.
For example, these can be heavy Ge-like atoms in a simple
cubic crystal lattice of Si-like atoms, with one atom per unit
cell. A more realistic defect crystal plane with sparse distri-
bution of Ge atoms in a diamond Si lattice with two atoms
per unit cell will be considered in Sec. IV. Due to the sparse
2D distribution of atomic defects in the crystal plane, there
are two paths for the lattice wave: through the defect atom
and through the host atom. The model is rather general and
may be applied to many other crystal systems as well as
for the study of general mechanism of lattice energy transfer
through defect crystal planes; see also Refs. [9,16–18,21]. The
system is described by the following Fermi-Pasta-Ulam (FPU)
Lagrangian:

L =
−1∑

i=−∞

mu̇2
i

2
+ m0u̇2

0

2
+ md u̇2

d

2
+

∞∑
i=1

mu̇2
i

2
−

⎛
⎝ ∑

i �=0,−1

knorm(ui − ui−1)2

2
+ k0(u0 − u−1)2

2
+ k0(u0 − u1)2

2

+ kd (ud − u−1 − �1)2

2
+ K3(ud − u−1 − �1)3

3
+ K4(ud − u−1 − �1)4

4

+ kd (u1 − ud − �2)2

2
+ K3(u1 − ud − �2)3

3
+ K4(u1 − ud − �2)4

4

⎞
⎠. (12)

This is the most general case of a system with the cubic (K3) and quartic (K4) nonlinearities of the embedded atomic defects.
Here the variables �1 and �2 describe the change of the equilibrium interatomic bond lengths caused by cubic anharmonicity,
which is known from the dynamics of nonlinear oscillations [53] and which will be discussed in Sec. V.

We are looking for the solution with higher harmonics generation by taking into account that the nonlinear defect generates
additional waves with double and triple frequencies (the second and third harmonics):

un = Aeikan−iωt + Are−ikan−iωt + Ar2e−ik2an−2iωt + Ar3e−ik3an−3iωt + c.c., n � −2, (13)

un = Ateikan−iωt + At2eik2an−2iωt + At3eik3an−3iωt + c.c., n � 2 (14)

with A being an amplitude of the incident plane wave with frequency ω, and a being a period of the lattice. Here t , t2, t3
and r, r2, r3 are, respectively, the normalized transmission and reflection amplitudes of the main, second and third phonon
harmonics. The frequency and wave number obey the following dispersion relations (assuming that the nonlinearity of the
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defect atoms bonds is relatively small):

ω2 = 4knorm

m
sin2 ka

2
, (15)

(2ω)2 = 4knorm

m
sin2 k2a

2
, (16)

(3ω)2 = 4knorm

m
sin2 k3a

2
. (17)

The atoms neighboring the structural defect, which are the
1-st and the −1-st atoms, oscillate with the same frequency
and with different in general amplitudes:

u0 = A(A0e−iωt + t2,0e−2iωt + t3,0e−3iωt + c.c.), (18)

u−1 = A(A−1e−iωt + r2,−1e−2iωt + r3,−1e−3iωt + c.c.), (19)

u+1 = A(t1e−iωt + t2,1e−2iωt + t3,1e−3iωt + c.c.), (20)

ud = A(D1e−iωt + D2e−2iωt + D3e−3iωt + c.c.). (21)

We have six equations of motion for the u−2, . . . , u2, ud

displacements, which follow from the Lagrangian (12). Sub-
stituting the expressions (13)–(14) and (18)–(21) into these
equations and equating the coefficients in front of e−iωt , e−2iωt ,
and e−3iωt , we get 20 algebraic equations for 20 complex
amplitudes (see Appendix A). The problem is to solve this
algebraic system for each value of frequency and get the
dependence of the transmitted and reflected wave amplitudes
on the frequency.

We suppose that the effect of nonlinearity is relatively
small, and the amplitudes of the third harmonics are much
smaller than the amplitudes of the fundamental-frequency
waves: (t30, t3, r3, r3,−1, t31, D3) � (r, t, A0, A−1, t1, D1). We
consider in detail the equation for defect atom displacement,
in which we omit terms of the second and higher orders:

md (−D1ω
2) + kd (2D1 − A−1 − t1)

+ K4A2[3(D1 − A−1)2(D1
∗ − A−1

∗)]

+ K4A2[3(D1 − t1)2(D1
∗ − t1

∗)] = 0. (22)

The nonlinear physical parameter is the product K4A2,
which remains in the equations of nonlinear lattice dynamics.
In the quasiharmonic approximation, we suppose that this
parameter is small, K4A2 � knorm. The obtained full system of
algebraic equations, which describes the transmission of the
plane wave through the embedded nonlinear atomic defect,
can be found in Appendix A. This system has been solved
numerically.

The nonlinear phonon transmission T and reflection R co-
efficients were calculated in the quasiharmonic approximation
using the following expressions:

T = |t |2 + 4|t2|2Re

⎛
⎝

√
w2

max − 4w2

w2
max − w2

⎞
⎠

+ 9|t3|2Re

⎛
⎝

√
w2

max − 9w2

w2
max − w2

⎞
⎠, (23a)

R = |r|2 + 4|r2|2Re

⎛
⎝

√
ω2

max − 4ω2

ω2
max − ω2

⎞
⎠

+ 9|r3|2Re

⎛
⎝

√
ω2

max − 9ω2

ω2
max − ω2

⎞
⎠, (23b)

which take into account the finite width of the phonon trans-
mission band with maximal frequency ωmax and phonon group
velocity in a monatomic chain. Equations (23a) and (23b)
explicitly take into account that lattice waves of the second
and third harmonics do not transfer the oscillation energy

above the maximal phonon frequency ωmax = 2
√

knorm
m (in the

phonon stop band of the chain). The derivation of Eqs. (23a)
and (23b) is given in Appendix C.

The sum of the transmission and reflection coefficients
determines the total normalized flux of phonon energy in
incident and reflected lattice waves Pph:

Pph = T + R = |t |2 + 4|t2|2Re

⎛
⎝

√
w2

max − 4w2

w2
max − w2

⎞
⎠

+ 9|t3|2Re

⎛
⎝

√
w2

max − 9w2

w2
max − w2

⎞
⎠

+ |r|2 + 9|r2|2Re

⎛
⎝

√
w2

max − 4w2

w2
max − w2

⎞
⎠

+ 9|r3|2Re

⎛
⎝

√
w2

max − 9w2

w2
max − w2

⎞
⎠. (24)

Conservation of lattice energy requires that Pph = 1. This
requirement will be used for the control of the accuracy of
numerical simulations.

IV. INFLUENCE OF QUARTIC NONLINEARITY
ON PHONON TRANSMISSION

In this section we consider several systems with different
parameters. Hereinafter we use dimensionless units in which
m = 1, knorm = 1, a = 1. Some of the considered systems
(described by sets of parameters) model a real crystal with
defect plane, and some of them are just model systems. The
latter ones are useful for illustrating some effects and enable
us to make general conclusions.

Case 1. The first considered system is a model system of
a lattice with the two-path defect, shown in Fig. 2, where
the defect atom is four times heavier that the host atoms.
Dimensionless parameters of the defect are the following:
k0 = 0.5, kd = 0.5, m0 = 0.5, md = 2. Figure 4(a) shows that
the quartic nonlinearity leads to the shift of antiresonance
frequency and to the change of the transmission spectrum line
shape in the domain of higher frequencies.

To control the correctness of our approximations and accu-
racy of numerical calculations, we also consider the spectrum
of the sum of nonlinear transmission and reflection coeffi-
cients, the total normalized flux of lattice energy in incident
and reflected waves Pph, Eq. (24), which should be equal to
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FIG. 4. (a) Spectrum of transmission coefficients and (b) total normalized flux of lattice energy in incident and reflected waves Pph, given
by Eq. (24), in a model system, shown in Fig. 2, with the defect atom four times heavier than host atoms. In the legend in (a), the lines are
indicated from left to right.

one due to energy conservation in the Hamiltonian system.
Figure 4(b) shows that this equality holds very accurately. We
have also calculated the spectrum of the total flux Pph for other
systems, and in all the considered systems the phonon energy
is conserved in our simulations.

Case 2. The mass of the defect atom is 2.6 times heavier
than the mass of host atoms. This system models the simple
cubic crystal of Si-like atoms with a 2D defect layer consisting
of Si-like and Ge-like atoms; see also [18,19]. The used pa-
rameters are k0 = kd = 0.5, m0 = 0.5, and md = 1.3. Figure 5
shows that even a relatively small quartic nonlinearity shifts
the antiresonance frequency (in the direction determined by
the sign of nonlinear coefficient K4), but the influence of the
quartic nonlinearity on the line shape is negligible in such a
system. The quartic-nonlinearity-induced shift of the antires-
onance frequency is qualitatively similar to that obtained in [8]
devoted to wave propagation in a nonlinear optical chain with
the defects with on-site quartic nonlinearity, but our trans-
mission spectra take explicitly into account the generation
and propagation of the third (and second; see below) phonon
harmonics, which cannot be described in the rotating-wave
approximation that was used in Ref. [8].

FIG. 5. Spectrum of the transmission coefficient in a simple cu-
bic lattice of Si-like atoms with a defect layer of Ge-like and Si-like
atoms with mass ratio 2.6. In the legend the lines are indicated from
left to right.

Case 3. The system with a weak coupling. This structure
models the 0-th atom, which is weakly coupled with the
lattice, and there is another wave path through the nonlinear
bond between the −1-st and 1-st atoms (formally, with the
defect with zero mass, md = 0, the −1-st and 1-st atoms
are directly connected through the nonlinear bond with force
constant kd/2 in the linear limit). That is, we consider the
defect shown in Fig. 2 with k0 = 0.07, kd = 0.28, m0 = 1,
md = 0.

Figure 6 shows that the quartic nonlinearity in this system
does not shift the antiresonance frequency but changes the line
shape in both the low-frequency and high-frequency domains.
Although it is a model system, it enables us to detect the
important effect. We compare the spectra in Fig. 6 with those
of the linear systems with different values of the force constant
kd ; see Fig. 7. In the low-frequency domain, the lines have the
same shape, and we can conclude that the only effect of the
quartic nonlinearity in this system is the effective change of
the kd force constant. However, in the high-frequency domain
the difference is more noticeable, which can be explained by
the influence of the generation and propagation of the third
phonon harmonic.

Comparison with simulations of phonon wave packet
transmission

The molecular dynamics simulation of phonon wave
packet transmission through the atomic defect layer is a
commonly used approach in computing phonon transmis-
sion coefficients; see, e.g., Refs. [40,54,55]. In our nonlinear
lattice-dynamics approach, we also perform the calculation
of the wave packet transmission, in which we consider the
quasi-1D chain with the embedded nonlinear atomic defect,
shown in Fig. 2.

We excite the 1D Gaussian phonon wave packet centered
at the frequency ω and wave number k with the spatial width
(coherence length) σ . The wave packet is generated by assign-
ing the displacement un of the nth atom as

un = Awpei(kn−wt )e− n−n0−vgt

4σ2 , (25)
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FIG. 6. Spectrum of transmission coefficient in the nonlinear
system with weak coupling shown in Fig. 2 with m0 = 1, md = 0
for different values of quartic nonlinearity. In the legend the lines are
indicated from top to bottom.

where the spatial width is taken to be σ (ω) = 20λ, λ = 2π
k(ω) is

a wave length at the central frequency, and the phonon group
velocity is vg = √

knorm/m cos(ka/2).
Simulations of the wave packet transmission through the

nonlinear atomic defect are held for each value of the fre-
quency ω. The whole chain consists of 2Ntail + 2 particles,
where Ntail is a number of atoms in the chain fragment on the
left and on the right to the structure defect.

The principal question is how to choose the amplitude Awp

of the wave packet for the simulation of the transmission of
nonlinear wave. We know that the effective nonlinear param-
eter is K4A2

wp, so the change of Awp changes the nonlinear
parameter. In order to compare the transmission coefficients of
the plane wave with the given amplitude A and of the phonon
wave packet, it is natural to determine Awp from the condition
that the lattice deformation energy of the wave packet is equal
to the energy of the plane wave on the fragment of the lattice
with the length of several coherent lengths σ of the wave
packet when this length is less than 2Ntail + 2 lattice periods.
In our simulations of phonon wave packets, we consider the
transmission through the nonlinear defect of the plane wave
with unit amplitude and calculate numerically the amplitude
Awp for each value of K4 and central frequency ω from the
condition that the wave packet energy is equal to the energy of
the plane wave with unit amplitude for different values of the
nonlinear coefficient K4 on the lattice fragment with the length
of 15 or 16 coherence lengths σ , when the latter is propor-
tional in turn to the wave length λ at the central frequency; see
Eq. (25). Numerical simulation of the transmission through
the nonlinear defect with a given K4 of phonon wave packet
with the amplitude Awp, which is determined on 15 σ length of
the lattice fragment, shows a good agreement with the results
for the transmission of plane waves with unit amplitude for
different values of the nonlinear coefficient K4 through the
2D array of Ge-like defect atoms in a simple cubic lattice of
Si-like atoms shown in Fig. 2; see Fig. 8.

In Figs. 9(a), 9(b) and 9(c), we illustrate the form of
the displacement pattern of the aforementioned phonon wave
packet before, during, and after, respectively, the transmission
through the defect plane of the 2D array of Ge-like defect
atoms in a simple cubic lattice of Si-like atoms shown in

FIG. 7. Spectrum of transmission coefficient through the atomic
defect shown in Fig. 2 with m0 = 1, md = 0 in the linear case
for different values of the coefficient kd for k0 = 0.07: kd = 0.49
(green line); kd = 0.39 (darker green line); kd = 0.28 (blue line);
kd = 0.174 (purple line); and kd = 0.07 (red line). The lines are
indicated from top to bottom.

Fig. 2, for a wave packet reduced central frequency ω/ωmax =
0.56 and K4 = −0.005. In result of partial transmission and
reflection, the incident wave packet splits into the two trans-
mitted and reflected wave packets.

For the system with weak coupling, described in Case 3 in
Sec. IV, the simulation of wave packet transmission through
the nonlinear lattice defect also provides good conformity
with the results for the transmission of plane waves with unit
amplitude for different values of the nonlinear coefficient K4

including the high-frequency domain, for the lattice fragment
length of 16 σ ; see Fig. 10. This is important since one can
expect that the nonlinear effects are especially pronounced in
the high-frequency domain.

As one can see in Figs. 8 and 10, the minimal value of the
transmission coefficient in the antiresonance is nonzero for the

FIG. 8. Comparison of the transmission coefficients of plane
waves with unit amplitude (solid lines) and wave packets (thin lines)
through the 2D array of Ge-like and Si-like atoms in a simple cubic
lattice of Si-like atoms shown in Fig. 2, for positive and negative
values of the nonlinear coefficient K4. In the legend the lines are
indicated from left to right.

054217-9



I. P. KOROLEVA (KIKOT) AND YU. A. KOSEVICH PHYSICAL REVIEW E 107, 054217 (2023)

FIG. 9. Form of displacement patterns of phonon wave packet before (a), during (b), and after (c) the transmission through the defect
plane of the 2D array of Ge-like and Si-like atoms in a simple cubic lattice of Si-like atoms shown in Fig. 2, for wave packet reduced central
frequency ω/ωmax = 0.56 and K4 = −0.005.

wave packets, which is a consequence of the finite spectral
width of the coherent superposition of the plane waves in the
packet in contrast to the single frequency of the plane wave;
see also Refs. [18,19]. It is worth noting that with the appro-
priate choice of the lattice fragment length for determining
the amplitude of the wave packet Awp, in principle, one can
get very good agreement with the analytical prediction for the
plane wave transmission, but this is not our goal.

V. INFLUENCE OF CUBIC NONLINEARITY
ON PHONON TRANSMISSION

It is well known that the presence of cubic nonlinearity
causes the change of the equilibrium bond length; see, e.g.,
Ref. [53]. To take into account this change, we introduce
the additional variables �i for each nonlinear bond; see the
Lagrangian (12). Values of these variables are obtained from
the full algebraic system for all complex amplitudes; see Ap-
pendixes A and B. Estimates for the case of one oscillator
with cubic and quartic nonlinearity yield that �i ∼ −K3A2

supposing that the nonlinearity is relatively weak [53]. We use
these estimates to get rid of the negligible terms.

In some systems we can see that the cubic nonlinearity K3

red shifts the antiresonance frequency independently of the K3

FIG. 10. Comparison of the transmission coefficient of plane
waves with unit amplitude (solid lines) and wave packets (thin lines)
through the system with weak coupling, described by Case 3 in
Sec. IV, for different values of the nonlinear coefficient K4. In the
legend the lines are indicated from top to bottom.

sign. This effect can be explained by the known red shift of the
fundamental frequency of the finite-amplitude oscillations of
an oscillator with cubic nonlinearity [53]. For example, with
the parameters k0 = 1.8, kd = 0.1, m0 = 0, and md = 1, in
Fig. 11 we can see that for K4 = 0 the antiresonance frequen-
cies experience red shifts. This effect also holds for K4A2 �= 0.

In the system with weak coupling where the transmission
line has a different shape, the presence of cubic nonlinearity
has a similar effect: cubic nonlinearity red shifts the antireso-
nance frequency independently of the sign of K3A; see Fig. 12
for the k0 = 0.5, kd = 0.2, m0 = 0, md = 0.5 parameters set.

But in some systems, an additional narrow resonance
emerges. Figure 13(a) shows transmission spectrum for the
case k0 = 0.5, kd = 0.51, m0 = 0.5, and md = 1.3. We see the
additional narrow transmission resonance close to the antires-
onance frequency, at ω ≈ 0.5ωmax. We relate this effect with
the opening of the additional transmission channel for phonon
second harmonic in wave paths through the nonlinear defect
atoms. Figures 13(b)–13(d) show that the resonance excitation
of phonon second harmonic amplitude at and transmission
through the nonlinear defect atoms indeed results in a sup-
pression of the amplitude of the phonon fundamental (first)
harmonic at the defect and the 0-atoms.

This hypothesis is supported by the study of similar ef-
fects in the systems with different parameters. If we change
the mass ratio, that is, consider more light defect atoms, the

FIG. 11. Antiresonance frequency shift in the case of k0 = 1.8,
kd = 0.1, m0 = 0.0, and md = 1 with both K3 and K4 nonlinearities.
In the legend the lines are indicated from left to right.
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FIG. 12. Antiresonance frequency shift in the case of the system
with weak coupling with both K3 and K4 nonlinearities. In the legend
the lines are indicated from left to right.

position of the narrow resonance remains almost the same,
close to 0.5ωmax; see Fig. 14.

To illustrate the importance of the opening of the additional
transmission channels in this effect, first we consider the linear
three-path atomic system, in which an additional path binds
the atom with mass ma through linear force constants ka with
the atoms in the positions −1 and 1 in the model, shown in
Fig. 2, in parallel with the paths through the defect atom with
mass md = 1.3m and linear force constants kd = 0.51knorm

and through the 0-atom with mass m0 = 0.5m and linear force
constants k0 = 0.5knorm; see Fig. 15. The additional path in
this model is considered to be very weak because it is assumed
that only a small fraction of defect atoms in the array are
bypassed with such paths, which in turn models the relatively
weak amplitude of phonon second harmonic and the resulting
spectral narrowness of transmission resonance in the consid-
ered nonlinear atomic-scale system. Namely, we consider as
an example the case when the additional path bypasses one
defect atom in the area of 12 × 12 atoms in the 2D array. This
corresponds to the case of the ka = knorm/144 = 0.0069knorm

effective force constant connecting with the matrix the atoms
with mass ma = 0.0069 × 1.8m, which have a resonance fre-
quency that coincides with the antiresonance frequency, close
to 0.5ωmax, in the model shown in Fig. 15. Figure 16(a)
shows the appearance of a narrow resonance in a transmission
through the sparse 2D array of Ge-like defect atoms in a
simple cubic lattice of Si-like atoms with the additional weak
linear transmission channel; Figs. 16(b) and 16(c) show the
sharp antiresonance suppression of the displacements of the
d- and 0-atoms that is accompanied by the resonance dis-
placement enhancement of the a-atoms, shown in Fig. 16(d),
in the additional weak transmission channel. The comparison
of Figs. 13, 14, and 16 confirms that the opening of the addi-
tional transmission channel for the phonon second harmonic
through the nonlinear defect atoms is the origin of the narrow
transmission resonance caused by cubic nonlinearity.

It is worth noting in this connection that the total trans-
mission in the linear systems close to the frequency 0.7ωmax,
such as is shown in Figs. 4, 5, 13(a), and 16(a), is also accom-
panied by the complete suppression of the d-atom oscillation
amplitude, with ud = 0 at this frequency, as one can see in
Figs. 13(b) and 16(b). This property provides further evidence
that the narrow resonance of the transmission enhancement,

shown in Figs. 13(a) and 14, is related with the suppression
of the d-atom oscillation amplitude in the fundamental har-
monic, which in turn is caused by resonance excitation of and
interaction with the phonon second harmonic in the nonlinear
system, as Fig. 13(d) confirms. Below we will discuss the
origin of the value close to 0.5ωmax of the frequency of the
transmission resonance caused by phonon second harmonic.

To model the appearance of the additional narrow trans-
mission resonance in the nonlinear system, we consider the
atomic system, which is a chain with the defect shown in
Fig. 1(b), but we divide the nonlinear path into two nonlinear
paths with close linear and nonlinear phononic parameters,
when k0 ≈ kd and m0 ≈ md ; see Fig. 17. In this case we
should take into account that four equilibrium bond lengths
effectively change, and the corresponding FPU Lagrangian
with cubic nonlinearity reads as

L =
−1∑

i=−∞

mu̇2
i

2
+ m0u̇2

0

2
+ md u̇2

d

2
+

∞∑
i=1

mu̇2
i

2

−
⎛
⎝k0(u0 − u−1 − �20)2

2
+ K30(u0 − u−1 − �20)3

3

+ k0(u1 − u0 − �10)2

2
+ K30(u1 − u0 − �10)3

3

+ kd (ud − u−1 − �2d )2

2
+ K3d (ud − u−1 − �2d )3

3

+ kd (u1 − ud − �1d )2

2
+ K3d (u1 − ud − �1d )3

3

+
∑

i �=−1,0

knorm(ui+1 − ui )2

2
+ C(u1 − u−1)2

2

⎞
⎠. (26)

Figure 18 shows the appearance of the narrow resonances
induced by the asymmetry in linear and/or nonlinear wave
paths in the system shown in Fig. 17. One can see that
the induced narrow resonances occur at different frequencies
in asymmetric linear and in asymmetric nonlinear systems.
Figure 18 clearly shows that the narrow, the Fano-like,
transmission antiresonances with asymmetric line shapes are
caused by the presence of the two weakly split wave paths,
either linear or nonlinear, through the embedded atomic defect
shown in Fig. 17. At the same time, the relatively broad back-
ground antiresonances, shown in Figs. 13, 14, 16, and 18, are
related with the transmission through the two very different
wave paths, shown in Figs. 1(b), 2, 15, and 17.

Spectral position of the additional narrow transmission res-
onances or antiresonances close to 0.5ωmax in Figs. 13, 14,
and 18 can be explained in the following way. The second
harmonic of the resonance frequency is close to ωmax when
the nearest lattice neighbors oscillate out of phase, while the
same particles oscillate in phase with the frequency close to
0.5ωmax. If applied to the −1-st and defect atoms in the atomic
defect shown in Fig. 2, this can result in the suppression of
the oscillation amplitude of the d-atom, for the given am-
plitude of the −1-st atom provided by the incident lattice
wave. The suppression of the d-atom oscillation amplitude
effectively blocks the wave path for the fundamental harmonic

054217-11



I. P. KOROLEVA (KIKOT) AND YU. A. KOSEVICH PHYSICAL REVIEW E 107, 054217 (2023)

FIG. 13. (a) Narrow transmission resonance due to the cubic nonlinearity in a sparse 2D array of Ge-like nonlinear defect atoms in a simple
cubic lattice of Si-like atoms, shown in Fig. 2. Spectrum of the displacement amplitudes of the first harmonic of the defect atoms |D1| (b), of
the 0-atoms |A0| (c), and of the second harmonic of the defect atoms |D2| (d). Parameter set: k0 = 0.5, kd = 0.51, m0 = 0.5, md = 1.3.

through the d-atom. The second-harmonic wave propagation
through the path with the 0-atom [see Eq. (18)] blocks the
wave path for the fundamental harmonic through the 0-atom
as well; see Fig. 13(c). Blocking the wave paths for the fun-
damental harmonic through the d- and 0-atoms suppresses

FIG. 14. Narrow resonance due to the cubic nonlinearity in a
matrix with different masses of nonlinear defect atoms. In the legend
the lines are indicated from left to right.

the destructive-interference antiresonance and results in the
appearance of the additional narrow nonlinearity-induced
transmission peak, shown in Figs. 13, 14, and 18(b). If applied
to the defect and 1-st atoms in the atomic defect shown in
Fig. 2, this can result in the suppression of the oscillation am-
plitude of the 1-st atom and the appearance of the additional
narrow nonlinearity-induced antiresonance, shown in Figs. 14
and 18(a).

The absence of the additional narrow transmission reso-
nance or antiresonance close to 0.5ωmax in the spectra shown
in Figs. 11 and 12 can be related to the absence of the
atom (with finite mass) in one of the wave paths in the cor-
responding atomic systems. Figures 11 and 12 present the

FIG. 15. Quasi-1D model of atomic system with three different
linear wave paths, two strong, through atoms 0 and d , and one weak,
through atom a.
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FIG. 16. (a) Narrow transmission resonance in the linear three-path system shown in Fig. 15 with the additional weak channel through a
sparse 2D array of Ge-like defect atoms in a simple cubic lattice of Si-like atoms. Spectrum of the displacement amplitudes of the defect atoms
(b), the 0-atoms (c), and the a-atoms in the additional channel (d). Red and blue lines show, respectively, the spectra of the atomic system with
and without the additional transmission channel. Parameter set: k0 = 0.5, kd = 0.51, ka = 0.0069, m0 = 0.5, md = 1.3, ma = 0.0069 × 1.8.

transmission spectra through the nonlinear atomic systems of
the type, shown in Fig. 1(b), with m0 = 0 that is equivalent to
the direct bond between the −1-st and 1-st atoms with the k0/2
force constant. Because of the absence of the atom in the chan-
nel, the suppression of the d-atom oscillation amplitude in the
nonlinear channel does not provide the blocking of the wave
path through the direct bond in another channel such as the
blocking of the channel through the atom, shown in Figs. 13(c)
and 16(c). This in turn does not induce the additional narrow
transmission resonance or antiresonance, such as shown in
Figs. 13(a), 14, and 16(a). The same arguments can be applied
to the system shown in Fig. 17 with the transmission spectra
shown in Fig. 18. This system with identical paths through
the d- and 0-atoms belongs to the nonlinear atomic system
of the type, shown in Fig. 1(b), which does not produce the
additional narrow transmission resonance or antiresonance
close to 0.5ωmax that emerges only in the presence of the
asymmetry of two nonlinear wave paths, through the d- and
0-atoms as Figs. 18(a) and 18(b) show.

FIG. 17. Quasi-1D model of atomic system with three different
wave paths, two weakly split nonlinear and a linear.

VI. TOPOLOGICALLY DIFFERENT EMBEDDED
NONLINEAR ATOMIC SYSTEM

Now we consider antiresonances in topologically different
embedded nonlinear atomic system, which we relate to the
structure of the 2D two-path planar defect in a diamond-like
cubic lattice with two atoms per unit cell; see Fig. 19. Such
two-monolayer embedded atomic defect we consider as a re-
alistic model for the 2D array of defects, formed by heavy Ge
atoms embedded in diamond-like cubic lattice of more light
Si atoms (see Ref. [21]), and here we analyze the effects of
quartic nonlinearity on the transmission through the array of
such defects.

We describe the system by the following FPU Lagrangian
with quartic nonlinearity:

L =
−1∑

i=−∞

mu̇2
i

2
+ m0u̇2

0A

2
+ m0u̇2

0B

2
+ m0u̇2

dB

2
+ md u̇2

dA

2

+
∞∑

i=1

mu̇2
i

2
−

⎛
⎝ ∑

i �=0,−1

knorm(ui − ui−1)2

2
+ k0(u0A−u−1)2

2

+ k0(u0B − u0A)2

2
+ k0(u0B − u1)2

2
+ kd (udA − u−1)2

2

+ K4(udA − u−1)4

4
+ kd (udB − udA)2

2

+ K4(udB − udA)4

4
+ kd (u1−udB)2

2
+ K4(u1−udB)4

4

⎞
⎠.

(27)
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FIG. 18. Narrow resonances due to the asymmetry in linear (atom masses m0 �= md ) and nonlinear (coefficients K30 �= K3d ) wave paths
in the transmission spectrum through the system shown in Fig. 16. Parameter set: m0 = 1.3, md = 1.2 for the linear asymmetry case and
m0 = 1.3, md = 1.3 in other cases, C = 0.50 with k0 = kd = 0.25 in (a) and with k0 = kd = 0.5 in (b). In the legends the lines are indicated
from top to bottom.

We use the same approach to solve the equations of mo-
tion, which follow from the Lagrangian (27) and obtain the
transmission spectrum. Two antiresonances are present in the
transmission spectrum through such array of defects, with
m0 = 0.5m, md = 1.3m, k0 = kd = 0.5knorm (see Fig. 20),
which are related with the two-monolayer structure of the
2D atomic defect [21]. Figure 20 also shows that spectral
positions of the two antiresonances are shifted in the non-
linear case and spectral line shape can be strongly affected
by moderate nonlinear coefficient K4, especially positive.
Lattice wave transmission close to the antiresonances be-
comes bistable for the higher quartic nonlinearity similar to
the transmission bistability described in optical chain with
a quartic nonlinear defect [8]. As was emphasized above,
in the linear case the two transmission antiresonances of
phonons in the two-path two-monolayer atomic defect shown
in Fig. 20 have the same destructive-interference origin as the
two transmission antiresonances of photons in the two-path
double-layer stereometamaterials, which were observed in
Ref. [27], despite the fact that the damping of local nanoplas-
monic resonances in periodic nanostructures weakens the
photon transmission dips.

VII. CONCLUSIONS

In summary, we present the theoretical studies of the ef-
fects of nonlinearity on the two-path phonon transmittance
through the 2D arrays of atomic defects in a lattice. We
demonstrate the appearance of transmission antiresonance
(transmission node) in the two-path systems with the few-
particle nanostructures, which allow one to model both linear
and nonlinear phonon antiresonances. The universality of
destructive-interference origin of transmission antiresonances

FIG. 19. Quasi-1D model of lattice system with two-monolayer
atomic defect.

of waves of different nature, such as phonons, photons, and
electrons, in two-path nanostructures and metamaterials is
emphasized. The full system of nonlinear algebraic equa-
tions for the amplitudes of the transmission through and
reflection at nonlinear two-path atomic defects with an ac-
count for the generation of second and third harmonics is
derived in the proposed nonlinear lattice-dynamics approach.
The system of nonlinear algebraic equations is further solved
numerically. We show that the quartic interatomic nonlinearity
in the atomic defect shifts the antiresonance frequency in the
direction, determined by the sign of the nonlinear coefficient.
The quartic nonlinearity also enhances in general the trans-
mission of high-frequency phonons due to third harmonic
generation and propagation. The effects of the quartic nonlin-
earity on phonon transmission and propagation are described
for the two-path atomic defects with different topology. We
also model the transmission through the nonlinear two-path
atomic defects by launching the phonon wave packet, for
which the proper amplitude normalization is proposed and
implemented. We show that the cubic interatomic nonlinearity
in the atomic defect red shifts in general the antiresonance fre-
quency independently of the sign of the nonlinear coefficient,
and the equilibrium interatomic distances (bond lengths) in

FIG. 20. Transmission spectrum through the two-monolayer
atomic defect, shown in Fig. 19, with m0 = 0.5m, md = 1.3m, k0 =
kd = 0.5knorm, for different amplitudes of the incident plane wave. In
the legend the lines are indicated from left to right.
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the atomic defect are changed by the incident phonon due to
cubic interatomic nonlinearity.

In the systems with the cubic nonlinearity, the new narrow
transmission resonance on the background of a broad antires-
onance can appear, which we relate to the opening of the
additional transmission channel for phonon second harmonic
through the embedded nonlinear atomic defects. Conditions
of the existence of the new nonlinear transmission resonance
are determined and demonstrated for different embedded two-
path nonlinear atomic systems. A two-dimensional array of
embedded three-path atomic defects with an additional weak
transmission channel, in which a linear analog of the nonlinear
narrow transmission resonance on the background of a broad
antiresonance is realized, is also proposed and modeled. The
linear analog helps to understand the origin of the new non-
linear transmission resonance.

The presented results contribute to the better understanding
and detailed modeling of the interplay between the interfer-

ence and nonlinearity in phonon propagation through and
scattering in 2D arrays of two-path anharmonic atomic defects
with different topology.
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APPENDIX A: ANALYTICAL TECHNIQUE OF TRANSMISSION COEFFICIENT CALCULATION

We have six equations of motion for u−2, . . . , u2, ud displacements, which follow from the Lagrangian (12). Substituting
the expressions (13)–(14) and (18)–(21) into these equations and equating the coefficients in front of e0 = 1, e−iωt , e−2iωt , and
e−3iωt , we get 20 algebraic equations for 20 complex amplitudes. For example, the equation of motion for the defect atom is the
following:

md üd − kd (u1 − ud − �1) − K3(u1 − ud − �1)2 − K4(u1 − ud − �1)3

+ kd (ud − u−1 − �2) + K3(ud − u−1 − �2)2 + K4(ud − u−1 − �2)3 = 0. (A1)

Since all the coefficients A0, D1, etc., are normalized, we also introduce the normalized bond length changes δi = �i/A.
Substituting the expression (21) for ud , we get

md (−ω2D1e−iωt − 4ω2D2e−2iωt − 9ω2D3e−3iωt ) + kd (δ1 − δ2) + kd (2D1 − A−1 − t1)e−iωt

+ kd (2D2 − r2,−1 − t2,1)e−2iωt + kd (2D3 − r3,−1 − t3,1)e−3iωt

− K3A[δ1 + (D1 − t1)e−iωt + (D2 − t2,1)e−2iωt + (D3 − t3,1)e−3iωt + c.c.]2

× K3A[−δ2 + (D1 − A−1)e−iωt + (D2 − r2,−1)e−2iωt + (D3 − r3,−1)e−3iωt + c.c.]2

× K4A2[δ1 + (D1 − t1)e−iωt + (D2 − t2,1)e−2iωt + (D3 − t3,1)e−3iωt + c.c.]3

× K4A2[−δ2 + (D1 − A−1)e−iωt + (D2 − r2,−1)e−2iωt + (D3 − r3,−1)e−3iωt + )]3 = 0. (A2)

This equation yields four algebraic equations (the coefficients in front of e0 = 1, e−iωt , e−2iωt , and e−3iωt ):

kd (δ1 − δ2) + K3A
(
δ2

2 − δ2
1 − 2|D1 − t1|2 + 2|D1 − A−1|2

) + K4A2
(
δ3

1 − δ3
2

) = 0, (A3)

md (−D1ω
2) + kd (2D1 − A−1 − t1) − K3A[2δ1(D1 − t1) + 2(D2 − t2,1)(D1

∗ − t1
∗)]

+ K3A[−2δ2(D1 − A−1) + 2(D2 − r2,−1)(D1
∗ − A−1

∗)] + K4A2[3(D1 − A−1)2(D1
∗ − A−1

∗) + 3(D1
∗ − A−1

∗)2(D3 − r3,−1)

+ 3δ2
2(D1 − A−1) − 6δ2(D2 − r2,−1)(D1

∗ − A−1
∗)] + K4A2[3(D1 − t1)2(D1

∗ − t1
∗) + 3(D1

∗ − t1
∗)2(D3 − t3,1)

+ 3δ1
2(D1 − t1) + 6δ1(D2 − t2,1)(D1

∗ − t1
∗)] = 0, (A4)

and the corresponding equation for e−2iωt and e−3iωt .
It is desirable to simplify the obtained algebraic system. In the brackets with the coefficient K4A2, the first term is of the 0-th

order, and the second one is of the 1-st order. So we neglect the terms 3(D1
∗ − A−1

∗)2(D3 − r3,−1) and 3(D1
∗ − t1∗)2(D3 − t3,1)

in Eq. (A4). Also we suppose that δ1 and δ2 are of the same order of smallness, so we neglect the terms that are smaller than
other terms. The same simplification is made in other equations. In result, we get the following system:

md (−D1ω
2) + kd (2D1 − A−1 − t1) − K3A[2δ1(D1 − t1) + 2(D2 − t2,1)(D1

∗ − t1
∗)] + K3A[−2δ2(D1 − A−1)

+ 2(D2 − r2,−1)(D1
∗ − A−1

∗)] + K4A2[3(D1 − A−1)2(D1
∗ − A−1

∗) + 3(D1 − t1)2(D1
∗ − t1

∗)] = 0, (A5)
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md (−4ω2D2) + kd (2D2 − r2,−1 − t2,1) + K3A[−(D1 − t1)2 + (D1 − A−1)2] = 0, (A6)

md (−9ω2D3) + kd (2D3 − r3,−1 − t3,1) + K3A[−2(D1 − t1)(D2 − t2,1) + 2(D1 − A−1)(D2 − r2,−1)]

+ K4A2[(D1 − A−1)3 + (D1 − t1)3] = 0, (A7)

m(−t1ω
2) + k0(t1 − A0) + knorm(t1 − te2ika) + kd (t1 − D1) + K3[−2δ1(t1 − D1) + 2(t2,1 − D2)(t1

∗ − D1
∗)]

+ K4A2[3(t1 − D1)2(t∗
1 − D∗

1 )] = 0, (A8)

m(−4t2,1ω
2) + k0(t2,1 − t2,0) + knorm(t2,1 − t2e2ik2a) + kd (t2,1 − D2) + K3A[(t1−D1)2] = 0, (A9)

m(−9t3,1ω
2) + k0(t3,1 − t3,0) + knorm(t3,1 − t3e2ik3a) + kd (t3,1 − D3)

+ K3A[2(t1 − D1)(t2,1 − D2)] + K4A2[(t1 − D1)3] = 0, (A10)

m(−A−1ω
2) + k0(A−1 − A0) + knorm(A−1 − e−2ika − re2ika) + kd (A−1 − D1) − K3A(2δ2(A−1 − D1)

+ 2(r2,−1−D2)[A−1
∗ − D1

∗)] + K4A2[3(A−1 − D1)2(A∗
−1 − D∗

1 )] = 0, (A11)

m(−4ω2r2,−1) + k0(r2,−1 − t2,0) + knorm(r2,−1 − r2e2ik2a) + kd (r2,−1 − D2) + K3A[(A−1−D1)2] = 0, (A12)

m(−9r3,−1ω
2) + k0(r3,−1 − t3,0) + knorm(r3,−1 − r3e2ik3a) + kd (r3,−1 − D3)

+ K3A[2(A−1 − D1)(r2,−1 − D2)] + K4A2[(A−1 − D1)3] = 0, (A13)

m0(−ω2)A0+k0(2A0 − A−1 − t1) = 0, (A14)

m0(−4ω2)t2,0+k0(2t2,0 − r2,−1 − t2,1) = 0, (A15)

m0(−9ω2)t3,0+k0(2t3,0 − t3,1 − r3,−1) = 0, (A16)

m(−ω2)te2ika + knorm(2te2ika − t1 − te3ika) = 0, (A17)

m(−4ω2)t2e2ik2a + knorm(2t2e2ik2a − t2,1 − t2e3ik2a) = 0, (A18)

m(−9ω2)t3e2ik3a + knorm(2t3e2ik3a − t3,1 − t3e3ik3a) = 0, (A19)

m(−ω2)(e−2ika + re2ika) + knorm(2e−2ika + 2re2ika − e−3ika − re3ika − A−1) = 0, (A20)

m(−4ω2)r2e2ik2a + k(2r2e2ik2a − r2,−1 − r2e3ik2a) = 0. (A21)

m(−9ω2)r3e2ik3a + k(2r3e2ik3a − r3,−1 − r3e3ik3a) = 0. (A22)

kd (δ1 − δ2)+K3A
(
δ2

2 − δ2
1 − 2|D1 − t1|2 + 2|D1 − A−1|2

) + K4A2(δ3
1 − δ3

2

) = 0, (A23)

−kdδ1 + K3A
(
δ2

1 + 2|t1 − D1|2
) − K4A2δ3

1 = 0, (A24)

kdδ2 − K3A
(
δ2

2 + 2|D1 − A−1|2
) + K4A2δ3

2 = 0. (A25)

We have 21 equations, Eqs. (A5)–(A25), but the last three equations yield zero in the l.h.s. in a sum, so we have effectively 20
independent complex algebraic equations for 20 independent complex variables.

For the system with the two-monolayer defect, shown in Fig. 19, the algebraic system of equations will be different but can
also be obtained from the Lagrangian (27) within the same approach.

APPENDIX B: EQUATIONS FOR THE SYSTEM WITH TWO NONLINEAR WAVE PATHS

If we consider the system with two nonlinear wave paths, described by the Lagrangian (26), we should take into account
that equilibrium bond lengths are changing in both nonlinear paths, that is, introduce the additional variables δ10, δ20, δ1d , δ2d .
We also take into account a linear bond C between the −1-st and 1-st atoms. In this case, we do not take into account the K4
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nonlinearity. The algebraic system in this case is the following:

md (−D1ω
2) + kd (2D1 − A−1 − t1) − K3d A[2δ1d (D1 − t1) + 2(D2 − t2,1)(D1

∗ − t1
∗)]

+ K3d A[−2δ2d (D1 − A−1) + 2(D2 − r2,−1)(D1
∗ − A−1

∗)], (B1)

md (−4ω2D2) + kd (2D2 − r2,−1 − t2,1) + K3d A[−(D1 − t1)2 + (D1 − A−1)2] = 0, (B2)

md (−9ω2D3) + kd (2D3 − r3,−1 − t3,1) + K3d A[−2(D1 − t1)(D2 − t2,1) + 2(D1 − A−1)(D2 − r2,−1)] = 0, (B3)

m(−t1ω
2) + k0(t1 − A0) + knorm(t1 − te2ika) + kd (t1 − D1) + C(t1 − A−1) + K3d A[−2δ1d (t1 − D1) + 2(t2,1 − D2)(t1

∗ − D1
∗)]

− K30A[−2δ10(t1 − A0) + 2(t2,1 − t2,0)(t∗
1 − A∗

0 )] = 0, (B4)

m(−4t2,1ω
2)+k0(t2,1 − t2,0) + knorm(t2,1 − t2e2ik2a) + kd (t2,1 − D2) + C(t2,1 − r2,−1) + K3d A(t1−D1)2 − K30A(t1 − A0)2 = 0,

(B5)

m(−9t3,1ω
2) + k0(t3,1 − t3,0) + knorm(t3,1 − t3e2ik3a) + kd (t3,1 − D3) + C(t3,1 − r3,−1) + K3d A[2(t1 − D1)(t2,1 − D2)]

− K30A[2(t1 − A0)(t2,1 − t2,0)] = 0, (B6)

m(−A−1ω
2) + k0(A−1 − A0) + knorm(A−1 − e−2ika − re2ika) + kd (A−1 − D1)

+ C(A−1 − t1) − K3d A[2δ2d (A−1 − D1) + 2(r2,−1−D2)(A−1
∗ − D1

∗)]

+ K30A[2δ20(A−1 − A0) + 2(r2,−1 − t2,0)(A−1
∗ − A0

∗)] = 0, (B7)

m(−4ω2r2,−1) + k0(r2,−1 − t2,0) + knorm(r2,−1 − r2e2ik2a) + kd (r2,−1 − D2)

+ C(r2,−1 − t2,1) + K3d A(A−1−D1)2 − K30A(A−1 − A0)2 = 0, (B8)

m(−9r3,−1ω
2) + k0(r3,−1 − t3,0) + knorm(r3,−1 − r3e2ik3a) + kd (r3,−1 − D3) + C(r3,−1 − t3,1)

+ K3d A[2(A−1 − D1)(r2,−1 − D2)] − K30A[2(A−1 − A0)(r2,−1 − t2,0)] = 0, (B9)

m0(−ω2)A0 + k0(2A0 − A−1 − t1) + K30A[2δ10(A0 − t1) + 2(t2,0 − t2,1)(A∗
0 − t∗

1 )]

− K30A[−2δ20(A0 − A−1) + 2(t2,0 − r2,−1)(A∗
0 − A∗

−1)] = 0, (B10)

m0(−4ω2)t2,0+k0(2t2,0 − r2,−1 − t2,1) + K30A[(A0 − t1)2 − (A0 − A−1)2] = 0, (B11)

m0(−9ω2)t3,0 + k0(2t3,0 − t3,1 − r3,−1) + K30A[2(A0 − t1)(t2,0 − t2,1) − 2(A0 − A−1)(t2,0 − r2,−1)] = 0, (B12)

m(−ω2)te2ika + knorm(2te2ika − t1 − te3ika) = 0, (B13)

m(−4ω2)t2e2ik2a + knorm(2t2e2ik2a − t2,1 − t2e3ik2a) = 0, (B14)

m(−9ω2)t3e2ik3a + knorm(2t3e2ik3a − t3,1 − t3e3ik3a) = 0, (B15)

m(−ω2)(e−2ika + re2ika) + knorm(2e−2ika + 2re2ika − e−3ika − re3ika − A−1) = 0, (B16)

m(−4ω2)r2e2ik2a + k(2r2e2ik2a − r2,−1 − r2e3ik2a) = 0, (B17)

m(−9ω2)r3e2ik3a + k(2r3e2ik3a − r3,−1 − r3e3ik3a) = 0, (B18)

kd (δ1d − δ2d ) + K3d A
(
δ2

2d − δ2
1d + 2|D1 − t1|2 − 2|D1 − A−1|2

) = 0, (B19)

−kdδ1d − k0δ10 + K3d A
(
δ2

1d + 2|A−1 − D1|2
) − K30A

(
δ2

10 + 2|A0 − A−1|2
) = 0, (B20)

kdδ2d + k0δ20 − K3d A
(
δ2

2d + 2|t1 − D1|2
) + K30A

(
δ2

20 + 2|A0 − t1|2
) = 0, (B21)

k0(δ10 − δ20) + K30A
(
δ2

10 − δ2
20 − 2|A0 − t1|2 + 2|A0 − A−1|2

) = 0. (B22)

We have 22 equations, Eqs. (B1)–(B22), on 22 variables. However, the last four equations yield zero in the l.h.s. in a sum,
so we have effectively only 21 independent equations. But there is an additional condition on the equivalence of the total bond
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length change between the −1-st and +1-st atoms in the two wave paths in the atomic defect shown in Fig. 17:

δ10 + δ20 = δ1d + δ2d . (B23)

Finally we have 22 independent equations on 22 variables.

APPENDIX C: DERIVATION OF LATTICE ENERGY TRANSMISSION AND REFLECTION COEFFICIENTS WITH AN
ACCOUNT FOR HIGHER HARMONICS GENERATION AND PROPAGATION

The average in time flux of lattice wave energy in 1D discrete chain, which is given by the average scalar product of the force
acting on and velocity of a particle, can be written as (see, e.g., [56])

JE (ω) = −1

2
Re

[
γ (un+1 − un)

u̇∗
n+1 + u̇∗

n

2

]
, (C1)

where un is a particle displacement from the equilibrium position in site n, and γ is a linear nearest-neighbor force constant.
In the harmonic approximation, the displacements in the incident, i, and transmitted, t , plane waves are assumed to have the
following form:

un(i,t ) = (1, t ) exp(−iωt + ikan), (C2)

where k is a wave number, a is a lattice period, and 1 and t are normalized amplitudes of the incident and transmitted waves.
The flux of lattice energy, Eq. (C1), for the plane waves is reduced to

JE (ω) = − 1
4 Re[γ (un+1u̇∗

n − unu̇∗
n+1)], (C3)

and we obtain the following expression for the energy flux in the incident and transmitted plane waves:

JE (i,t )(ω) = 1
4 (1, |t |2)ω2√mRe[

√
4γ − mω2], (C4)

where m is a particle mass in the monatomic chain, in which the phonon dispersion has the form ω = 2
√

γ /m sin(ka/2).
Taking into account that the second and third harmonics of the incident wave have the frequencies 2ω and 3ω, the lattice

energy transmission coefficient TE , which is given by the ratio of the transmitted and incident lattice energies, has the following
form that is used in Eq. (23a):

T = |t |2 + 4|t2|2Re

⎛
⎝

√
ω2

max − 4ω2

ω2
max − ω2

⎞
⎠ + 9|t3|2Re

⎛
⎝

√
ω2

max − 9ω2

ω2
max − ω2

⎞
⎠, (C5)

where t , t2, and t3 are the normalized transmission amplitudes of the main, second, and third phonon harmonics, respectively, in
the frequency domain 0 � ω � ωmax, ωmax = 2

√
γ /m.

The lattice energy reflection coefficient RE with an account for the propagation of higher harmonics can be derived in a similar
way and has the following form that is used in Eq. (23b):

R = |r|2 + 4|r2|2Re

⎛
⎝

√
ω2

max − 4ω2

ω2
max − ω2

⎞
⎠ + 9|r3|2Re

⎛
⎝

√
ω2

max − 9ω2

ω2
max − ω2

⎞
⎠, (C6)

where r, r2, and r3 are the normalized reflections amplitudes of the main, second, and third phonon harmonics, respectively, in
the frequency domain 0 � ω � ωmax, ωmax = 2

√
γ /m.

In a lossless system, the sum of the energy transmission and reflection coefficients should be equal to a unit, T + R = 1.
Verification of the fulfillment of this condition is used in the main text for an accuracy check of the numerical simulations; see
Fig. 4(b).
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