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Influence of the internal degrees of freedom of coronene molecules
on the nonlinear dynamics of a columnar chain
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The nonlinear dynamics of a one-dimensional molecular crystal in the form of a chain of planar coronene
molecules is analyzed. Using molecular dynamics, it is shown that a chain of coronene molecules supports
acoustic solitons, rotobreathers, and discrete breathers. An increase in the size of planar molecules in a chain
leads to an increase in the number of internal degrees of freedom. This results in an increase in the rate of
emission of phonons from spatially localized nonlinear excitations and a decrease in their lifetime. Presented
results contribute to the understanding of the effect of the rotational and internal vibrational modes of molecules
on the nonlinear dynamics of molecular crystals.
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I. INTRODUCTION

Molecular crystals can have a quasi-one-dimensional mor-
phology, for example, fullerene nanowhiskers consisting of
fullerene molecules [1], a columnar structure of carbon nan-
otori [2,3], B42 molecules [4], n-coronene molecules [5–8],
columnar discotic liquid crystals [9–11], and many others.
Finite-size particles of molecular crystals have rotational de-
grees of freedom that can give rise to such counterintuitive
effects as negative thermal expansion [12–16] and auxeticity
(negative Poisson’s ratio) [17–22].

Quasi-one-dimensional crystals can support various spa-
tially localized nonlinear excitations, their study is important
and is often considered in connection with the transfer of
energy, mass, and information. If the molecules that make up
quasi-one-dimensional crystals, in addition to translational,
also have rotational and internal vibrational degrees of free-
dom, then the variety of localized excitations supported by
them increases.

Let us note the most intensively studied spatially localized
excitations in nonlinear lattices and crystals.

Compressive acoustic solitons are typically excited in
solids or metamaterials under shock loading [23–26]. Acous-
tic solitons propagating at a speed exceeding the speed of
longitudinal sound were described in carbon nanotube bun-
dles [27], black phosphorene [28], graphene and boron nitride
[29]. It is shown that the attenuation of compressive waves in
black phosphorene occurs faster than in graphene and boron
nitride due to the greater number of degrees of freedom in the
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translational cell of phosphorene, which provides more chan-
nels for energy emission [28].

Rotobreathers are dynamical modes with a single rotating
particle while neighboring particles oscillate with the ampli-
tude decreasing exponentially with distance from the rotating
particle [30–33]. The works [34,35] are devoted to the analysis
of the stability of rotobreathers. The effect of rotobreathers
on heat capacity [30], thermal conductivity [36,37], and slow
relaxation [38] was analyzed within the framework of one-
dimensional rotator lattices. Rotobreathers were considered in
a damped driven rotator lattice [39] and in the lattices with
geometrical nonlinearities [40,41]. The method of molecu-
lar dynamics [42] was used to describe the precession of a
rotating fullerene inside a fullerite crystal. The work [43]
shows the effect of C60 fullerite crystal deformation on the
rotational dynamics and shift of the center of mass of a single
C60 molecule. In the works [44–46] rotobreathers in the form
of carbon nanotubes rotating around their axis in a carbon
nanotube bundle were studied. The dynamics of a fullerene
molecule rotating in a fullerite crystal was studied in Ref. [47].

Discrete breathers or intrinsic localized modes are the
large-amplitude, spatially localized vibrational modes in
defect-free nonlinear lattices [48–50]. Discrete breathers are
ubiquitous in nonlinear lattices and are investigated in models
described by the discrete nonlinear Schrödinger equation [51],
in Josephson superconducting junctions [52,53], in granular
crystals [54], in a mass-spring chain [55], and in magnetic
systems [56–58]. Interatomic interactions are nonlinear, so
different crystals support discrete breathers [59–62]. In real
discrete systems, e.g., in crystals, one deals with quasi-
breathers that are not exactly periodic single-frequency modes
[63]. A discrete breather in the form of a single fullerene
molecule oscillating with a large amplitude in a fullerite crys-
tal [47] and a single oscillating carbon nanotube in a nanotube
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bundle [46] were studied by the method of molecular dy-
namics. Most popular approaches to the study of nonlinear
excitations in molecular crystals are the use of molecular
dynamics [2,3,64] and coarse-grained models [5,7,65,66].

The aim of this study is to analyze the effect of in-
ternal vibrational degrees of freedom on the robustness of
various spatially localized nonlinear excitations in a quasi-
one-dimensional chain of n-coronene molecules with n = 2,
3, and 4 [5–7]. As the index n increases, the size of the
molecules and, consequently, the number of internal degrees
of freedom also increase. We analyze the influence of the
internal degrees of freedom of particles on the robustness of
spatially localized nonlinear excitations, such as compressive
solitary waves, rotobreathers, and discrete breathers, within a
single molecular chain model.

In Sec. II, the structure of the n-coronene and the molec-
ular dynamics model used in this study are described. The
spectrum of small-amplitude vibrations of the n-coronene
is analyzed in Sec. III. Sections IV–VI present the results
of studying spatially localized nonlinear excitations in the
chains of n-coronene molecules, namely, acoustic solitons,
rotobreathers, and discrete breathers, respectively. Our con-
clusions are formulated in Sec. VII.

II. MODEL

The n-coronene molecule C6n2 H6n can be considered as a
graphene flake (see Fig. 1). Therefore, to describe the dynam-
ics of a coronene molecular crystal, one can use the force field
previously used for graphene nanoribbons.

Since the hydrogen atom is 12 times lighter than the
carbon atom, and the rigidity of the C-H and C-C bonds
is of the same order, the vibration frequency of the C-H
bond is approximately three times higher than that of the
C-C bond. Therefore, vibrations of C-H bonds do not res-
onate with the phonon frequencies of the chain. On the other
hand, taking into account such high-frequency oscillations
in numerical simulations will require a significant reduction
in the numerical integration step and, therefore, will lead to
a significant increase in computation time. To simplify the
modeling, valence-bonded CH groups of atoms at the edges
of disk molecules will be considered as a single carbon atom
of mass 13mp, while all other inner carbon atoms have the
mass 12mp, where mp = 1.6601 × 10−27 kg is the proton
mass.

The Hamiltonian of one molecule can be written as

H0 =
N0∑
i=1

[
1
2 Mi(u̇i, u̇i ) + Pi

]
, (1)

where i is the number of an atom, N0 = 6n2 is the number of
atoms in the molecule, Mi is the mass of the ith atom (there
are 6n2–6n inner carbon atoms of mass 12mp and 6n edge
carbon atoms of mass 13mp), ui = (xi(t ), yi(t ), zi(t )) is the
three-dimensional vector describing the position of ith atom
at the time t . The term Pi describes the interaction of the
carbon atom with the index i with the neighboring atoms.
We emphasize that the inner and edge atoms differ only in
their masses, and their interaction with each other is described
by the same potential. The potential depends on variations in

FIG. 1. Vertical chain of ten n-coronene molecules C6n2 H6n:
(a) n = 2 (coronene C24H12); (b) n = 3 (circumcoronene C54H18);
(c) n = 4 (dicircumcoronene C96H24). Carbon atoms (gray) form
planar disk molecules, and hydrogen atoms are located at the edges
of the disks (shown in light gray). The vertical axis of the chain
is parallel to the z axis, the planar molecules are parallel to the xy
plane. The positions of neighboring molecules in the chain differ by
the shift along the z axis and the relative rotation of the molecules in
the xy plane (shift �z and twist �φ steps of the chain).

bond length, bond angles, and dihedral angles between the
planes formed by three neighboring carbon atoms and it can
be written in the form

P =
∑
�1

U1 +
∑
�2

U2 +
∑
�3

U3 +
∑
�4

U4 +
∑
�5

U5, (2)

where � j , with j = 1, 2, 3, 4, 5, are the sets of config-
urations describing different types of interactions between
neighbors. Members of these sets are shown in Fig. 2, and
all their rotated and mirrored versions should be taken into
account.

Potential U1(un, um) describes the energy due to change in
the length of a valence bond between atoms with the indexes
n and m, as shown in Fig. 2(a). The potential U2(un, um, uk )
describes the deformation energy of the angle between the
valence bonds unum, and umuk , see Fig. 2(b). Potentials
Uj (un, um, uk, ul ), j = 3, 4, and 5, describe the deformation
energy associated with a change in the angle between the
planes unumuk and ulukum, as shown in Figs. 2(c)–2(e), re-
spectively.

We use the potentials employed in the modeling of the
dynamics of large polymer macromolecules [67,68] for the
valence bond coupling,

U1(u1, u2)=ε1{exp[−α0(ρ − ρ0)] − 1}2, ρ =|u2 − u1|, (3)
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FIG. 2. Different types of interactions between neighboring
atoms belonging to the sets � j , j = 1, 2, 3, 4, 5. (a) Valence in-
teractions j = 1, (b) valence angles j = 2, (c)–(e) different dihedral
angles j = 3, 4, and 5, respectively.
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where ε1 is the energy of the valence bond and ρ0 is the
equilibrium length of the bond; the potential of the valence
angle is

U2(u1, u2, u3) = ε2(cos ϕ − cos ϕ0)2,

cos ϕ = (u3 − u2, u1 − u2)/(|u3 − u2| · |u2 − u1|),
(4)

where the equilibrium value of the angle is cos ϕ0 =
cos(2π/3) = −1/2; the potential of the dihedral angle is

Uj (u1, u2, u3, u4) = ε j (1 + z j cos φ), (5)

cos φ = (v1, v2)/(|v1| · |v2|),
v1 = (u2 − u1) × (u3 − u2),

v2 = (u3 − u2) × (u3 − u4),

where the sign z j = 1 for j = 3, 4 (the equilibrium value
of the torsional angle φ is φ0 = π ) and z j = −1 for j = 5
(φ0 = 0).

The values of the potential parameters are ε1 = 4.9632 eV,
ρ0 = 1.418 Å, α0 = 1.7889 Å−1, ε2 = 1.3143 eV, and ε3 =
0.499 eV. They are found from the frequency spectrum of
small-amplitude oscillations of a graphene sheet [69]. Ac-
cording to previous study [70], the energy ε4 is close to the
energy ε3, whereas ε5 � ε4 (|ε5/ε4| < 1/20). Therefore, we
set ε4 = ε3 = 0.499 eV and assume ε5 = 0, the latter means
that we omit the last term in the sum Eq. (2). More detailed
discussion and motivation of our choice of the interaction
potentials Eqs. (3)–(5) can be found in earlier publication [71].

The interaction of two coronene molecules is described by
the potential

W (X1, X2) =
N0∑

i=1

N0∑
j=1

V (ri j ), (6)

where the 3N0-dimensional vector Xk = {uk,i}N0
i=1 (k = 1, 2)

defines the coordinates of atoms of the kth molecules (vec-
tor uk,i specifies the coordinates of the ith atom of the kth
molecule), ri j = |u2, j − u1,i| is the distance between atoms.
Nonvalence interactions of the carbon atoms are described by
the (6,12) Lennard-Jones potential

V (r) = εc{[(rc/r)6 − 1]2 − 1}, (7)

where εc = 0.002757 eV, rc = 3.807 Å [72].
Hamiltonian of a chain of N molecules (see Fig. 1) can be

presented in the form

H =
N∑

n=1

[
1

2
(MẊn, Ẋn) + P(Xn)

]

+
N−1∑
n=1

W (Xn, Xn+1) +
N−2∑
n=1

W (Xn, Xn+2), (8)

where the first sum includes the kinetic and potential energies
of nth molecule. The second and the third sums describe
the interaction between nearest and next-nearest molecules,
respectively. Here the vector Xn = {un,i}N0

i=1 specifies the co-
ordinates of the atoms of nth molecule, M is the diagonal
matrix of atom masses, P(Xn) is the energy of nth molecule,
W (Xn, Xk ) is the interaction energy of nth and kth molecules.

TABLE I. Values of shift �z and twist �φ parameters, maxi-
mum frequencies of out-of-plane ωop and in-plane ωip vibrations,
velocities of torsion vt , and longitudinal vl sound for a spiral stack of
n-coronene C6n2 H6n molecules.

n �z (Å) �φ (◦) ωop (cm−1) ωip (cm−1) vt (m/s) vl (m/s)

2 3.445 30.0 841.6 1549.3 217 3170
3 3.411 18.6 883.7 1580.4 195 3449
4 3.396 12.6 894.0 1591.3 250 3591

III. DISPERSION CURVES
OF SMALL-AMPLITUDE OSCILLATIONS

Let us consider the structure of a symmetric (spiral) stack
of planar n-coronene molecules with the symmetry axis par-
allel to the z axis, see Fig. 1. In the ground state of such a
chain, the atomic coordinates of each successive molecule are
obtained from the coordinates of the previous molecule by
translation along the z axis by a shift �z and rotation around
the same axis by an angle �φ. These are the shift and twist
parameters:

xn+1, j = xn, j cos(�φ) + yn, j sin(�φ),

yn+1, j = −xn, j sin(�φ) + yn, j cos(�φ),

zn+1, j = zn, j + �z,

J = 1, . . . , N0, n = 0,±1,±2, . . . . (9)

Thus, the energy of the ground state is a function of 3N0

coordinates of N0 atoms of the first molecule X1 = {u1, j}N0
j=1,

and the two geometry parameters, �z and �φ, where
u1, j = (x1, j, y1, j, z1, j ) is the vector position of jth atom of the
first molecule.

Finding the ground state reduces to the following mini-
mization problem:

E = P(X1) + W (X1, X2) + W (X1, X3)

→ min : {u1, j}N0
j=1,�φ,�z. (10)

The problem (10) was solved numerically by the conjugate
gradient method. The values of the shift �z and the twist �φ

steps of the chain of n-coronene molecules are presented in
Table I.

A vertical chain of molecules is a multistable system. Nu-
merical analysis shows that for n-coronene molecules with
n � 4, the spiral structure defined by Eq. (9) is the most
energy-favorable ground state.

For analysis of small-amplitude oscillations of spiral chain
it is convenient to use local cylindrical coordinates vn, j =
(vn, j,1, vn, j,2, vn, j,3), given by the following expressions:

xn, j = x0
n, j + vn, j,1 cos(φn, j ) + vn, j,2 sin(φn, j ),

yn, j = y0
n, j − vn, j,1 sin(φn, j ) + vn, j,2 cos(φn, j ),

zn, j = z0
n, j + vn, j,3, (11)

with u0
n, j = (x0

n, j, y0
n, j, z0

n, j ), (n = 0,±1,±2, . . .; j =
1, . . . , N0) being coordinates of the atoms in the helix
ground state, and φn, j being angular coordinate of the atom
(n, j). With these new coordinates the Hamiltonian of the
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molecular chain Eq. (8) has the following form:

H =
∑

n

[
1

2
(Mv̇n, v̇n) + P(vn, vn+1, vn+2)

]
, (12)

where vn = {(vn, j,1, vn, j,2, vn, j,3)}N0
j=1 is a 3N0-dimensional

vector, M is 3N0-dimensional diagonal mass matrix.
From the Hamiltonian Eq. (12) the following system of

equations of motion can be derived:

−Mv̈n = P1(vn, vn+1, vn+2) + P2(vn−1, vn, vn+1)

+P3(vn−2, vn−1, vn), (13)

where Pi(v1, v2, v3) = ∂P/∂vi, i = 1, 2, 3. Within the linear
approximation, the system Eq. (13) obtains the form

−Mv̈n = B1vn + B2vn+1 + B∗
2vn−1 + B3vn+2 + B∗

3vn−2,

(14)

where the matrix elements are given as

B1 = P11 + P22 + P33, B2 = P12 + P23, B3 = P13,

and the partial derivative matrix is given as

Pi j = ∂2P

∂vi∂v j
(0, 0, 0), i, j = 1, 2, 3.

The solution to the system of linear equations Eq. (14) can
be found in the standard form

vn = Aw exp[i(qn − ωt )], (15)

where A is the linear mode amplitude, w is the eigenvector, ω

is the phonon frequency with the dimensionless wave number
q ∈ [0, π ]. Substituting Eq. (15) into the system Eq. (14), we
arrive at the following 3N0-dimensional eigenvalue problem:

ω2Mw = C(q)w, (16)

where Hermitian matrix

C(q) = B1 + B2 exp(iq) + B∗
2 exp(−iq)

+B3 exp(2iq) + B∗
3 exp(−2iq).

Using the substitution w = M−1/2e, problem Eq. (16) can
be rewritten in the form

ω2e = M−1/2C(q)M−1/2e, (17)

where e is the normalized eigenvector, (e, e) = 1.
Thus, to obtain the dispersion curves ω j (q), it is necessary

to find the eigenvalues and eigenvectors of the Hermitian
matrix Eq. (17) of size 3N0 × 3N0 for each fixed wave num-
ber 0 � q � π . As a result, we obtain 3N0 branches of the
dispersion relation {ω j (q)}3N0

j=1.
The planar structure of molecules in a spiral chain leads to

the division of its small-amplitude vibrations into two classes:
out-of-plane vibrations, when atoms vibrate orthogonally to
the molecular plane (all atoms move along the z axis) and
in-plane vibrations (all atoms move in the xy plane). Two-
thirds of the branches correspond to in-plane vibrations, while
only one-third corresponds to out-of-plane vibrations. The
dispersion curves are shown in Figs. 3–5.

For the spiral chain of coronene molecules C24H12, the
dispersion curves of out-of-plane vibrations, see Fig. 3(a) and
Fig. 5(a), lie in the frequency range 0 � ω � ωop, with the

FIG. 3. Structure of 72 dispersion curves of a spiral chain of
coronene molecules C24H12 for (a) out-of-plane and (b) in-plane
vibrations. Black dots denote modes leading to the formation of
discrete breathers, localized nonlinear oscillations of one molecule
in the chain.

maximum frequency ωop = 842 cm−1. One dispersion curve
ωl (q) starts from the origin (q = 0, ω = 0), it describes the
displacement of planar molecules along the chain axis without
internal deformations (longitudinal acoustic vibrations of the
chain). The tangent of this dispersion curve at the origin gives

FIG. 4. Structure of 162 dispersion curves for a spiral chain of
circumcoronene molecules C54H18 for (a) out-of-plane and (b) in-
plane vibrations. Black dots indicate modes that lead to the formation
of discrete breathers, localized nonlinear vibrations of one molecule
in the chain.
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FIG. 5. Dispersion curves in the low-frequency region for a spiral
chain of coronene molecules C24H12 for (a) out-of-plane and (b) in-
plane vibrations (three gray bands show the frequency spectrum of
the rotobreathers). The dashed straight lines define the tangents to
the dispersion curves emerging from the zero point, corresponding
to the velocities of the longitudinal vl and torsion vt sound.

the velocity of longitudinal sound waves

vl = �z lim
q→0

ωl (q)

q
.

The dispersion curves of in-plane oscillations, see Fig. 3(b)
and Fig. 5(b), lie in the frequency range 0 � ω � ωip with the
maximum frequency ωip = 1549 cm−1. One dispersion curve
ωt (q) starts from the origin and describes torsional acoustic
oscillations (rotation of planar molecules around the chain
axis). The speed of long-wave torsional vibrations (speed of
torsional sound) is

vt = �z lim
q→0

ωt (q)

q
.

In addition, one dispersion curve approaches the q axis tan-
gentially. This curve describes the optical bending vibrations
of the chain. The frequency spectrum of in-plane oscillations
is characterized by the presence of a gap in the low-frequency
region. For a chain of coronene molecules, the gap is from
10–203 cm−1 [see Fig. 5(b)], and for a chain of circum-
coronene molecules, from 9–141 cm−1 [see Fig. 4(b)].

The values of the maximum frequencies ωop, ωip and the
speeds of sound vl , vt are given in Table I. As can be seen
from the table, the speed of longitudinal sound is 15 times
greater than the speed of torsional sound.

IV. ACOUSTIC SOLITONS

The interaction of neighboring planar molecules is deter-
mined by the sum of interactions of all pairs of their atoms
Eq. (6), which are described by the Lennard-Jones potential
Eq. (7). The Lennard-Jones potential at small interatomic

distances is characterized by the hard-type anharmonicity.
Therefore, one can expect the possibility of propagation of
compressive longitudinal acoustic solitons moving at a speed
exceeding the velocity of longitudinal sound vl .

To test the existence of supersonic acoustic solitons, we
simulate the propagation of initial local longitudinal compres-
sion along a chain of molecules. Consider a spiral chain of
N = 500 molecules. Let us take the ground state of the chain
and at t = 0 shift the first two molecules along the z axis by az.
As a result, local longitudinal compression occurs at the end
of the chain. Having fixed the position of these two molecules
in the shifted state, let us consider the propagation of local
compression along the chain.

To simulate the dynamics of a chain with fixed ends, we
numerically integrate the system of equations of motion cor-
responding to the Hamiltonian of the chain Eq. (8)

MẌn = − ∂H

∂Xn
, n = 3, 4, . . . , N − 2, (18)

Ẋn ≡ 0, n = 1, 2, N − 1, N,

with the initial conditions

Xn(0) = X0
n + azez, n = 1, 2

Xn(0) = X0
n, n = 3, 4, . . . , N,

Ẋn(0) = 0, n = 1, 2, . . . ., N, (19)

where the 3N0-dimensional vector Xn = {(xn, j, yn, j, zn, j )}N0
j=1

defines the coordinates of the atoms of nth molecule, vectors
{X0

n}N
n=1 defines ground state of molecular chain, ez is a unit

vector directed along the z axis, az > 0 is the amplitude of the
initial compression of the chain end.

Numerical integration of the system of equations of
motion (18) showed that the initial longitudinal compres-
sion of the chain edge with an amplitude az � 0.6 Å for
coronene molecules always leads to the formation of a su-
personic acoustic soliton and a subsonic wave packet of
long-wavelength longitudinal acoustic phonons, see Figs. 6(a)
and 7(a). A local area of compression is formed in the chain,
which moves along it with a constant supersonic speed v > vl ,
keeping its shape. When moving, the soliton breaks away
from the wave packet of phonons. This allows us to find its
energy E and the longitudinal compression of the chain Az:

E =
∑

n

En, Az =
∑

n

ρn, ρn = 1

N0

N0∑
j=1

(zn+1, j − zn, j − �z ),

where the summation is carried out only over the soliton
localization region.

Dependencies of the soliton energy E and chain compres-
sion Az produced by the soliton on its dimensionless velocity
s = v/vl are shown in Fig. 8. As can be seen from the fig-
ure, with increasing velocity, the soliton energy increases as
(s − 1)1.7, and the compression as (s − 1)1/2.

In chains of circumcoronene and dicircumcoronene
molecules, local longitudinal compression of the chain end
also leads to the formation of a supersonic localized compres-
sion region. But the motion of this region is accompanied by
the emission of phonons. As a result, the energy and velocity
of the soliton decrease monotonically, see Figs. 6(b), 6(c)
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FIG. 6. Formation of a supersonic acoustic soliton in a spiral
chain of (a) coronene, (b) circumcoronene, and (c) dicircumcoronene
molecules produced by longitudinal local compression at the end of
the chain with amplitude az = 0.4 Å. The distribution of energy in
the chain En(t ) at different times is shown. The number of molecules
in the chain is N = 500. The dotted lines show the trajectory of
motion with the velocity of longitudinal sound vl to demonstrate the
supersonic motion of solitons.

and 7(b), 7(c). The larger the molecule, the more noticeable
the emission of phonons. Therefore, it can be concluded that
a chain of n-coronene molecules admits the existence of an
exact acoustic soliton of longitudinal compression only for
n = 2, while for n > 2 there is only a solitonlike excitation
with a finite lifetime.

V. ROTOBREATHERS

The structure of planar molecules allows their rotation in
chains around the z axis. The n-coronene molecule has the
shape of a regular hexagon, a rotation of one molecule by
60◦ will transfer the chain to an equivalent state. If we fix
the positions of all molecules and rotate only one molecule

FIG. 7. Distribution of longitudinal compression during the mo-
tion of an acoustic soliton along a chain of N = 500 molecules of
(a) coronene, (b) circumcoronene, (c) dicircumcoronene. The distri-
bution of relative longitudinal displacements ρn of chain molecules
at time t = 40 ps is shown for the amplitude of the initial local
compression of the chain end az = 0.4 Å. The vertical dotted lines
show the position of the front of the acoustic phonon wave packet
propagating with the velocity vl .

as a rigid body, then the rotation potential E (ϕ) (dependence
of the chain energy on the angle of rotation of one molecule
ϕ) can be obtained. This potential is a periodic function with
period π/3, see Fig. 9. In the approximation of absolutely
rigid valence bonds, free rotation requires overcoming energy
barriers of height 0.26, 0.34, and 0.66 eV for the chain of
coronene, circumcoronene, and dicircumcoronene molecules,
respectively. These barriers are overcome at molecular rota-
tion frequencies above ω0 = 2.19, 1.11, and 0.87 cm−1. Thus,
the topology of the chain allows the existence of rotobreathers
(localized rotations of molecules).

In the approximation of absolutely rigid molecules, their
chains allow the existence of a rotobreather with an in-
finite frequency spectrum lying above frequency ω0. The
n-coronene molecule is not an absolutely rigid body, it has
3N0 − 6 vibrational modes. The presence of internal vibra-
tions in a rotator (in our case, a planar n-coronene molecule)
leads to the appearance of band gaps (lacunae) in the fre-
quency spectrum of the rotobreather [45]. At frequencies
within these band gaps, the rotation leads to resonance with
the natural oscillations of the rotators and the emission
of phonons. Therefore, the presence of internal vibrational
modes in molecules should lead to a significant narrowing of
the frequency spectrum of the rotobreather.
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FIG. 8. Dependence of (a) energy E of an acoustic soliton and
(b) longitudinal compression of the chain Az produced by an acoustic
soliton propagating in a chain of coronene molecules on its dimen-
sionless velocity s = v/vl . Markers show numerical values, solid
curves show approximations obtained by the least squares method
E (s) = 3.36(s − 1)1.7 eV and Az(s) = 0.93(s − 1)0,5 Å.

To find the rotobreather, we simulate the rotation of one
molecule at different initial frequencies in a chain of N = 100
molecules. A viscous friction at the ends of the chain is intro-
duced, which ensures the absorption of phonons emitted by
the rotator. To do this, we numerically integrate the system of

FIG. 9. Change in the energy of the chain E as the function of
the rotation angle ϕ of one molecule rotating around the z axis in the
chain of coronene, circumcoronene, and dicircumcoronene (curves
1, 2, and 3, respectively). Only one molecule rotates quasistatically
while the rest of the molecules remain in their equilibrium positions.
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FIG. 10. Change in time of the energy of one rotator in the
chain of coronene molecules for different values of the initial ro-
tation frequency of central molecule, varying in the range from
ω = 3–22 cm−1 with a step of 0.25 cm−1.

equations of motion

MẌn = − ∂H

∂Xn
, n = Nt + 1, . . . , N − Nt ,

MẌn = − ∂H

∂Xn
− γ MẊn, n � Nt , n > N − Nt (20)

with the friction coefficient γ = 1/tr , tr = 10 ps, Nt = 30.
Let us take the ground state of the chain and excite the

rotation of the central molecule nc = N/2 with the frequency
ω, i.e., take the initial conditions in the form

{
Xn(0) = X0

n

}N

n=1, Ẋn(0) = 0, n �= nc{
ẋnc, j = −ωy0

nc, j, ẏnc, j = ωx0
nc, j, żnc, j = 0

}N0

j=1. (21)

Thus, we set the rotation of one rotator in the chain with the
initial energy

E = 1

2
ω2

N0∑
j=1

Mj
(
x0

nc, j
2 + y0

nc, j
2)

.

Friction at the ends of the chain will ensure the absorption
of phonons emitted by the rotator. Therefore, depending on
the value of the frequency ω, the rotator either stops, having
lost all the energy for phonon emission, or reaches a station-
ary rotation mode with a constant frequency without phonon
emission (rotobreather mode). The change in the rotator en-
ergy E for various initial values of the frequency ω in the
chain of coronene and circumcoronene molecules is shown
in Figs. 10 and 11, respectively.
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FIG. 11. Change in time of the energy of one rotator in the
chain of circumcoronene molecules for different values of the initial
rotation frequency of central molecule, varying in the range from
ω = 2–13.75 cm−1 with a step of 0.25 cm−1. The dashed line shows
the energy corresponding to the rotation frequency ω = 22.6 cm−1,
at which the weakest phonon emission occurs.

As can be seen from Fig. 10, for a chain of coronene
molecules, there are only three frequency ranges at which a
rotation at constant frequency of one molecule can occur with-
out emitting phonons: [3.96, 4.54], [8.28, 9.09], and [16.33,
16.71] cm−1. Thus, in the chain of coronene molecules, the
rotobreather has a frequency spectrum consisting of only three
narrow intervals, see also Fig. 5(b), where the frequency spec-
trum of the rotobreather is shown by gray bands. Rotation with
other frequencies leads to the emission of phonons.

Simulation of the dynamics of a rotator in a chain of
circumcoronene molecules showed that rotobreathers do not
exist in this chain. Here, at all values of the rotation frequency,
the rotator emits phonons and completely loses energy, see
Fig. 11. There is only one frequency ω = 22.6 cm−1 at which
the radiation becomes less intense, but does not completely
disappear. In a chain of dicircumcoronene molecules, the
rotation of the rotator at all frequencies leads to an even
stronger emission of phonons and no rotobreather is formed.
The absence of a rotobreather in the chains of circumcoronene
and dicircumcoronene molecules is explained by a denser fre-
quency spectrum of natural vibrations of molecules. Here, in
contrast to the coronene molecules, the rotation of the rotator
at all frequencies resonates with the natural vibrations of the
molecules.

VI. DISCRETE BREATHERS

An isolated n-coronene molecule consists of N0 = 6n2

atoms. It has 3N0 − 6 natural oscillations with nonzero
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FIG. 12. Dependence of the energy of vibrations of the central
molecule of a chain of coronene molecules on time at the initial
excitation of the j-th natural vibration: (curve 1) j = 17, ω j =
236.3; (curve 2) j = 21, ω j = 278.8; (curve 3) j = 23, ω j = 329.5;
(curve 4) j = 33, ω j = 435.2; (curve 5) j = 47, ω j = 839.2 cm−1.
The initial atomic velocity used to excite the vibrational mode in
the central molecule is A = 10 Å/ps.

frequencies, {ω j}3N0
j=7. The first six eigenmodes have a zero

frequency ω1 = . . . = ω6 = 0, they correspond to the motion
of a molecule as a rigid body (three translational and three
rotational degrees of freedom). Eigenmodes with nonzero
frequencies are of two types: N0 − 2 out-of-plane vibrations,
when atoms move orthogonally to the molecular plane, and
2N0 − 4 in-plane vibrations, when atoms move in the molec-
ular plane.

The coronene molecule has 22 out-of-plane vibrations with
frequencies 64.6, 117.7, ..., 839.2 cm−1 and 44 in-plane vi-
brations with frequencies 203.1, 236.3, ..., 1546.2 cm−1. The
circumcoronene molecule has 52 out-of-plane vibrations with
frequencies 32.3, 60.9, ..., 881.0 cm−1 and 104 in-plane vi-
brations with frequencies 140.5, 162.0, ..., 1576.3 cm−1. Let
us check whether the excitation of a high-amplitude natural
oscillation of one molecule can lead to the appearance of a
discrete breather in the chain, a nonlinear oscillation localized
on one molecule.

To find discrete breathers, we simulate high-amplitude nat-
ural vibrations of one central molecule in a chain of N = 100
molecules. At the ends of the chain, viscous friction is intro-
duced, which ensures the absorption of phonons emitted by
vibrations of the central molecule. The system of equations of
motion Eq. (20) is integrated numerically with the initial con-
ditions

Xn(0) = X0
n, Ẋn(0) = Ae jδn,nc , n = 1, . . . , N, (22)

where A defines the magnitude of the initial velocity of atoms
of the central molecule, e j is the unit eigenvector of the jth
eigenmode of an isolated molecule ( j = 7, . . ., 3N0), nc =
N/2. The value of A determines the vibrational energy of the
molecule and it is chosen sufficiently large to enter the regime
of anharmonicity.

The dependencies of the vibrational energy of the central
molecule on time t are shown in Fig. 12. Numerical inte-
gration of the system of equations of motion Eq. (20) with
the initial conditions Eq. (22) showed that three dynamics
scenarios are possible: very fast damping of oscillations (see
Fig. 12, curve 3), slow damping (curves 1 and 4) and the
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FIG. 13. Dependence of the energy E on the frequency ω for a
discrete breather based on the j eigenmode of the coronene molecule:
(a) j = 47, ω j = 839.2; (b) j = 67, ω j = 1470.0 (c) j = 69,
ω j = 1491.3 cm−1.

formation of undamped oscillations (curves 2 and 5). The first
two scenarios are typical for out-of-plane vibrations, the last
one, for in-plane vibrations.

The frequencies of the resulting discrete breathers are
shown by black dots in Figs. 3 and 4. Of all the out-of-plane
eigenmodes, only the oscillation with the maximum frequency
can lead to the formation of a discrete breather. For a chain
of coronene molecules out of 44 in-plane vibrations 24 can
lead to the formation of a discrete breather, and for a chain of
circumcoronene molecules out of 104 in-plane vibrations 31
produce discrete breathers.

In fact, all the discrete breathers identified in our cal-
culations are compactonlike modes, since large-amplitude
oscillations are localized strictly on one molecule, while
neighboring molecules are practically not excited. This is a
consequence of the fact that the dispersion curves for out-of-
plane vibrations are almost flat, which reflects a very weak
interaction between them, see Figs. 3(b) and 4(b). The os-
cillations are anharmonic, their frequency depends on the
amplitude. A characteristic feature of localized oscillations
(discrete breathers) is a linear decrease in their frequency
with increasing energy, see Fig. 13. As the oscillation am-
plitude increases, the energy of the breather increases and
the frequency decreases. Thus, n-coronene chains support gap
discrete breathers with a soft type of anharmonicity. The en-
ergy of a discrete breather in a chain of coronene molecules
can reach 0.37 eV, and the width of the frequency spectrum
can reach 6 cm−1.

VII. CONCLUSIONS

The linear phonon spectrum and nonlinear spatially lo-
calized excitations, such as acoustic solitons, rotobreathers,
and discrete breathers in chains of n-coronene molecules, are
studied by the method of molecular dynamics. Three mem-
bers of the n-coronene were considered, namely coronene,
circumcoronene, and dicircumcoronene (n = 2, 3, and 4, re-
spectively). These molecules include, respectively, N0 = 24,

54, and 96 carbon atoms and have 3N0 − 6 vibrational degrees
of freedom.

The size of molecules plays an important role in chain
dynamics. The spectra of low-amplitude vibrations of chains
of coronene and circumcoronene molecules are shown in
Figs 3 and 4, respectively. It can be seen that the maxi-
mum frequencies of out-of-plane and in-plane vibrations are
approximately the same for chains of coronene and circum-
coronene molecules, but the spectrum of the latter is denser,
since the number of degrees of freedom is greater. The spec-
trum of a chain of dicircumcoronene molecules is even denser.

It was found that a chain of coronene molecules supports
the propagation of acoustic compressive solitons, which prac-
tically do not emit energy when moving at supersonic speed,
see Fig. 6(a) and Fig. 7(a). Similar excitations in chains of
circumcoronene and dicircumcoronene molecules constantly
lose energy, emitting low-amplitude phonons, see Figs. 6(b),
6(c) and Figs. 7(b), 7(c). This is because spiral chains have
lower symmetry in the stacking of larger molecules and more
channels to radiate energy due to the greater number of vibra-
tional degrees of freedom.

A similar picture was observed for rotobreathers. Only in
a chain of coronene molecules a single molecule can rotate
with frequencies in certain ranges [shown in gray in Fig. 5(b)],
radiating no energy. In chains of circumcoronene and dicir-
cumcoronene molecules, a molecule rotating at any frequency
excites low-amplitude phonons, constantly loses its energy,
and eventually stops rotating. The explanation lies in more
resonances with a denser phonon spectrum in chains with
larger molecules.

As for discrete breathers, they are supported by all three
considered molecular chains. Discrete breathers are in the
form of single molecule vibrating at large amplitude and
radiating no energy. The frequencies of discrete breathers
are marked with black dots in Figs. 3 and 4 for chains of
coronene and circumcoronene molecules, respectively. A dis-
crete breather with out-of-plane oscillations, see Figs. 3(a),
4(a), is created only by the highest-frequency out-of-plane
mode. On the other hand, a number of in-plane vibrational
modes create discrete breathers, see Figs. 3(b), 4(b). The
frequency of discrete breathers decreases with an increase
in their energy, i.e., soft-type anharmonicity is realized,
see Fig. 13. The results presented in this study illustrate the
role of the internal degrees of freedom of particles in the
nonlinear dynamics of molecular chains.
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