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Quantum chaos plays a significant role in understanding several important questions of recent theoretical and
experimental studies. Here, by focusing on the localization properties of eigenstates in phase space (by means
of Husimi functions), we explore the characterizations of quantum chaos using the statistics of the localization
measures, that is the inverse participation ratio and the Wehrl entropy. We consider the paradigmatic kicked
top model, which shows a transition to chaos with increasing the kicking strength. We demonstrate that the
distributions of the localization measures exhibit a drastic change as the system undergoes the crossover from
integrability to chaos. We also show how to identify the signatures of quantum chaos from the central moments of
the distributions of localization measures. Moreover, we find that the localization measures in the fully chaotic
regime apparently universally exhibit the beta distribution, in agreement with previous studies in the billiard
systems and the Dicke model. Our results contribute to a further understanding of quantum chaos and shed light
on the usefulness of the statistics of phase space localization measures in diagnosing the presence of quantum
chaos, as well as the localization properties of eigenstates in quantum chaotic systems.
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I. INTRODUCTION

The importance of quantum chaos in understanding several
fundamental questions that arise in recent experimental and
theoretical works has triggered a great deal of efforts in the
study of quantum chaos in different areas of physics [1-11].
In contrast to the case of classical chaos, which is well defined
as the exponential divergence of the closest orbits for initial
perturbations [12,13], the definition of quantum chaos in the
narrow sense remains an open question [14]. One, therefore,
turns to focus on how to probe and measure the signatures
of chaos in various quantum systems [1,2,15-22]. To date,
the presence of chaos in a quantum system is commonly
ascertained from its spectral properties. It is well known that
the energy spectrum of quantum systems which are classically
chaotic has universal statistical properties, which are consis-
tent with the predictions of the random matrix theory (RMT)
[23-29]. As a consequence, the RMT sets a benchmark to
identify the emergence of chaos in quantum systems. Accord-
ing to RMT, for example, a quantum system is said to be a
chaotic system when its level spacing distribution follows the
universal GOE/GUE/GSE level statistics, well approximated
by the celebrated Wigner surmise [24,30], or its spectral form
factor exhibits a robust linear ramp [1,2,31-36].

An alternative way to capture the onset of chaos in quan-
tum systems is to investigate the structure of eigenstates. The
structure of eigenstates in quantum chaotic systems is essen-
tial to understand the thermalization mechanism in isolated
systems [4-6,37-39]. For quantum chaotic systems, it has
been demonstrated that the midspectrum eigenstates are well
described by the eigenstates of random matrices taken from
the Gaussian ensembles of RMT [5,40]. The eigenstates of
Gaussian ensembles are random vectors with components that
are independent Gaussian random numbers. Although this
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feature of eigenstates has been used as a witness of quantum
chaos, several remarkable exceptions in both single-particle
[41-45] and many-body quantum chaotic systems [46—48]
imply that further analysis on the structure of eigenstates in
quantum chaotic systems is still required.

The structure of eigenstates can be examined in various
ways, such as the fractality of the eigenstates [21,49-51],
the statistical properties of local observables in eigenstates
[39,52-55], and the statistics of the eigenstate amplitudes
[40,56-63]. In this work, we consider the localization
characteristics of the quantum eigenstates. The eigenstates
localization behavior for various quantum systems has been
extensively explored in different contexts [21,64—73]. To mea-
sure the degree of localization of an eigenstate, it is necessary
to decompose it in some basis. We use here the basis consist-
ing of the coherent states. This means that we are interested
in the phase space localization properties of the quantum
eigenstates. Coherent states, being the states of minimal un-
certainty, and the derived Husimi functions are as close as
possible to the classical phase space structures, in particular in
the semiclassical limit. The phase space localization feature of
quantum eigenstates has been explored in kicked rotor [64,74—
77], billiards [78—83], and Dicke model [84-86] in connection
to the study of the localization phenomena observed in those
systems. Here, by defining two different phase space localiza-
tion measures, namely the inverse participation ratio and the
Wehrl entropy, we discuss how their statistical properties are
affected by the onset of chaos and show how the statistics of
these measures tracks the transition between integrability and
chaos in the kicked top model, one of the paradigmatic models
in the study of quantum chaos.

By decomposing a quantum eigenstate in the coherent state
basis, we show that its phase space structure is determined by
the Husimi function [87] (squared modulus of the coherent
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states). This represents quantum analogy of the corresponding
classical phase space, as a coherent state describing a phase
space spot is as close as possible to the classical phase space
point. As the system undergoes a transition from integrability
to chaos, we observe a notable change in behaviors of the
Husimi functions. To quantitatively describe the structure of
the system’s eigenstates in phase space, we define two differ-
ent phase space localization measures in terms of the Husimi
function. We demostrate that the onset of chaos has strong
impact on the distributions of the localization measures. This
leads us to show how to distinguish between integrability and
chaos by means of the central moments of the distributions of
localization measures. We further show that the joint proba-
bility distribution of the localization measures also serves as a
diagnostic tool to signal the transition to quantum chaos.

The article is organized as follows. In Sec. II, we introduce
the kicked top model and briefly review its chaotic features for
both classical and quantum cases. Our detailed analysis on the
statistical properties of the localization measures is presented
in Sec. III, where both the individual and joint statistics of the
localization measures are investigated. We also discuss how
to identify the signatures of quantum chaos in the behaviors
of central moments of the localization measures distributions
in this section. Finally, we conclude our study with a brief
summary in Sec. I'V.

II. KICKED TOP MODEL

The system we have focused on in this work is the kicked
top model, which represents one of the prototypical models in
studying quantum chaos [1] and has been realized in different
experimental platforms [88-90]. Recently, we have studied it
in the perspective of multifractal dimensions (entropies) of
coherent states in the quasienergy space [91]. These entropies
describe the localization of the coherent states in the eigenba-
sis of the Floquet operator.

The kicked top model describes a spin J = (Jx, J;, J;)
evolving by the Hamiltonian (we set /i = 1 throughout the
work) [92,93]:

k +o00
H=aJ,+—J? 8(t —n), (1)
2j .

n=—

where o denotes the precessional rotation angle of the spin
around the z axis between two kicks, k is the strength of the
(torsional) periodic kick, and the components of J satisify the
commutation relations [J;, J;] = i€;jxJi. Here, the periodicity
between kicks has been set equal to one. We would like
to point out that a different choice of « leads to the onset
of chaos at different values of k [91]. However, we have
carefully checked that the main conclusions of this work are
independent of the choice of «. Hence, we fixed o = 47 /11
throughout in our study.

The time evolution of the system from kick to kick is
governed by the Floquet operator [92]:

k
F =exp (—i;]f) exp (—iaJ,). 2)
J

The conservation of the magnitude J*> = j(j + 1), due to
the commutation with each J;, leads us to express the

Floquet operator in the basis consisting of Dicke states
{17, m)}::’;]_j, which fulfill J?|j, m) = j(j + 1)|j,m) and
J;|j, m) = m|j, m). Then, the matrix elements of F can be
written as

(j, m|F|j,m') = exp(—iom")Dyy, 3)

where

k
Dy = {j, m| exp (—i—Jf)Ij, m'),

2j
my=j k
= ) exp (—i2—jm§><j,m|j, m) (. mylj,m') - (4)
my=—j

is the Winger D function [94] with {| ], m,)}, "= ; being the
eigenstates of J,. The dimension of the matrix is given by
Dy = 2j + 1. However, since F commutes with the parity
operator IT = €U+ the matrix can be decomposed into an
even-parity block with dimension D, = j + 1 and the other
odd-parity with D, = j. In this work, we only consider the
even-parity subspace.

In the Heisenberg picture, the spin operators are evolved
by the Heisenberg equation [93]:

Jn+1)=FJnF. 5)

By using the commutation relations between spin operators
and the Campbell identity

2
¢"Be™™ = B + nlA, B] + %[A, [A.B]l+--. (6)

the explict form of the Heisenberg equation can be written as

Ji(n+1) =J(n)cosa — Jy(n)sina,

1 k
Jy(n+1) = §®n exp |:i2—jT,,j| + H.c., (7)
1 k
J;,(n+1)=—=0,exp|i—=Y,|+Hc.,
2i 2j

where O, = [Ji(n)sina + J,(n)cosa +iJ.(n)] and T, =
2[Jy(n)cosa — Jy(n)sina] + 1. In the Appendix we present
a short derivation of the above formulas. With increasing the
kicking strength k, the model undergoes a transition from
integrability to chaos. To see this, we will first analyze the
emergence of chaos in the classical kicked top model, which
can be obtained by taking the classical limit of the Heisenberg
equation in (7). Then we show how the chaos manifests itself
in the quantum kicked top model through the spectral statistics
of the Floquet operator (2).

A. Classical kicked top model

The classical counterpart of the Heisenberg equation in (7)
is obtained in the limit j — oco. To see this, we define the
scaled vector X = J/j which obeys the commutation rela-
tions [X,, Xp] = (1/))i€w.X.. As j — oo, the vanishing of
commutators between the components of X implies that X,
become classical variables. Then, substituting X into Eq. (7),
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FIG. 1. (a)—(c): Phase space portraits of the classical kicked top
model for k = 0.4 (a), k =2.4 (b), and k = 6 (c). The variables
(0, ¢) are plotted for 300 initial conditions, each with a duration
of 300 kicks. (d) Phase space averaged Lyapunov exponent, X, as
a function of the kick strength k. In a numerical simulation, A is
calculated by averaging over 40000 trajectories, each evolved for
4000 kicks. Other parameter: o = 47 /11.

after some algebra, we find the classical map can be written as

X1 cos o —sina 0 X,

Yi+1 | = | sinacos2, cosacosf, —sin,||Y,]|,

/) sinasin2, cosasin 2, cos 2, Z,
8)

where €, = k(X, cosa — ¥, sin). The conservation of J?
entails |X|> = X2 + Y2 + Z? = 1. This means that the clas-
sical variables (X, Y, Z) lie on the unit sphere and they can be
parametrized in terms of the azimuthal angle 6 and polar an-
gle ¢ as follows: X =sinfcos¢, ¥ =sinfsing, and Z =
cos 0. Hence, the classical phase space is actually two di-
mensional space described by variables # = cos™' Z and ¢ =
tan~'(Y/X).

A prominent feature exhibited by the kicked top model is
the transition to chaos as the kicking strength k increases. It
is known that the model shows regular behavior in the phase
space for lower values of k, while increasing k gives rise to
the extension of the chaotic regime in the phase space and,
therefore, increases the degree of chaos [92]. The emergence
of chaos in the dynamics of the classical kicked top with
increasing k is clearly observed in Figs. 1(a)-1(c), where the
Poincaré sections for several values of k are plotted. One can
see that the phase space turns from regular motion for small k
to the mixed dynamics with regular regions embedded in the
chaotic sea for larger k. For even larger k, as the k = 6 case
plotted in Fig. 1(c), the phase space is governed by globally
chaotic dynamics.

To quantitatively analyze the chaotic properties of the
model, we consider the phase space averaged Lyapunov ex-
ponent, which measures the degree of chaos in the model and

is defined as

_ 1
A= — [ dSh,, 9
4 / ©)

where dS = sinfdfd¢ is the phase space area element (or
Haar measure) [95] and A,, denotes the largest Lyapunov
exponent of the classical map in (8). The largest Lyapunov
exponent quantifies the rate of deviation between two nearby
orbits in a dynamical system [96,97]. For the kicked top
model, it can be calculated as [95,98,99]

A = 1n[ lim (rm)l/"] (10)

where t, represents the largest eigenvalue of T =
[1)=) T(X,) and T(X,,) = 3X,41/8X,, is the tangent map of
Eq. (8).

By averaging the largest Lyapunov exponents over differ-
ent initial conditions in the phase space for various values of
k, we show the dependence of A on the kicking strength k
in Fig. 1(d). The regularity of the model at small k leads to
the zero value of A and it keeps zero up to a certain kicking
strength k. ~ 2, from which it starts to grow with increasing
k. Hence, the model undergoes a transition from integrability
to chaos as k is increased and the level of chaos is enhanced
by increasing the kicking strength.

B. Chaos in quantum kicked top model

The chaotic properties discussed above in the classical
kicked top model are also manifested in its quantum coun-
terpart. The signatures of quantum chaos can be captured
by several probes, including the statistics of eigenval-
ues and eigenvectors [57,58], the dynamical behavior of
the Loschmidt echo [100,101], the entanglement dyanmics
[102—-104], the out-of-time-ordered correlators [105-107],
quantum coherence [108], and the operator complexity
[109-111], to name a few. Here, in order to unveil the fin-
gerprint of chaos in the quantum kicked top model, we study
the spectral properties of the Floquet operator based on the
level spacing ratios r,, defined as [112,113]

I’IliIl(dn, dn+1) . 1
r,=——=mn|w, — |, (11D
max(d,, dy,y1) Wy

where d,, = w,+1 — Iy 1S the spacing between two successive
levels with w, being the nth eigenphase of the Floquet oper-
ator, and w, = d,4/d,. Clearly, the definition of r,, implies
that it varies in the interval r,, € [0, 1]. As r,, does not rely on
the local density of states, the calculation of its distribution
is not required to perform the so-called unfolding procedure,
which is known to be intricate [114,115]. This makes the level
spacing ratio r, a convenient chaos indicator in the studies of
quantum chaos, in particular for quantum many-body chaotic
systems.

It has been demonstrated that the distribution of r,,, denoted
by P(r), can be used to distinguish between integrable and
chaotic systems [112,113]. In particular, the analytical expres-
sion of P(r) has been obtained for both integrable (Poisson
statistics) and chaotic (Wigner-Dyson statistics) spectra, given
by [113,116,117]

27 r+r?
P(r) = PWD(")=Tm~ (12)

2
(1+nr)?*
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FIG. 2. (a)—(c) Distribution of the consecutive level spacing ra-
tios P(r) for k = 0.4 (a), k = 2.4 (b), and k = 6 (c). In each panel,
the blue solid and red dashed curves denote the Pp(r) and Pywp(r)
[cf. Eq. (12)], respectively. (d) Rescaled average ratio (7) in (14) as
a function of the kicking strength k. The red dashed horizontal line
represents (7) = 1. Other parameters: j = 2000 and o = 47 /11.

The distributions of level spacing ratios P(r) of the Floquet
operator for several values of k are shown in Figs. 2(a)-
2(c), where we also compare our numerical results to the
analytical formula of P(r) in Eq. (12). We see that P(r)
follows the distribution for Poisson statistics Pp(r) for small
k [Fig. 2(a)]. This means the absence of level repulsions in the
model are consistent with the regular structure of the phase
space. As k is increased, P(r) deviates from Pp(r) and has
a Poisson-like tail, as observed in Fig. 2(b). This indicates
the highly localized weak correlations between eigenphases
corresponding to the mixed feature in the phase space. Fi-
nally, for the case of strong kicking strength, as shown in
Fig. 2(c), the ratio distribution P(r) is in good agreement with
Pyp(r), suggesting level repulsion in the fully chaotic regime.
The changes in the behaviors of the distribution P(r) clearly
confirms the integrablity-to-chaos transition in the kicked top
model. It is worthwhile to mention that the level statistics for
the Floquet operator in the chaotic regime should belong to
random matrices of the circular orthogonal ensemble (COE).
However, since the COE statistics is asymptotically described
by the random matrices belonging to the Gaussian orthogonal
ensemble (GOE) in the thermodynamic (also semiclassical)
limit [118], we have therefore compared our numerical results
to the GOE counterpart.

Instead of focusing on the ratio distribution P(r), the
crossover from integrable to chaos in the model can also be
captured by the mean level spacing ratio (r), defined as

| N
M=N;m (13)

where A denotes the total number of r,. For integrable sys-
tems, the Poisson statistics yields (r)p ~ 0.39 [113], while for

the chaotic systems with Wigner-Dyson statistics, the mean
value (r)wp ~ 0.53 [113,117,118]. It is more convenient to
consider the rescaled average level spacing ratio [119]:
~ _ l{r) = (rel
(r)y = ——mm—. (14)
(rwp — (r)p

~

It is defined in the range 0 < (r) < 1 with two limiting values
corresponding to the Poisson and Wigner-Dyson distribu-
tions, respectively. Figure 2(d) illustrates how (r) varies as
a function of the kicking strength k. The transition to chaos
with_increasing k is evidently revealed by the interpolation
of (r) between Poisson and Wigner-Dyson cases. We further
note that the upturn in (r) with increasing k is in agreement
with that of the phase space averaged Lyapunov exponent
in Fig. 1(d), indicating a good quantum-classical correspon-
dence.

III. STATISTICS OF THE PHASE SPACE
LOCALIZATION MEASURES

The transition to chaos also correlates with a remarkable
change in the structure of eigenstates. To analyze the structure
of eigenstates, it is necessary to decompose them in a certain
basis. The choice of basis is usually determined by the system
and the physical question under consideration. In this work we
aim to explore the properties of the phase space localization.
A natural choice for us is the basis consisting of the coherent
states |6, @), as they are as close as possible to the classical
phase points due to their minimal uncertainty. For the kicked
top model, the coherent states are the generalized SU(2) spin
coherent states, which are generated by rotating the Dicke
state | j, j) as follows [120-122]:

0, ¢) = explif (Jx sing — Jy cos P11/, J),

—gf - G jjm). (15)
T Y G=m Gt

with T = tan(9/2)e’® and 6 € [0, ), ¢ € [—m, w). The co-
herent states basis {|6, ¢)} is overcomplete with the closure
relation

_2j+1
T 4rm

The expansion of the nth eigenstate |w,) of F in the basis
{10, ¢)} can be written as

2j+1
4

1

/d9d¢sin9|0,¢)(9,¢|. (16)

ln) = fd9d¢sin9pn(9,¢)|9,¢>, amn

where p, (0, ¢) = (0, ¢|u,) is the overlap between the coher-
ent state |0, ¢) and the nth eigenstate |u,). Then, valuable
information about the structure of the nth eigenstate in the
phase space is provided by the Husimi function, defined as
the square of p,(6, ¢) module,

0.6, ¢) = 1pa(6, )I> = (0, Bl pul6, §), (18)
with p, = |u,) (.|, and it satisfies the normalization condi-
tion

2j+1
47

/d9d¢ sin00,(0, ) = 1. (19)
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FIG. 3. (a)—(c): Phase portraits of the classical kicked top model for (a) k = 1, (b) k = 2, and (c) k = 7. Here, 300 randomly chosen initial
conditions in the phase space have been plotted after 300 kicks. (al)—(a3): Husimi function rescaled by its maximum value for the eigenstates
of F with eigenphases (al) u =~ —2.9, (a2) u ~ —2.19, and (a3) u ~ 2.17 for k = 1. (b1)—(b3): Husimi function rescaled by its maximum
value for the eigenstates of F with same eigenphases as in (al)—(a3) for k = 2. (c1)—(c3): Husimi function rescaled by its maximum value for
the eigenstates of F with same eigenphases as in (al)—(a3) for k = 7. Other parameters are: « = 47 /11 and j = 150.

The Husimi functions of various eigenstates of F for
several values of k are plotted in Fig. 3 with associated
classical phase portraits, in agreement with the principle of
uniform semiclassical condensation (PUSC) of the Wigner
functions or Husimi functions—see [83,123,124] and refer-
ences therein. (Husimi function also is a Gaussian smoothed
Wigner function.) We first note that the Husimi functions
show a good correspondence to the classical phase space
orbits. This is due to the fact that the coherent states repre-
sent the closest quantum analog of the classical phase space
points. Meanwhile, the good agreement between the Husimi
function and the classical phase space structure also confirms
that the coherent state basis is an appropriate basis for in-
vestigating the phase space localization. We further observe
the degree of localization of the Husimi function in the phase
space depending on the kicking strength. In particular, even in
deep chaotic regime, there still exist some eigenstates that are
highly localized in the phase space, such as the one illustrated
in Fig. 3(c2).

To measure the degree of localization of the nth eigenstate
of F in the basis {|0, ¢)}, we consider two different local-
ization measures based on the Husimi function. The first one
is the well-known inverse participation ratio, which measures
how many basis states the quantum state occupies [125]. In
terms of Husimi function, the inverse participation ratio for
the nth eigenstate is defined as

2j+1

-1
I, = |:M fd9d¢ sin@Qﬁ(9,¢)i| , (20)

where N. = (2j+1)/(4n) [dOdpsind =2j+1 acts as
the normalization constant. The second localization measure

is defined through the Wehrl entropy [126] and for the nth
eigenstate it is given by [81,83,84]

_ exp(Sw)
£, = 220, @1)
where
2j+1 .
Sy =1 / d6d¢ sin 60,0, $)I[00, )] (22)

is the Wehrl entropy. In the semiclassical limit with j — oo,
both localization measures interpolate between two extreme
ends: the uttermost localized eigenstates with Z, = £, =0
and the fully delocalized chaotic eigenstates with Z,, = £, =
1 [83,127]. In the former case Q,, is localized on a small region
of size AS and is constant there, so that Z, and £, go to zero
as AS tends to zero. In the latter case O, is constant and equal
to its average value 0, = 1/(2j + 1).

In the following of this section, we will focus on both the
individual and joint statistics of these localization measures.
The purpose of our study is to unveil the impact of chaos on
the structure of eigenstates and to identify the signatures of
chaos in the statistical properties of the phase space localiza-
tion measures.

A. Statistics of Z,, and L,

Let us consider the statistics of the localization measures
T, and L,. In Fig. 4, we plot Z, and £, as a function of
u, for different values of k. As both Z, and £, measure
the degree of (de)localization of an eigenstate in the phase
space, one can expect that they should behave in a similar
way as a function of eigenphases. This is confirmed by our
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FIG. 4. (a)-(c): Inverse participation ratio Z, of the eigenstates
for the kicked top model as a function of eigenphases u, of the
Floquet operator for (a) k = 0.4, (b) k = 2.4, and (¢) k = 6. (d)—(f):
Localization measure £, for the eigenstates of the kicked top model
as a function of eigenphases u, of the Floquet operator for the same
values of k as in panels (a)—(c). Other parameters: « = 47 /11 and
j =150.

numerical results which show overall similarities between the
behaviors of £, and Z,. We see that the values of Z, and
L, are low and concentrated in a narrow range for small k
[see Figs. 4(a) and 4(d)], suggesting that the eigenstates are
localized in the phase space reflecting the regular dynamics in
the classical case. Moreover, there is an obvious concentration
in Z, and £, around their corresponding maximal values.
A careful check shows that these sharp upper limits of the
localization measures can only be seen in the regular regime
and are associated with the eigenstates that correspond to the
classical orbits located in an interval with w /4 < 0 < 37w /4.1t
should be observed that the thickness of the Husimi function
localized on an invariant torus of length ~2s is of the order
of the square root of the effective Planck constant 7 &~ 1/,
which determines the maximum value of Z,, and £,,. This is of
course in contradistinction of the chaotic eigenstates.

As k is increased, the values of localization measures also
increase, but the eigenstates with high and low values of
the localization measures are coexisting in the spectrum, as
illustrated in Figs. 4(b) and 4(e). This means that the degree
of localization has strong fluctuations among the eigenstates.
The reason can be attributed to the mixed feature exhibited
by the corresponding classical dynamics, in agreement with
PUSC. The eigenstates associated with the regular islands are
highly localized states with low-Z,/L,, while the high-Z, /L,
values stem from the eigenstates that are located in the chaotic
sea. At large values of k, as plotted in Figs. 4(c) and 4(f), the
values of Z,, and £, are much larger. This is due to the fact that
the system becomes classically globally chaotic, which leads
to the eigenstates being spread over the whole phase space.
However, there are still some low-Z,/L, eigenstates, which
are the localized chaotic eigenstates, as observed in Fig. 3(c2).
For a phenomenological analysis of Husimi functions in a
mixed-type regime, see [83] and references therein.

The visible different scatter plots in Fig. 4 imply that the
localization measures of eigenstates would have different sta-
tistical properties in the regular and chaotic regimes. To verify
this statement, we study the distribution of the localization

@ o[
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FIG. 5. (a)—(c): Distribution of Z, for (a) k = 0.4, (b) k = 2.4,
and (c) kK = 6. In panel (c), the red dot dashed line denotes the beta
distribution (23) with (Xuin, Xmax) = (0.145,0.872) and the shape
parameters are a = 18.9435 and b = 23.3284. (d)—(f): Distribution
of L, for the same values of k as in panels (a)-(c). The green dot
dashed line in panel (f) represents the beta distribution (23) with
(Xmins Xmax) = (0.219, 0.8849) and the shape parameters (a, b) =
(33.7363, 21.8592). Other parameter: « = 47 /11 and j = 150.

measures, denoted by P(Z) and P(L), which are, respectively,
defined as the probability to find Z,, and £, in an infinitesimal
interval [Z,Z +dZ] and [L, L +dL].

Figure 5 plots P(Z) and P(L) for the same values of k as
in Fig. 4. One can clearly see that the behaviors of P(Z) and
P(L) are very similar. In particular, both of them undergo a
drastic change in their property with increasing k. Specifically,
in a regular regime with small k, the values of Z, and L,
distribute over a narrow range and are sharply concentrated
near 0.1 and 0.12, respectively. As a consequence, both P(Z)
and P(L) have a small width and exhibits a sharp peak around
the upper limit of Z,, and £, as shown in Figs. 5(a) and 5(d)
[note the scale of the y axis]. Increasing the kicking strength
k tends to increase the width of P(Z) and P(L), as well as
shifting the location of the peaks in them to larger values of
7, and L,. The distributions of localization measures in the
chaotic regime are asymmetric or skewed with a peak close to
their largest values, as evident from Figs. 5(e) and 5(f). The
asymmetry shape of P(Z) and P(L) is a consequence of the
low-Z,/ L, localized eigenstates.

Inspired by our previous works [82—84] in which the distri-
bution of £, for the delocalized eigenstates in several chaotic
systems has been investigated, here we explore whether the
distributions P(Z) and P(L) for the delocalized eigenstates
can be well described by the beta distribution [128]

(x — xmin)a_] (Xmax — x)h_l
(xmax — Xmin )a+ble(a’ b) '

Pg(x) = (23)
where Xpmin < X < Xmax, @ and b are the shape parameters, and
B(a, b) = fol x®~1(1 — x)’~'dx is the beta function.

The best fitted beta distribution of P(Z) is shown in
Fig. 5(c). The minimal and maximal values of x of our fitted
beta distribution are empirically found to be x,;, = 0.145 and
Xmax = 0.872, respectively. Unlike in our previous works, here
we fit the distribution on the interval [Xpi,, Xmax ], but note that
the actual range of numerically obtained Z, is on the interval
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FIG. 6. (a) Mean value I, (b) Standard deviation vzz , (c) Cube root of the third central moment v3I , and (d) v41 , obtained from Eq. (24),
as a function of k for several system sizes, see the legend in panel (a). Dependence on k of (¢) mean value L, (f) standard deviation vf,
(g) cube root of the third central moment vf, and (h) vf, calculated by Eq. (24), for the same system sizes as legend in panel(a). Other

parameter: o = 4 /11.

[0.1016,0.5975]. The maximal value Z, nox = 0.5975 agrees
with the findings in other systems. Here, the energy is fixed
by j. On the other hand, the distribution P(L) is well captured
by the beta distribution fitted on the interval [Xpin, Xmax] =
[0.219, 0.8849], as demonstrated in Fig. 5(f). We also note
that the data of £, are in the range [0.2479,0.7206]. Thus, the
maximal £, is found to be £, max = 0.7206, which is roughly
consistent with other systems. The fact that the fit by the beta
distribution is not perfect should be attributed to the structure
of the chaotic sea in the sense of some stickiness regions
which so far have not been detected.

In fact, more generally, it appears phenomenologically that
chaotic quantum eigenstates exhibit the beta distribution for
the localization measures, provided they are classically uni-
formly chaotic without significant stickiness regions. In doing
this we consider the eigenstates within a small energy interval,
small enough to have a well defined regime and at the same
time large enough to have reasonable statistics. This has been
demonstrated first in the mixed-type billiard introduced by
Robnik [82], and also in the stadium billiard of Bunimovich,
in the lemon billiards introduced by Heller and Tomsovic
(see Refs. [83,129] and references therein) and in the Dicke
model [84]. Therefore, we believe that this distribution of
localization measure is universal. However, if the the chaotic
region has significant stickiness regions such as, e.g., in the
ergodic lemon billiard [130], we see nonuniversal deviations
from the beta distribution.

To quantify the above observed features in the distributions
of 7, and L,, as well as to quantitatively assess the degree of
similarity between them, we consider the mean and the mth
root of the mth central moment of P(O,)(q =1, 2):

1/m
_ 1 1 _
04 = D Z Og.ns Vz(ngq=|:l_) Z(Oq,n_oq)m] , (24

where O; denotes Z, O, represents £, and D = j + 1 is the
Hilbert space dimension. As the zeroth central moment is
equal to one and the first central moment is zero, we are, there-
fore, mainly interested in m = 2, 3, 4, the standard deviation,
cube root of the skewness, and the fourth root of kurtosis of
the distribution, respectively.

Figure 6 plots these quantities as a function of & for several
system sizes j. The onset of chaos can be clearly identified
from the sharp growth behavior displayed by these quantities.
Remarkably, the drastic growing point of these quantities with
increasing k are in agreement with that of average Lyapunov
exponent A in Fig. 1(d) and average gap ratio (r) in Fig. 2(d).
As vzo 3 4 quantify the fluctuation, the skewness, and the tailed-
ness of the corresponding distribution, the nonzero values of
them in the chaotic regime imply that the distribution P(O,)
is asymmetrical, consistent with the result shown in Figs. 5(c)
and (f). Moreover, we also note that our considered quantities
are only weakly dependent on the system size j in the chaotic
and regular regime. However, on the other hand, they are
independent of the kicking strength k in the regular regime.

The dependence of these quantities with varying the
Hilbert space dimension D for different system sizes are plot-
ted in Fig. 7. Notice that we consider the absolute value of

V;D ? rather than v3o ? itself in our numerical simulation. One
can see that all these quantities remain almost unchanged
with increasing D for the case with large k, whereas they all
decrease with increasing D for the case of k = 1. Moreover,
we find that their decreasing with D follows the same power
law of the formy = C, D~ with y ~ 0.5. This is explained by
the fact that the Husimi function associated with an invariant
torus has roughly length 2 and thickness & «/Fietr = 1/4/7.
This suggests that all of them vanish as D — oo and the dis-
tributions P(Z) and P(L) become the § distribution, P(Z) =
38(Z), P(L) =38(L), as expected. It should be observed that
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FIG. 7. Dependence on the Hilbert space dimension D of (a) mean value I, (b) standard deviation VZI , (c) cube root of the third central
moment [vZ], (d) v¥ [cf. Eq. (24)], (¢) mean value L, (f) v¥, (2) v¥, and (h) v¥ [cf. Eq. (24)] for several kicking strengths &, see legend in
panel (a). The red dashed line in each panel corresponds to fitting curve of the power law o« D~ with y & 0.5, to the data of k = 1 case. Other

parameter: « = 47 /11.

according to Figs. 6 and 7 in the chaotic regime the average
value of O, has converged to its semiclassical limit j — oo,

while vzo 7, the standard deviation, seems to decay very slowly

with j to its expected semiclassical limit vf = 0. The case
k = 4 shows no decay with D = j + 1, probably because it
is still a mixture of a large chaotic component and a small
regular component.

B. Joint probability distribution of the localization measures

We finally discuss the interplay between the onset of
chaos and the properties of the joint probability distribution
of the localization measures. The above revealed statistical
properties of the individual localization measure distribu-
tions indicate that the statistics of the localization measures
provides useful information about the structure of the eigen-
states and can detect the onset of chaos. Further insights into
the characteristics of the eigenstates and the signatures of
quantum chaos can be obtained from the joint probability
distribution P(Z, £), which is defined as the probability to find
7 and £ in an infinitesimal box [Z, 7 4+ dZ] x [L, L + dL].

The joint distribution P(Z, £) of the kicked top model
for various values of the kicking strength k are shown in
Figs. 8(a)-8(c). For the regular case with k = 1, the distri-
bution P(Z, L) distributes over the small values of Z and £
with a very narrow width in the ZL plane [Fig. 8(a)]. As
the kicking strength k increases, the joint distribution extends
out to large Z and L. Moreover, the width of the distribution
P(Z, L) also increases with increasing k, as seen in Figs. 8(b)
and 8(c). However, we note that the largest width of P(Z, £)
occurs in the mixed regime, instead of the fully chaotic case.
In fact, most of the eigenstates are delocalized in strong
chaotic regime, both Z and £ are concentrated around some
large values, resulting in small width of the joint distribution

P(Z, £). It has been found already in Ref. [131] that the two
localization measures, after a proper normalization, are nearly
linearly related.

The observed characters of P(Z, £) can be quantified by
the following mixed moments,

1/2
1 = -
vy = [5 > (@ —I)Ly— L)} : (25)

where D = j + 1 is the Hilbert space dimension, and I and L
are the mean values of Z,, and £, in Eq. (24). The evolution of
these quantities as a function of & is depicted in Figs. 8(d) and
8(e). Clearly, we see that the transition to chaos also leaves an
imprint in the joint distribution of the localization measures
and the onset of chaos with increasing kicking strength can be
unveiled unambiguously by the upturn of these quantities as
k increases. Furthermore, we also find that the values of these
quantities are almost independent of the system size for the
chaotic case, while in the regular regime they decrease with
increasing system size and are decaying as ~D~¢ with ¢ ~ 1,
as demonstrated in the insets of Figs. 8(d) and 8(e). Again, this
is due to the expected proportionality of these quantities to
the effective Planck constant 7. & 1/j. Hence, in the regular
regime, the joint distribution approaches the Dirac § distribu-
tion as j — 0o, in agreement with the asymptotic behaviors
of P(Z) and P(L). Here, again we may emphasize that the
average value IL in the chaotic regime has converged to its
semiclassical value as j — oo, while the standard deviation
V2 decays very slowly with j.
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FIG. 8. Joint probability distribution P(Z, L) of the kicked top model for k = 0.4 (a), k = 2.4 (b), and k = 6 (c) with j = 150. (d) Depen-
dence of IL [cf. Eq. (25)] on the kicking strength k for different system sizes j. Inset: Scaling of 7L with Hilbert space dimension D for k = 1
(blue squares) and k = 7 (pink circles). The green dashed line in the inset marks the scaling /L ~ D~!. (e) Evolution of v, [cf. Eq. (25)]
versus the kicking strength k for several system sizes j. The inset plots v, » as a function of D for k = 1 (blue squares) and k = 7 (pink circles).
In the inset, the green dashed line denotes the decay v, , ~ D¢ with ¢ = 1. Other parameter: « = 4m /11.

IV. CONCLUSION

In this work, the phase space localization properties of the
eigenstates have been scrutinized in the kicked top model that
undergoes a transition to chaos with increasing the kicking
strength. The information about the phase space localization
of the eigenstates is encoded in the associated Husimi func-
tions, which exhibit distinct localization features depending
on whether the system is regular or chaotic. Hence, the emer-
gence of chaos bears a significant change in the eigenstates
and the crossover from integrability /regularity to quantum
chaos can be probed by the localization characters of eigen-
states in phase space. Remarkably, we have again found that
there still exist some localized eigenstates even in the deep
chaotic regime, which is a manifestation of quantum dynami-
cal localization, and the localization measures exhibit the beta
distribution.

The notably different localization behavior of the Husimi
function in regular and chaotic regime has led to a char-
acterization of the phase space localization phenomenon of
eigenstates in terms of two different localization measures,
i.e., the inverse participation ratio and the Wehrl entropy,
that are based on the Husimi function. The investigation of
the statistics of the localization measures reveals that their
distributions are sharply peaked around some small values in
the regular regime, indicating that the eigenstates are highly
localized states in the phase space, spanned by the invariant
tori in the classical phase space. As the system tends from
integrability /regularity toward chaos, the width of their dis-
tributions is increased and the peak of the distributions is
moved to the large values of the localization measures. The
scenario is in line with the predictions of the Principle of

Uniform Semiclassical Condensation (PUSC) of the Husimi
(or Wigner) functions in the semiclassical limit. However, we
have found that the distribution of the localization measures
also displays fluctuations in the deep chaotic regime. In fact,
the distribution of the localization measure approaches the
beta distribution, in agreement with previous works [83], and
in the ultimate semiclassical limit is expected to tend to the
Dirac delta distribution. In this ultimate limit (not yet seen
in this study) most of eigenstates of the fully chaotic system
are then expected to be uniformly delocalized in the phase
space. Thus, the features shown by the distributions of the
localization measures certainly confirm their usefulness to
detect the onset of chaos.

To capture the quantitative features of the distributions
of the localization measures, we also consider the central
moments of the distributions. We have demonstrated that the
central moments are sensitive to the presence of chaos, which
results in a drastic change in the behaviors of the central
moments. We therefore verified that the statistical properties
of the localization measures are the useful witnesses of chaos.
In particular, as we showed, the transition to chaos provided
by the central moments is in good agreement with the classical
case. Further analysis on the scaling of the central moments
reveals that the distribution of the localization measures in
the regular regime is approaching the Dirac delta distribution
in the classical limit, as expected, while in the fully chaotic
regime in the same limit it approaches the delta distribution
peaked at the maximal value of the localization measure. This
approach seems to be extremely slow.

The results presented in this work provide more insights
into the relationship between the phase space structure of
eigenstates and the onset of chaos in quantum systems.
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Unveiling how the statistics of the localization measures of
eigenstates is affected by underlying chaos would help us
get deep understanding on the signatures of quantum chaos
and opens up a new way to distinguish between regular and
chaotic dynamics in quantum systems. An interesting exten-
sion of this work is to explore how our results change in the
many body quantum chaotic systems, such as the coupled top
model [18], Dicke model [84-86], and Bose-Hubbard model
[21,22,132]. Another open question that deserves examination
is to study the correlation between the phase space localization
measures and the entanglement entropy in quantum chaotic
systems.
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APPENDIX: A SHORT DERIVATION
OF THE FORMULAS (7)

The discrete mapping of the the Heisenberg operators
J = Uy, Jy, J;) is a composition of two mappings: the first

one is a free precessional rotation (between two torsional
kicks) by the angle o around the z axis, namely J, =
exp(iad;) J; exp(—iaJ;) with £ = x,y, z. Using the Camp-
bell identity [Eq. (6)] and the commutation relations for J =
(Jx, Jy, J;) we find immediately that

Lo=J., (+ily) = +idy)explia). (Al

The other mapping is due to a torsional kick, which
appears periodically with period one, generated by J, =
exp(ioJ?) J; exp(—iwJ?), where @ = k/(2j). When apply-
ing again the Campbell identity, we first note that, using
the commutation relations for J = (J,, Jy, J;), the following
commutator is found to be [sz, Jy + )2 + D' =, +
iJ;)2J, + D@D for all nonnegative n =0,1,2,..., and
therefore,

To=1Jo (+il) = (U, + il)explio@], + 1)).  (A2)

Compositum of the two mappings results in the transforma-
tion in Eq. (7).
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