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Nonlinear dynamics and bifurcations of a planar undulating magnetic microswimmer
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Swimming microorganisms such as flagellated bacteria and sperm cells have fascinating locomotion capa-
bilities. Inspired by their natural motion, there is an ongoing effort to develop artificial robotic nanoswimmers
for potential in-body biomedical applications. A leading method for actuation of nanoswimmers is by applying
a time-varying external magnetic field. Such systems have rich and nonlinear dynamics that call for simple
fundamental models. A previous work studied forward motion of a simple two-link model with a passive
elastic joint, assuming small-amplitude planar oscillations of the magnetic field about a constant direction. In
this work, we found that there exists a faster, backward motion of the swimmer with very rich dynamics. By
relaxing the small-amplitude assumption, we analyze the multiplicity of periodic solutions, as well as their
bifurcations, symmetry breaking, and stability transitions. We have also found that the net displacement and/or
mean swimming speed are maximized for optimal choices of various parameters. Asymptotic calculations are
performed for the bifurcation condition and the swimmer’s mean speed. The results may enable significantly
improving the design aspects of magnetically actuated robotic microswimmers.

DOI: 10.1103/PhysRevE.107.054211

I. INTRODUCTION

The fascinating locomotion capabilities of swimming mi-
croorganisms has attracted the attention of the scientific
community for a long time. Owing to the small scale of such
swimmers, their motion is governed by low-Reynolds number
hydrodynamics, where viscous drag forces dominate and in-
ertial effects are negligible [1]. Several mathematical models
of undulatory microswimming have been studied, dating back
to the classic work of Taylor [2] on an infinite wavy sheet and
later works of Lighthill [3] and Childress [4]. The well-known
work by Purcell [5] introduced simplified robotic-like models
inspired by swimming microorganisms, the corkscrew motion
of counterrotating spherical head and helical tail, as well as
planar motion of the three-link model with controlled joint
angles, the motion of which has been further analyzed in many
follow-up works [6–8]. Another important effect that has been
suggested in Ref. [5] is combining time-periodic actuation
with the body’s flexural elasticity, which has also been studied
in analytical and numerical models of sperm motility [9,10].

In the past two decades, observations from natural swim-
ming microorganisms have inspired the ongoing development
of engineered artificial nano- and microscale swimmers, aim-
ing toward in-body biomedical applications such as targeted
drug delivery, diagnosis, and minimally invasive operations
[11]. Few actuation mechanisms have been considered for
powering such nanoswimmers, including chemical activa-
tion [12] as well as biohybrid swimmers harnessing the
actual beating of live bacterial flagellum [13]. Nevertheless, a
leading concept for nanoswimmer actuation is using a time-
varying external magnetic field. While several works have
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realized corkscrew locomotion induced by a rotating magnetic
field [14], the pioneering work of Dreyfus et al. [15] actually
used a planar oscillating magnetic field for propelling a chain
of superparamagnetic beads connected by a flexible DNA link
to a “head” made of red blood cells. The magnetic field in
Ref. [15] was set to be spatially uniform and time varying, as

B(t ) = cx̂ + b sin(�τ )ŷ, (1)

where b, c � 0 are constants. Thanks to ongoing progress
in nanofabrication capabilities, simpler designs of nanoswim-
mers composed of rigid links connected by flexible hinges
were later proposed [16,17]. A simple theoretical model for
studying the planar locomotion of such swimmers is the two-
link model proposed in Ref. [18] (see Fig. 1). This model
consists of two rigid links connected by a passive elastic
joint represented as a torsion spring, and one of the links
(the “head”) is magnetized along its longitudinal axis. The
analysis in Ref. [18] focused on the case of small oscillations
b � c and conducted asymptotic analysis of the motion in
which the swimmer oscillates about and swims along the +x̂
direction, which is a stable periodic solution with a mean
orientation angle θ̄ = 0. The analysis showed that there exist
optimal actuation frequencies � for maximizing the mean
speed or displacement per cycle. In this work, we revisit
the two-link model in Ref. [18] and extend the analysis to
cases of large oscillations b > c and even c = 0, and also
study the “backward” solution, where the swimmer oscillates
about and swims along the −x̂ direction, with θ̄ = π . While
this swimmer’s orientation θ = π is statically unstable (for
b = 0, c > 0), we find that for b � 0, this gives a periodic
solution that undergoes a stability transition and subcritical
pitchfork bifurcation upon varying amplitude b and frequency
� of the magnetic field’s input. We analyze the backward
solution numerically as well as analytically using asymptotic
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FIG. 1. The two-link microswimmer model [18].

expansion and harmonic balance. Under small-angle expan-
sion, the system’s dynamics can be reduced to a nonlinear
second-order differential equation with parametric excitation,
which resembles the well-known Kapitza pendulum system
[19,20]. Finally, we show optimization of the swimmer’s net
motion with respect to both b and �. Remarkably, we find
that the optimal “backward” motion is faster than the forward
motion.

II. PROBLEM STATEMENT

The model consists of two rigid links representing a head
and tail, connected by a passive torsional spring with a linear
stiffness k (see Fig. 1). x, y is the position of the head link’s
center point. The head makes an angle φ with the tail and an
angle θ with the x̂-axis. The head is magnetized with a mag-
netization strength h along its longitudinal axis t̂, given by t̂
is the unit vector along the head’s longitudinal direction given
by t̂ = cos θ x̂ + sin θ ŷ. The microswimmer is submerged in a
Newtonian fluid and subjected to an external magnetic field.
The magnetic field is spatially uniform, and has a time-varying
term in the ŷ direction and may or may not have a constant
term in the x̂ direction. The magnetic field is represented as
B(t ) = cx̂ + b sin(�t )ŷ (see Fig. 1). Here, c is the zero or
nonzero constant in the x̂ direction, b is the amplitude of
oscillation in the ŷ direction, and t is time. The torque applied

by the magnetic field on the swimmer’s head link is given by
L = ht̂ × B(t ).

The microsize of the swimmer allows making the follow-
ing assumptions. For the swimmer, gravity is neglected and
it is neutrally buoyant. As for the hydrodynamics, viscous
forces dominate greatly over inertial forces and allow one to
assume a low Reynolds number and neglect inertial effects
in the dynamics. Stokes’ law governs the fluid motion, and
resistive force theory [18,21,22] gives the final dynamics of
the system. The viscous drag force fi and torque mi under
planar motion is considered proportional to its linear (vi ) and
angular velocities (ωi ) as follows:

fi = −ct l (vi · t̂i )t̂i − cnl (vi · n̂i )n̂i;

mi = − 1
12 cnl3ωi; cn = 2ct . (2)

In Eq. (2), l is the length of the link, and t̂i and n̂i are the
unit vectors in the axial and normal directions of the ith link.
The internal torque applied at the joint by the torsional spring
is given by τ = −kφ.

The net force and torque balance gives (see Appendix) the
following final set of equations [Eq. (3)] for the four degrees
of freedom of the swimmer. In Eq. (3), vt and vn are the
tangential and normal velocities with respect to the head, and
can be converted into the world’s frame by using a rotation
matrix, as given in Appendix.

⎛
⎜⎜⎝

vt

vn

θ̇

φ̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 3 sin(φ)(cos(φ)(bh sin(θ )+kφ−bh cos(θ ) sin(t�))+3kφ)
ct l2(cos2(φ)−9)

6(cos2(φ)(c sin(θ )+kφ−bh cos(θ ) sin(t�))−(sin2(φ)+5)(ch sin(θ )+kφ−bh cos(θ ) sin(tω))+4kφ cos(φ))
ct l2(68−4 cos(2φ))

3cos2(φ)(ch sin(θ )+kφ−bh cos(θ ) sin(t�))−3(sin2(φ)−19)(ch sin(θ )+khφ−bh cos(θ ) sin(t�))+36kφ cos(φ)
ct l3(cos(2φ)−17)

6(cos(φ)+3)2(ch sin(θ )+2kφ−bh cos(θ ) sin(t�))
ct l3(cos(2φ)−17)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

The system of Eq. (3) can be nondimensionalized by defining γ = ch
k , β = bh

k , and tk = ct l3

k (the elastic timescale). In
addition, we rescale the time in Eq. (3) as t → t

tk
, and rescale the frequency by ω = �tk . Then Eq. (3) will be simplified

and nondimensionalized as Eq. (4), for θ̇ and φ̇ :

(
θ̇

φ̇

)
=

⎛
⎜⎝

3cos2(φ)(γ sin(θ ) + φ − β cos(θ ) sin(tω))
−3(sin2(φ) − 19)(γ sin(θ ) + φ − β cos(θ ) sin(tω)) + 36αφ cos(φ)

cos(2φ)−17
6(cos(φ)+3)2(γ sin(θ )+2φ−β cos(θ ) sin(tω))

cos(2φ)−17

⎞
⎟⎠. (4)
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FIG. 2. Solution trajectories in the (θ, φ) plane. Stable periodic solutions oscillating about θ̄ = 0 and θ̄ = π . In (a), ω = 2.5, γ = 1, and
β = 1.1. The red solid line shows a forward stable solution oscillating about the mean values (θ̄ , φ̄) = (0, 0); the blue dashed curve shows an
unstable backward solution oscillating about the mean values (θ̄ , φ̄) = (π, 0). In (b), ω = 10, γ = 1, and β = 10. The red solid line shows
a stable solution around (θ̄ , φ̄) = (0, 0), the blue solid line shows a stable solution around (θ̄ , φ̄) = (π, 0), and the pink dashed lines show
asymmetric unstable periodic solutions. In (c), a grid discretization is shown for the regions of attractions of initial conditions that converge to
either the forward (red) or backward (blue) periodic solution of the plot (b).

Due to the positional symmetry of Eq. (3), Eq. (4) de-
termines the entire dynamics of the system. When θ (t ) and
φ(t ) are solved, vt and vn can be immediately calculated from
Eq. (3). The system’s solution thus depends on three dimen-
sionless parameters, γ , β, and ω, and on initial conditions.

In the following sections we will integrate Eq. (3) or Eq. (4)
numerically using MATLAB packages, and analytically by
using perturbation expansion and harmonic balance [23,24].

III. RESULTS

A. Numerical treatment

The numerical strategy to solve the set of equations using
MATLAB is described here. The steady-state solutions of the
swimmer are periodic in θ, φ and the dynamics are invariant
with respect to x, y and so we define a reduced state vector
z(t) = (θ (t ), φ(t ))T . We also denote a function F(z(0)) =
z(T ), where z(0) is the system’s is initial condition and T =
2π
ω

is the nondimensional time period. This function is also
known as the stroboscopic map [25]. [We sample z(t ) in a
fixed rate.] The system’s periodic solutions corresponds to the
initial conditions that satisfy z∗ = F(z∗). By solving the equa-
tion using MATLAB’s solver of nonlinear equations fsolve,
we obtain fixed points of F, which correspond to periodic
solutions of the system. The stability of the periodic solution is
determined by calculating the Jacobian matrix of F : J = dF

dz
at z = z∗. Calculating the eigen values λi of J, the condition
for asymptotic stability of the periodic solution is given by
|λi(J)| < 1..

In Figs. 2(a) and 2(b), we plot representative solution tra-
jectories in the plane of two angles θ and φ, which are the
degrees of freedom in the reduced system of Eq. (4). As is
clear from the plots, coexisting symmetric periodic solutions
with mean values (θ̄ , φ̄) = (0, 0) [18] and (θ̄ , φ̄) = (π, 0)
are observed, representing forward and backward motion,
respectively. However, in Fig. 2(a), backward motion is not
stable whereas in Fig. 2(b), it is stable, depending on different
values of ω and β. In case of Fig. 2(b), each of the two
stable periodic solution has its own basin of attraction-region
of initial conditions (θ (0), φ(0))th at converge to it. A grid
discretization of these regions, in blue and red, is shown in
Fig. 2(c). Note that the angle θ is 2π periodic. The difference

between the cases in Figs. 2(a) and 2(b) clearly indicates that,
unlike the forward motion, which is always stable [18], there
exists stability transitions in the backward motion, and those
stability transitions must be accompanied by bifurcations. The
stability transition curves, obtained numerically for different
parameter ranges, are given in Fig. 3. When the backward
solution with (θ̄ , φ̄) = (π, 0) undergoes a transition from
unstable to stable, a pair of asymmetric branches of unstable
periodic solutions begins to evolve (Fig. 4), where (θ̄ , φ̄) �=
(π, 0). These unstable asymmetric solutions are denoted as
pink dashed loops in Fig. 2(b). As plotted in Fig. 4, we
captured a subcritical pitchfork bifurcation at this stability
transition. In addition, it is interesting to note that there exist
an optimum mean speed V = x(T )−x(0)

T and net displacement
X = x(T ) − x(0) with respect to β and ω, and the optimum
values can be tuned into a stable region by setting γ → 0 for
realistic parameter values, as shown in Fig. 5.

Remarkably, Fig. 5 also shows that the swimmer goes
faster in the backward direction compared to the forward
direction for γ �= 0. This effect is even amplified for larger
β and γ [see Fig. 5(b)].

In addition, there is nonzero net propulsion in the case of
γ = 0, i.e., zero mean of the field B(t ), which has not been
considered in Ref. [18].

B. Analytical investigation

The approach we adopt here is a combination of two
methods. First, a small-angle linear approximation in the joint
angle φ results in a second-order nonlinear equation in θ only,
which accurately captures (numerically) the dynamic. Next,
we also expand to the second order in θ about π , followed by
the harmonic balance approximation.

Expanding all terms in φ about φ = 0 in Eq. (4) and taking
only up to linear terms gives(

θ̇

φ̇

)
=

( 60(γ sin(θ )−β cos(θ ) sin(tω))+96φ

−16−6(γ sin(θ ) + 2φ − β cos(θ ) sin(tω))

)
; (5)

φ can be eliminated from Eq. (5) using the D operator
[D f (t ) = df

dt ] as follows. From the second equation of Eq. (5),
we obtain

(D + 12)φ = −6γ sin(θ ) + 6β cos(θ ) sin(tω). (6)
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FIG. 3. Stability transition curves of the symmetric backward periodic solution with (θ̄ , φ̄) = (π, 0). Solid lines show the numerical result
and dashed lines show the asymptotic calculation obtained in Eq. (19). In (a), γ = 0.1; in (b), β = 1.

Multiplying the first equation of Eq. (5) by (D + 12) and substituting Eq. (6), one obtains

(D + 12)θ̇ = 60(D + 12)(γ sin(θ ) − β cos(θ ) sin(tω)) + 96(D + 12)φ

−16
. (7)

Eliminating φ by substitution of Eq. (6) into Eq. (7) gives a second-order nonlinear time-periodic differential equation in θ

only, as

θ̈ + 15
4 θ̇ (β sin θ sin(tω) + γ cos θ ) + 9γ sin θ + 12θ̇ − 15

4 βω cos θ cos(tω) − 9β cos θ sin(tω) = 0. (8)

Note that Eq. (8) is analogous to the Kapitza pendulum [20] in the following sense. For zero excitation β = 0 and γ > 0,
the system has a stable equilibrium point at θ = 0 and an unstable one at the inverted position θ = π . For nonzero excitation
β > 0, there is a periodic solution oscillating around θ̄ = 0 that is always stable, while stability of the solution with θ̄ = π may
transition, depending on system parameter values. (More precisely, the system in Eq. (8) is analogous to the Kapitza pendulum
with inclined base excitation. See details in Ref. [19]).

Taylor series (second-order) expansion of sin θ and cos θ in Eq. (8) about θ = π gives

¨̃θ + 15
4

˙̃θ
(−βθ̃ sin(tω) + γ

(−1 + 1
2 θ̃2

)) − 9γ θ̃ + 12 ˙̃θ − 15
4 βω

(−1 + 1
2 θ̃2

)
cos(tω) − 9β

(−1 + 1
2 θ̃2

)
sin(tω) = 0, (9)

where θ̃ = θ−π .
For harmonic balance, we assume a periodic solution (truncating after first harmonics):

θ̃ (t ) = a0 + a1 cos(tω) + b1 sin(tω)

˙̃θ (t ) = −a1ω sin(tω) + b1ω cos(tω)

¨̃θ (t ) = −ω2(a1 cos(tω) + b1 sin(tω)). (10)

Substituting Eq. (10) into Eq. (9) and rearranging gives

M0 +
k∑
1

Mk sin(kωt ) + Nk cos(kωt ) = 0. (11)

Equating the coefficients of each harmonic to zero gives a polynomial system of three equations in the unknowns a0, a1, b1 :

M0 = a0

(
−9

2
βb1 − 9γ

)
= 0; M1 = 15

8
a2

0b1γω − 15

8
a2

0βω + 15

32
a2

1b1γω − 15

32
a2

1βω − 9

4
a1βb1

− 9a1γ − a1ω
2 + 15

32
b3

1γω − 45

32
βb2

1ω + 12b1ω − 15

4
b1γω + 15

4
βω = 0

N1 = − 15

8
a2

0a1γω − 9

2
a2

0β − 1

32
15a3

1γω − 9

8
a2

1β − 15

32
a1b2

1γω

+ 15

16
a1βb1ω − 12a1ω + 15

4
a1γω − 27

8
βb2

1 − 9b1γ − b1ω
2 + 9β = 0. (12)
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FIG. 4. In (a), (b), and (c), stability transitions of the backward periodic solution with θ̄ = π , accompanied by a subcritical pitchfork
bifurcation in θ̄ versus β, γ , ω, respectively, are shown. The colored lines show results from numerical calculations. The red dashed and solid
lines show symmetric solutions. The green and blue dashed lines show asymmetric solutions. The purple solid lines show the forward solution
θ̄ = 0. Note that θ is 2π periodic, so that θ̄ = {0, 2π} denotes the same solution. Black dotted curves show analytical calculations from
harmonic balance (see Sec. 3B1). In (d), (e), and (f), the maximal eigenvalue max |λ| with a variation of parameters is shown, where crossing
|λ| = 1 indicates stability transition. Here, in (a) and (c), ω = 2, γ = 0.1; in (b) and (e), β = 1, ω = 10; and in (c) and (f), β = 1, γ = 0.06.

Equation (12) can be seen as M0 = a0Q(b1) = 0. Two
types of possible solutions may exist: symmetric with a0 = 0,
and an asymmetric pair with Q = 0 and a0 �= 0. Assuming
a0 �= 0, note that equations M1 = 0 and N1 = 0 in Eq. (12)
only involve quadratic terms of a2

0, so we obtain two asymmet-
ric solutions with ±a0 and same a1, b1. Solutions of Eq. (12)
give a nice plot of the pitchfork bifurcation (see Fig. 4) and
the result is compared with numerical simulation, where the
mean values are θ̄ = π ± a0.

1. Bifurcation conditions

For the bifurcation, we require coincidence of both solution
types, so a0 = Q = M1 = N1 = 0. The extra fourth equation
gives conditions on parameters (β, γ , ω) in addition to solving
a1, b1.

M0 = Q = 0 gives a0 = 0; b1 = −2γ

β
. (13)

M1 = 0 gives

a1 =
2
(

√
1296β4γ 2 − 2304β4γω2 − 5760β2γ 3ω2

+450β6ω2 + 1125β4γ 2ω2 + 64β4ω4 − 900γ 6ω2

β2 −36γ − 8ω2
)

15
( 2γ 2ω

β
+ βω

) . (14)

And finally N1 = 0 gives

9β − 15
32 a3

1γω − 9
8 a2

1β − 12a1ω − 15
32 a1b2

1γω + 15
16 a1βb1ω + 15

4 a1γω − 27
8 βb2

1 − 9b1γ − b1ω
2 = 0. (15)
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FIG. 5. In (a) and (b), the mean speed V versus frequency ω shows the existence of an optimum. Solid lines show numerical calculations
and dashed lines show analytical calculations using Eq. (23). (c) shows numerical calculations of net displacement X versus the amplitude of
actuation oscillations β, also indicating an optimal value. Here, the analytical calculation (dashed curves) diverges with β. The vertical black
lines indicate stability transition of the backward solution; the dotted curve shows the unstable region. The red line shows the (θ̄ , φ̄) = (0, 0)
branch with nonzero γ , the blue line shows the (θ̄ , φ̄) = (π, 0) branch with nonzero γ , and the green line shows the (θ̄ , φ̄) = (0, 0) branch
with γ = 0.

Substituting the expressions for a1 and b1 from Eqs. (13)
and (14) into Eq. (15) gives the bifurcation condition as an
equation on β, γ , ω. This equation is cumbersome, and in the
following, we try to simplify it by approximation under some
scaling assumptions.

2. Asymptotic behavior of bifurcation condition

In order to simplify the expression in Eq. (15) for the bifur-
cation condition, we now assume the limit of a small magnetic
field (relative to spring stiffness) and fast oscillations. That
is, the nondimensional parameters satisfy γ � β � 1 < ω.
More concretely, choosing some ε � 1, we assume scaling as
γ ∼ O(ε2), β ∼ O(ε), and ω ∼ O(ε−0.5). We keep only terms
up to O(ε), while higher orders of ε are neglected.

Based on the previous assumption, M1 = 0 in Eq. (12), the
symmetric solution a0 = 0 can be approximated up to O(ε) as

−15

32
a2

1βω − a1ω
2 + 15

4
βω + 12b1ω = 0, (16)

which gives a1 as

a1 ≈ −2
(±√

450β2 + 64(ω2 − 45γ ) + 8ω
)

15β
. (17)

Rearranging Eq. (16) will give

a2
1 = 8(−4a1ω + 15β + 48b1)

15β
. (18)

Also N1 = 0 in Eq. (12), assuming a0 = 0 up to O(ε), gives

−9

8
a2

1β − 12a1ω − b1ω
2 + 9β = 0. (19)

Substituting Eqs. (17) and (18) into Eq. (19) and rearrang-
ing gives the simplified bifurcation condition as

32ω(
√

450β2 + 64(ω2 − 45γ ) + 8ω) + 10γ (5ω2 + 144)

25β

= 0. (20)

Importantly, Eq. (20) gives the conditions for stability tran-
sition of the symmetric backward solution. The bifurcation
condition for different parameters is calculated from the ap-
proximate Eq. (20) and is compared with numerical results
in the following (Fig. 3, dashed lines), showing excellent
agreement with the numerical results. Numerical results are
calculated from the original nonlinear system Eq. (3). We also
calculated the exact bifurcation condition from Eq. (15), and
its curves are not visually distinguishable in Fig. 3.

3. Asymptotic behavior of mean speed

In this section, the mean speed V of the swimmer in the x̂
direction is calculated for the same asymptotic scaling approx-
imation γ ∼ O(ε2), β ∼ O(ε), and ω ∼ O(ε−0.5) as in the
previous section. The case shown here is for (θ̄ , φ̄) = (π, 0),
and the same approach can be used for (θ̄ , φ̄) = (0, 0). For
calculating V, we need expressions for θ (t ) and φ(t ) in the
symmetric periodic solution. For θ (t ), using the same scaling
as in Eq. (16) and expanding Eq. (8) up to the second order
in θ and neglecting, retaining only terms up to order O(ε),
the symmetric periodic solution of Eq. (12) with a0 = 0 is
obtained as

a1 =
2(

√
2
√

9β2(5ω2 + 144)2 + 32ω2(ω2 + 144)2 − 8ω3 − 1152ω)

3β(5ω2 + 144)

b1 =
32ω(1152ω + 8ω3 − √

2
√

32ω2(144 + ω2)2 + 9β2(144 + 5ω2)2)

β(144 + 5ω2)2 . (21)

As for φ(t ), again we seek the harmonic balance solution as

φ(t ) = c1 cos(tω) + d1 sin(tω). (22)
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The trigonometric functions of Eq. (5) in θ are expanded up to the second order around θ = π :

φ̇ + 6(γ (π − θ ) − 2φ + β

(
−1 + 1

2
(θ − π )2

)
sin(tω)) = 0. (23)

Equation (22) is substituted into Eq. (23) to solve φ(t ) using a harmonic balance [using the assumptions as in Eq. (10)], and
the coefficients are obtained as follows:

c1 = −3
(−24a1βb1 + a2

1βω − 96a1γ + 3βb2
1ω + 8b1γω − 8βω

)
4(ω2 + 144)

d1 = 3
(
a1βb1ω + 6a2

1β + 4a1γω + 18βb2
1 + 48b1γ − 48β

)
2(ω2 + 144)

. (24)

Then, it can be continued to find ẋ(t ) as a function of a1, b1, c1, d1. The mean speed ẋ(t ) in the x̂ direction can be obtained as
[see Eq. (A13) in Appendix]:

ẋ(t ) = −
3 sin(θ )

(cos2(φ)(−β cos(θ ) sin(tω) + γ sin(θ ) + φ)

−(sin2(φ) + 5)(−β cos(θ ) sin(tω) + γ sin(θ ) + φ) + 4φ cos(φ)

)

34 − 2 cos(2φ)

− 3 sin(φ) cos(θ )(cos(φ)(−β cos(θ ) sin(tω) + γ sin(θ ) + φ) + 3φ)

cos2(φ) − 9
. (25)

Now, expanding the trigonometric functions in Eq. (25) to the first order about θ = π and φ = 0 gives

ẋ(t ) = −
3(π − θ )

((β sin(tω) + γ (π − θ ) + φ)

−5(β sin(tω) + γ (π − θ ) + φ) + 4φ

)

32
− 3φ((β sin(tω) + γ (π − θ ) + φ) + 3φ)

8
. (26)

Substituting the a1, b1 series for θ (t ) and the c1, d1 se-
ries for φ(t ) from Eqs. (10) and (22) into Eq. (26), and
then rearranging and removing all oscillating terms to keep
only the constant terms gives the final equation for V as
follows:

V ≈ − 3

64

(
4βb1 + 16c2

1 + 4βd1 + 16d2
1

)
. (27)

Substituting a1, b1, c1, d1 from Eqs. (21) and (24) into
Eq. (27), one obtains V as a function of β, γ , and ω. Equa-
tion. (27) gives the asymptotic approximation of V for the
backward solution with (θ̄ , φ̄) = (π, 0), and the expression
for the forward solution (θ̄ , φ̄) = (0, 0) can be obtained in
a similar way. The dashed curves in Figs. 5(a) and 5(c)
show the analytical prediction of V for both forward (red)
and backward (blue) solutions. It can be seen that there is
good agreement between the analytic approximation and the
numeric calculation of V as a function of ω in Fig. 5(a),
which also qualitatively captures the optimal point with some
deviation. In Fig. 5(c), for large β, the deviation between the
approximate and numeric calculation is very large since β and
γ are large, and violate the scaling assumptions β ∼ O(ε)
and γ � β � 1 < ω, and it is not shown for higher values
of β. The deviation of the analytical calculation from the
numerical calculation is more evident in Fig. 5(c), which plots
X as a function of β, where one can see a good agreement
between the approximate and numeric calculations only up
to β ∼ 1.5 for the backward motion, and a larger devia-
tion beyond this range due to the violation of the scaling
assumptions.

IV. CONCLUSION

The periodic dynamics of microswimmer propulsion in
the backward direction gives very interesting findings. In the
forward direction, the motion is always stable, whereas in the
backward direction (θ̄ = π ), the swimmer shows a stability
transition with a subcritical pitchfork bifurcation upon varying
a single parameter out of β, γ , ω (see Fig. 4). Surprisingly, the
swimmer can go faster in the backward direction than the for-
ward direction, and nonzero net propulsion exists for the case
γ = 0. The parameter γ can be tuned to obtain the optimal
mean speed or displacement in the stable region, which calls
for the scope of an experimental validation and gives a hint
toward its engineering applications in the future. Again, γ is
a very sensitive parameter in the system and the dynamics at
γ → 0 need further investigation to get a full picture of the
nonlinear dynamics in the domain.

The numerical approach successfully calculated the stabil-
ity, bifurcation, and optimal values of the swimmer’s motion
for the fixed point around [π ; 0] for a different range of
parameters. The harmonic balance approach together with
a small-angle approximation of φ, as well as using scaling
assumptions on β, γ , ω, predicts very well the symmetric and
asymmetric branches of the bifurcation, the mean speed of
the swimmer with respect to the actuation frequency, and the
bifurcation condition [Eq. (20)].
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APPENDIX: EXPLICIT CALCULATION OF DYNAMIC EQUATION OF THE TWO-LINK MICROSWIMMER

Here, we review the explicit derivation of the two-link swimmer’s equations of motion, which were briefly formulated
previously in Refs. [18,19]. By representing the forces and torques as Fi = (fi, mi ) for i = 1, 2, Eq. (1) can be written in the
matrix form as follows.

Fi = −Ri(φ)Vi; Vi =
(

vi
ωi

)
= Ti(φ)vb + Ei(φ)φ̇, (A1)

where vi is the vector of velocities, ωi is the angular velocity, and vi, fi are expressed in the frame (t̂, n̂) attached to link 1,
the head. Also, in Eq. (A1), vb = (vt , vn, θ̇ )

T
, where vt and vn are the tangential and normal velocities to the head and can be

converted into the generalized coordinates by using the rotation matrix(
ẋ
ẏ

)
=

(
cos θ sin θ

− sin θ cos θ

)T (
vt

vn

)
. (A2)

In Eq. (A1), Ri represents the hydrodynamic resistance matrices and are given as [22]

R1(φ) = ct l

⎡
⎣1 0 0

0 2 0
0 0 1

6 l2

⎤
⎦; R2(φ) = ct l

⎡
⎣ 1 + sin2φ cos φ sin φ 0

cos φ sin φ 1 + cos2φ 0
0 0 1

6 l2

⎤
⎦. (A3)

The terms Ti and Ei are described as

T1 =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦; E1 =

⎡
⎣0

0
0

⎤
⎦ T2 =

⎡
⎣1 0 −0.5l sin φ

0 1 −0.5l − 0.5l cos φ

0 0 1

⎤
⎦; E2 =

⎡
⎣0.5l sin φ

0.5l cos φ

−1

⎤
⎦. (A4)

The net hydrodynamic force on the ith link can be represented as

Fhyd,i = −Ri(Tivb + Eiφ̇). (A5)

Similarly, the generalized magnetic force vector acting on the ith link and the torque acting at the joint are given by

Fb =
⎡
⎣ 0

0
L · ẑ

⎤
⎦; τ = −kφ. (A6)

Again, assuming the swimmer moves quasi-statically, the net forces and torques on each link will be zero:∑
TT

i (Fhyd,i + Fb,i ) = 0;
∑

ET
i (Fhyd,i + Fb,i ) + τ = 0. (A7)

Substituting Eqs. (A1), (A3), (A4), and (A6) in Eq. (A7) gives

Rbbvb + Rbuφ̇ =
∑

TT
i Fb; Rbuvb + Ruuφ̇ =

∑
ET

i Fb − kφ, (A8)

where Rbb = ∑
TT

i RiTi; Rbu = ∑
TT

i RiEi; Ruu = ∑
ET

i RiEi.
We can write the previous equations in a concise matrix form as follows:

A
(

vb

φ̇

)
= b; A =

(
Rbb Rbu

RT
bu Ruu

)
; b =

( ∑
TT

i Fb,i∑
ET

i Fb,i − kφ

)
, (A9)

A = ct l

⎛
⎜⎜⎜⎜⎜⎝

sin2(φ) + 2 sin(φ) cos(φ) − l
2 sin(φ)(cos(φ) + 2) l sin(φ)

sin(φ) cos(φ) cos2(φ) + 3 −2lcos4
(

φ

2

)
l cos(φ)

− l
2 sin(φ)(cos(φ) + 2) −2lcos4

(
φ

2

)
l2

24 (24 cos(φ) + 3 cos(2φ) + 29) l2

6 (−3 cos(φ) − 4)

l sin(φ) l cos(φ) l2

6 (−3 cos(φ) − 4) 2l2

3

⎞
⎟⎟⎟⎟⎟⎠, (A10)

b =

⎛
⎜⎜⎝

0
0

h(b cos(θ ) sin(t�) − c sin(θ ))
−kφ

⎞
⎟⎟⎠, (A11)
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⎛
⎜⎜⎝

vt

vn

θ̇

φ̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 3 sin(φ)(cos(φ)(−bh cos(θ ) sin(t�)+ch sin(θ )+kφ)+3kφ)
l2ct (cos(φ)−3)(cos(φ)+3)

− 3(cos2(φ)(−bh cos(θ ) sin(t�)+ch sin(θ )+kφ)−(sin2(φ)+5)(−bh cos(θ ) sin(t�)+ch sin(θ )+kφ)+4kφ cos(φ))
2l2ct (cos(2φ)−17)

3cos2(φ)(−bh cos(θ ) sin(t�)+ch sin(θ )+kφ)−3(sin2(φ)−19)(−bh cos(θ ) sin(t�)+ch sin(θ )+kφ)+36kφ cos(φ)
l3ct (cos(2φ)−17)

6(cos(φ)+3)2(−bh cos(θ ) sin(t�)+ch sin(θ )+2kφ)
l3ct (cos(2φ)−17)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A12)

Using the relation Eq. (A2), we obtain

(
ẋ
ẏ

)
= 1

ct l2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3 sin(θ )

(
cos2(φ)(−bh cos(θ ) sin(t�) + ch sin(θ ) + kφ)
−(sin2(φ) + 5)(−bh cos(θ ) sin(t�) + ch sin(θ ) + kφ) + 4kφ cos(φ)

)
2(cos(2φ)−17)

− 3 cos(θ ) sin(φ)(cos(φ)(−bh cos(θ ) sin(t�)+ch sin(θ )+kφ)+3kφ)
(cos(φ)−3)(cos(φ)+3)

−
3 cos(θ )

(
cos2(φ)(−bh cos(θ ) sin(t�) + ch sin(θ ) + kφ)
−(sin2(φ) + 5)(−bh cos(θ ) sin(t�) + ch sin(θ ) + kφ) + 4kφ cos(φ)

)
2(cos(2φ)−17)

− 3 sin(θ ) sin(φ)(cos(φ)(−bh cos(θ ) sin(t�)+ch sin(θ )+kφ)+3kφ)
(cos(φ)−3)(cos(φ)+3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A13)

Using the nondimensionalization introduced in Sec. II, one obtains Eq. (25).
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