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Lufa Shi, Youfang Yan, Hengtong Wang , Shengjun Wang , and Shi-Xian Qu *

School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China

(Received 22 October 2022; accepted 20 April 2023; published 12 May 2023)

Predicting future evolution based on incomplete information of the past is still a challenge even though data-
driven machine learning approaches have been successfully applied to forecast complex nonlinear dynamics.
The widely adopted reservoir computing (RC) can hardly deal with this since it usually requires complete
observations of the past. In this paper, a scheme of RC with (D + 1)-dimension input and output (I/O) vectors
is proposed to solve this problem, i.e., the incomplete input time series or dynamical trajectories of a system, in
which certain portion of states are randomly removed. In this scheme, the I/O vectors coupled to the reservoir
are changed to (D + 1)-dimension, where the first D dimensions store the state vector as in the conventional RC,
and the additional dimension is the corresponding time interval. We have successfully applied this approach to
predict the future evolution of the logistic map and Lorenz, Rössler, and Kuramoto-Sivashinsky systems, where
the inputs are the dynamical trajectories with missing data. The dropoff rate dependence of the valid prediction
time (VPT) is analyzed. The results show that it can make forecasting with much longer VPT when the dropoff
rate θ is lower. The reason for the failure at high θ is analyzed. The predictability of our RC is determined by
the complexity of the dynamical systems involved. The more complex they are, the more difficult they are to
predict. Perfect reconstructions of chaotic attractors are observed. This scheme is a pretty good generalization
to RC and can treat input time series with regular and irregular time intervals. It is easy to use since it does not
change the basic architecture of conventional RC. Furthermore, it can make multistep-ahead prediction just by
changing the time interval in the output vector into a desired value, which is superior to conventional RC that
can only do one-step-ahead forecasting based on complete regular input data.
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I. INTRODUCTION

Reservoir computing (RC) [1–5], as an effective machine
learning approach, has attracted considerable attention of re-
searchers. The basic working element of RC is a recurrent
neural network (RNN) called a reservoir, which is actually
a high-dimensional nonlinear dynamical system. The input
layer feeds the time series into the reservoir, and the cou-
pling between the input layer and the reservoir transforms the
input data into spatiotemporal patterns in the corresponding
high-dimensional state space. The transient responses of the
neurons in the reservoir are transformed into an output signal
by the weights of the readout layer. The distinguishing fea-
ture of RC is that only the weights of the readout layer are
trained by a simple linear regression on the target data, but
the input weights and the weights of the internal connections
among the neurons in the reservoir are left untrained. This
simple and fast learning process tremendously reduces the
computational costs and overcomes the vanishing gradients
problem associated with other RNN training algorithms [6,7].
Such advantages of RC strongly facilitate the development
of physical reservoir computers [8–10] and trigger a great
many applications to a wide variety of tasks, including chaotic
time series prediction [3–5,11–13], reconstruction of chaotic
attractor [14–17], speech and image recognition [9,18,19],
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nonlinear channel equalization [3], and inference of unmea-
sured state variables [20,21]. To improve the performance
of RC and deal with the complex problems encountered in
predicting the future evolution of dynamical systems, a variety
of sophisticated schemes based on conventional RC have been
proposed, for instance, the parallel scheme [5,11,12], which
uses many spatially distributed machine learning devices to
effectively deal with the problem that demands extensive com-
putational resources when predicting the dynamics of large
spatiotemporally chaotic systems and complex networks; the
deep reservoir scheme [13] that uses cascaded nonlinear os-
cillators acting as a computational substrate to significantly
improve the computational performance when comparing
with a single-layer reservoir of identical size; and the rare
update scheme [22], which incorporates sparsely sampled real
data of the target system into the reservoir during the pre-
diction phase and is capable of generating an arbitrarily long
prediction horizon for a variety of chaotic systems.

Although the RC approach and its improvements have
achieved great success in a variety of tasks, they usually deal
with sequential data or time series. During their applications,
one might often make a default assumption that the input
data are complete and the datasets are prepared by rather
dense sampling points with uniform intervals. Unfortunately,
complete data with uniform interval are sometimes inacces-
sible, and the situation of missing data is often encountered
in practice. For instance, it is impossible or very difficult to
mine data in an extremely disastrous environment [23], and
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certain measurements of data may be too inaccurate due to
heavy pollution of noise so that one must discard them [24].
Hence, there rises a question of how to predict the future when
one has incomplete information of the past? To solve it, we try
to extend the applicability of RC to the situation of incomplete
input in this paper. More precisely, we consider a benchmark
task in the RC community, i.e., predicting chaotic time series.
Regarding the incomplete input, we only consider the case in
which certain data in the time series (or the past trajectories
of dynamical systems) are randomly removed (or missing),
but the knowledge of positions where the data are missing is
available. In other words, we can access the information of
time intervals between adjacent states in this incomplete time
series in addition to the state variables themselves.

Obviously, a naïve application of RC is doomed to failure
when the time series for training is incomplete. When the rate
of missing data is very small, e.g., 1%, the length of predic-
tion in Lyapunov time is not more than two for the logistic
map and zero for Lorenz, Rössler, and Kuramoto-Sivashinsky
(KS) systems. There have been several works demonstrating
their feasibility for predicting chaotic systems based upon
input data that are only a subset of states of the dynamical
system, also called partial observations [25–28]. They com-
monly assume that they have an imperfect knowledge-based
model, which may be due to the insufficient understanding
and/or limited resolution of the underlying physical process.
Their approach is a hybrid one, which combines the data-
driven machine-learning approach with incomplete input and
the imperfect knowledge-based model associated with data
assimilation techniques. Data assimilation techniques may
remedy the missing data by the knowledge-based model, re-
sulting in complete input data. It is clear that the application
of this method has strong limitations, which require that the
knowledge of the dynamics of the system should be known
even though it is imperfect. It is essentially different from the
situation in this paper.

From another point of view, the incomplete input data
involved in this paper can be considered a complete time series
without uniform intervals, which is the only difference from
conventional RC trained by complete time series with uniform
interval. According to this argument, we propose a RC scheme
that changes the D-dimensional input and output (I/O) vectors
into (D + 1)-dimension, where D is the dimension of the input
time series, and the additional dimension is the time interval
associated with the data in the time series. When the time in-
terval is a constant, this model is very similar to conventional
RC, where the extra dimension can be considered as bias.
It has been reported that introducing bias into conventional
RC may considerably improve its performance [21,29]. We
must point out that the scheme of introducing an additional
input channel for RC has been independently developed in
Refs. [30–34] recently. It has been successfully employed
to solve many important problems in the field of nonlinear
dynamics, such as predicting critical transition [30], ampli-
tude death [31] and a variety of bifurcations [32], studying
nonstationary chaotic systems [33], accomplishing dynamical
learning of dynamics [34], and so on. In these examples, a
common point is that the additional channels store the control
parameters or some other properties of the systems. Clearly,
the additional input channel is somehow similar to the extra

dimension of time intervals in our model. Designating an
additional input channel for artificial neural networks has been
widely used not only in RNNs like reservoir computers but
also in feed-forward neural networks [35,36]. The success
of these works support the feasibility of the scheme with
(D + 1)-dimension I/O developed in this paper. Pretty good
results are obtained when we apply this scheme to predict the
chaotic time series of the logistic map and Lorenz, Rössler,
and KS models.

The rest of this paper is organized as follows. In Sec. II,
the architecture of this RC scheme with (D + 1)-dimension
I/O is proposed, and the corresponding criteria to evaluate
the quality of predictions and the determination of the hy-
perparameters are described. The results for the application
of this scheme to the logistic map and Lorenz, Rössler, and
KS systems are shown in Sec. III, where the corresponding
analysis and discussion are also presented. The conclusion
appears in the last section.

II. MODEL AND METHODS

A. RC scheme with (D + 1)-dimension I/O

A reservoir computer usually consists of three main el-
ements: a fixed input layer, a fixed dynamical system with
a high-dimensional phase space, called the reservoir, and a
linear trainable readout layer [14]. Revision or variation in any
of the three elements may result in a different scheme. In the
reservoir, the neurons are connected according to an internal
connection matrix A ∈ RDr×Dr , whose entries define the links
of the reservoir network. This network is sparse and has an
average degree of six [4]. The nonzero entries of A are drawn
from uniformly distributed random numbers in [0, 1] and then
scaled so that the absolute value of the largest eigenvalue of
the matrix, i.e., the spectral radius, equals ρ. The internal
dynamical state of the network at time step n is stored in
vector r(n) ∈ RDr×1. In conventional RC, an input vector u(n)
of dimension D is coupled to the Dr-dimension state space
of the reservoir through weight matrix Win ∈ RDr×Din , whose
elements are chosen from the random numbers distributed
uniformly in the interval [−β, β]. The evolution of the inter-
nal dynamics of the reservoir is governed by the following
equation:

r(n + 1) = tanh[Ar(n) + Winu(n)]. (1)

The D-dimension output vector v(n + 1) can be obtained by

v(n + 1) = Wout[r(n + 1), p], (2)

where Wout ∈ RDout is a mapping from the Dr-dimensional
space of the dynamic state of the reservoir to Dout-dimensional
output state space, and p is an adjustable parameter [5], which
can be obtained by linearly fitting Eq. (2) into the target
vd(n + 1). For the sake of simplicity, we only discuss the case
of Din = Dout = D in this paper.

In fact, artificial neural networks are universal function
approximators [37,38]. In the conventional scheme of imple-
menting RC, the state of the dynamical system is the only
input, and the next point of the dynamical trajectory serves
as the target. Hence, the corresponding approximation results
in the so-called one-step-ahead prediction, which may only
deal with the situation where the input data are the state
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variables of the dynamics, and the time interval between any
adjacent trajectories is assumed to be uniform. For the case
of incomplete input data discussed here, it is actually a time
series with nonuniform time intervals, which may provide
both one-step- and multiple-step-ahead evolutional informa-
tion of the dynamics in the past. Conventional RC is unable to
sense the variation of the time intervals in the training process
and thus cannot make a prediction if we simply feed this
kind of input into the system. Therefore, something should
be changed so that the RC can feel the variation of the time
intervals. A simple idea comes to our mind: Why should we
not also feed the information of the time intervals into the RC?
We introduce a new (D + 1)-dimension input vector:

ũ(tn) ≡ [u(tn),�tn]†, (3)

where the † symbol denotes the transpose of a matrix. Here,
ũ(tn) includes information of both the dynamical states (the
first D dimension) and time intervals (the time dimension).
Here, the time interval is given by �tn ≡ tn+1 − tn. In this way,
we may equivalently treat both the dynamical states and time
intervals as dynamical variables. Accordingly, the correspond-
ing output and target are changed into (D + 1)-dimension
vectors, defined by, i.e.,

ṽ(tn+1) ≡ [v(tn+1),�tn+1]†, (4)

ṽd(tn+1) ≡ [vd(tn+1),�tn+1]†. (5)

The coupling between the input and the internal dynamics
should be redefined by the concatenation of Ws

in and Wt
in, i.e.,

W̃in ≡ (
Ws

in, Wt
in

)
, (6)

where Ws
in ∈ RDr×D is the coupling matrix between the state

variables in the input and dynamical states of neurons in the
reservoir, and Wt

in ∈ RDr is the coupling matrix between the
time intervals of input and the dynamical states of the neurons.
Thus, W̃in is a Dr by (D + 1) matrix. We must point out
that W̃in will not change during the training and predicting
phases if it is previously determined. The method to determine
these matrices will be described in Sec. II C. Similarly, W̃out ∈
R(D+1) becomes the mapping from the dynamical state of the
reservoir to a (D + 1)-dimension output ṽ(tn+1). It is the only
training quantity for the RC and can be obtained by linear
regression.

After reforming and redefining the input state, the output
state, the target state, and the coupling matrices, the evolution
of the internal dynamics of the reservoir can be rewritten, in
the language of our (D + 1)-dimension scheme, in the follow-
ing form:

r(tn+1) = tanh[Ar(tn) + W̃inũ(tn)]. (7)

The (D + 1)-dimension output vector ṽ(tn+1) is obtained by

ṽ(tn+1) = W̃out[r(tn+1), p]. (8)

Now we have built up the framework of our (D + 1)-
dimension scheme, as shown in Fig. 1. Introducing an
additional dimension of the time interval variable makes it
generalize the RC to deal with input time series with nonuni-
form time intervals without changing the basic architecture,
where the state variable and the time variable are treated

FIG. 1. Illustration of reservoir computing scheme with (D + 1)-
dimension input and output (I/O). (a) The training phase, where
the (D + 1)-dimension input vector ũ(tn) is fed into the reservoir
successively. (b) The predicting phase, where a (D + 1)-dimension
output ṽ(tn+1) is obtained at each time step, which is then fed back
into the input, making the system form a loop and run autonomously.

equivalently. In addition, the dimension of the time interval
is similar to bias in conventional RC [21,29], especially when
all the time intervals are the same. The scheme proposed here
might be cataloged into the same class as the works that intro-
duce an additional channel to feed into the control parameter
or other parameters [30,32–34]. This similarity suggests we
believe that this (D + 1)-dimension scheme will be successful
in making prediction based on the incomplete and irregular
input time series. The examples for applying this scheme to
predict the future evolution of dynamical systems from an
incomplete input time series will be shown in the following
section.

During the training phase, the reservoir will evolve from
an initial time t0 for NW time steps to avoid the influence
of arbitrary initial states, which is known as the warmup
process. Then the system undergoes evolutions for NT steps
from time tNW to train the system. At the boundary of the time
between warmup and training phases, one has ũ(t̂0) = ũ(tNW )
and ṽd(t̂0) = ũ(t̂0). Thus, t̂n in the training phase is the relative
time with the starting point t̂0 = tNW . After the system evolves
for NT steps from this time instant, we obtain a series of
reservoir state vectors {r(t̂i ), i = 1, NT}, by which we may
concatenate respectively the state vectors and their squares to
form the following Dr by NT matrices, i.e.,

R = [
r(t̂1), r(t̂2), r(t̂3), . . . , r

(
t̂NT

)]
,

R2 = [
r2(t̂1), r2(t̂2), r2(t̂3), . . . , r2

(
t̂NT

)]
. (9)

The corresponding target Ṽd is defined by

Ṽd = [
ṽd(t̂1), ṽd(t̂2), ṽd(t̂3), . . . , ṽd

(
t̂NT

)]
= [

ũ(t̂1), ũ(t̂2), ũ(t̂3), . . . , ũ
(
t̂NT

)]
, (10)

which is an (D + 1) × NT matrix. Following Ref. [5], in this
paper, we express the right-hand side of Eq. (8) as

W̃out[r(tn+1), p] = P1r(tn+1) + P2r2(tn+1). (11)
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Then we may relate Ṽd to R and R2 by

Ṽd = P1R + P2R2. (12)

Here, P1 and P2 are the (D + 1) by Dr coupling matrices,
which can be determined by the ridge regression [5,11] that
minimizes the least squares difference:

� = ‖P1R + P2R2 − Ṽd‖2 + α‖Ṽd‖2, (13)

where α is a small positive regularization constant to avoid
overfitting.

Once the mapping W̃out is obtained, the system turns into
the prediction phase, where the relative time t̂n with the
starting point t̂0 = tNW+NT is used. At the boundary of the
time between training and predicting phases, one has ũ(t̂0) =
ũ(tNW+NT ) and ṽd(t̂0) = ũ(t̂0). The output ṽ(t̂n+1) is given by

ṽ(t̂n+1) = P1r(t̂n+1) + P2r2(t̂n+1). (14)

Feed back ṽ(t̂n+1) to ũ(t̂n) [or say replace ũ(t̂n) by ṽ(t̂n+1)],
and let the RC evolve; it then becomes an autonomous dy-
namical system and is ready to make prediction. Here, we
must mention that the time intervals in the training phase
take the values of those in the input data. However, dur-
ing the prediction phase, it may be simply set to �t̂n =
constant (usually �t̂n = 1 for the time-discrete maps, and
�t̂n = τ̂ in the time-continuous systems, where τ̂ is the in-
tegral time step). Running autonomously for NP time steps,
the system will produce a prediction of time series, i.e.,
{v(t̂1), v(t̂2), v(t̂3), . . . , v(t̂NP )}, where v(t̂n) is the state vari-
able in ṽ(t̂n), or the first D-dimension component of it.

B. Criteria for the efficiency of prediction

To test the feasibility and validity of the scheme proposed
in this paper, as the prototypes, we employ four well-known
theoretical models (which will be shown in the next section).
These models produce chaotic time series to coin simulated
incomplete inputs and provide standards to measure the valid-
ity of the predictions. Suppose that the predicted time series
reads {v(t̂1), v(t̂2), v(t̂3), . . . , v(t̂N )}, and the corresponding
true counterparts produced by the theoretical models are
{vd(t̂1), vd(t̂2), vd(t̂3), . . . , vd(t̂N )}, with

vd(t̂n) = F[vd(t̂n−1)], (15)

considering the one-step-ahead nature of the RC, where F(·)
is a time-discrete mapping. For the logistic map, it reduces to
a one-dimensional mapping, i.e., f (xn) = μxn(1 − xn), while
for a general N-dimension dynamical system, it is formally
an N-dimension map, which is the iteration solution of the
time-continuous differential equation.

Now we introduce two measures to determine the vali-
dation of the predicted time series. The first measure is the
so-called valid prediction time (VPT) denoted by Tλ, which is
the longest duration of time before the normalized error E (t̂N )
of prediction exceeds a threshold ε. Here, we set ε = 0.1.
Then it is given by the following formula:

Tλ ≡ λm max(t̂N − t̂0), if E (t̂N ) � ε. (16)

where λm is the maximum Lyapunov exponent, and thus, Tλ is
in Lyapunov time 1/λm. The normalized error is defined by

E (t̂N ) = ‖vd(t̂N ) − v(t̂N )‖√〈
v2

d

〉 , (17)

where the mean square of the target is given by

〈
v2

d

〉 = 1

N

N∑
n=1

‖vd(t̂n)‖2
. (18)

Another measure denoted by σ is actually the root mean
square error (RMSE) of {v(t̂n)}, which is defined by

σ =
(

1

NP − 1

NP∑
n=1

{v(t̂n) − F[v(t̂n−1)]}2

)1/2

. (19)

This quantity reveals globally how far the prediction is away
from the real one or the precision of the reconstruction of the
dynamics (or attractor) hidden in the input time series.

C. Hyperparameter optimization

As we have mentioned previously, there are three
pre-determined matrices in the current (D + 1)-dimension
scheme. They are A with spectral radius ρ, Ws

in with its
elements drawn from uniformly distributed random numbers
in interval [−β, β], and Wt

in with those in interval [−γ , γ ].
The value of γ is set to γ = β

√
〈u2〉 with

〈u2〉 = 1

NT

NT∑
i=1

‖u(t̂i )‖2
. (20)

The reason for this setting lies in the fact that it is a plausible
choice to make the terms of state variable Ws

inu(t̂n) and time
variable Wt

in�t̂ n have approximately the same contribution
for the reservoir neural network. We have empirically found
that this setting of γ works well for our (D + 1)-dimension
scheme, and thus, further optimizing of γ is not required.

As is well known, ρ, β, and α are the hyperparameters
which show serious influence on the performance of the RC
and should be chosen very carefully. Furthermore, different
choices of A and Ws

in may also affect the result of predic-
tion [5]. Therefore, coarse grid sweeps are carried out in the
parameter regimes of ρ, β, and α, respectively. One hundred
distinct random network realizations are generated for each
set of the hyperparameters. Then the average of the VPT Tλ

and the RMSEs σ over all the network realizations are carried
out. Finally, one may find a set of optimum values of them, by
which Tλ reaches its maximum or σ gets its minimum.

D. Preparing an incomplete input time series
by randomly removing data

For the dynamical systems involved in this paper, we can
formally express their evolution by the following iteration:

ūi+1 = F(ūi ), (21)

by which we produce a time series {ūi, i = 0, N0} with uni-
form time interval τi ≡ 1. An incomplete time series can be
coined by simply removing data with a uniform probability
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from this time series, for instance, the resulting time series
{ūn} = {ū0, ū1, ū2, ū4, ū5, ū8, ū9, . . . . . .} and the correspond-
ing time intervals {τn} = {1, 1, 2, 1, 3, 1, 1, · · · · · · }. It is an
incomplete time series with missing data or, say, a time series
with nonuniform time intervals. Here and afterward, the di-
mensionless integer time interval τn = �t̂n/τ̂ will be used to
replace �t̂n. Hence, N0 is the training time in units of τ̂ . The
dropoff rate of the incomplete time series is defined by

θ = Noff/N0, (22)

where N0 is the initial number of states produced by the
mapping in Eq. (21), and Noff is the number of states randomly
removed.

If the abovementioned incomplete time series is an in-
put of the RC in the training phase, then the target is
{ū1, ū2, ū4, ū5, ū8, ū9, . . .}, considering the one-step-ahead
prediction nature. In our notation system for the (D + 1)-
dimension scheme setup in Sec. II A, the input and the
corresponding target are expressed respectively by

ũ(tn) :

(
ū0

1

)(
ū1

1

)(
ū2

2

)(
ū4

1

)(
ū5

3

)(
ū8

1

)
. . . , (23)

where 0 � n � NW + NT − 1, and

ṽd(tn) :

(
ū1

1

)(
ū2

2

)(
ū4

1

)(
ū5

3

)(
ū8

1

)(
ū9

1

)
. . . , (24)

where 1 � n � NW + NT, and NW + NT = (1 − θ )N0. Here,
N0 is invariable to ensure the RC is trained for the same time
period but different numbers of states as θ varies.

We must emphasize that different configurations of missing
data will be drawn when coining an incomplete time series,
even when the dropoff rate is the same, which may affect
the efficiency of predictions. Therefore, the averages of the
characteristic quantities for predictions should be done over
a number of configurations, especially when one intends to
investigate the effect of the dropoff rate on the results. In
this paper, 100 configurations are involved in the averages.
Therefore, the VPT mentioned in the following sections is the
mean value, denoted by 〈Tλ〉, which is obtained by the average
over the reservoir realizations and the configurations of the
input data.

III. RESULTS AND DISCUSSION

A. Logistic system

The first example for applying this RC scheme with
(D + 1)-dimension I/O is the logistic map, which is a
one-dimensional discrete dynamical system. The mapping
function is

xn+1 = μxn(1 − xn). (25)

Here, the control parameter μ is set to 3.98, at which the
system is in a chaotic state. The corresponding Lyapunov
exponent λ is calculated through

λ(x0) = 1

N

N∑
n=1

ln | f ′(xn)|, (26)

where x0 is the initial condition, f ′(·) is the derivative of the
mapping function, N = 30 000, and 10 000 transient states

〉
〈

FIG. 2. The θ dependence of valid prediction times (VPTs) for
the logistic map. The black squares are 〈Tλ〉 predicted by conven-
tional reservoir computing (RC), and the red circles are those by our
RC with (D + 1)-dimension input and output (I/O).

are discarded for each x0. In general, one may assume that
the Lyapunov exponent calculated by this equation is depen-
dent on the choice of the initial states. Thus, the average of
λ(x0) over 100 randomly chosen initial conditions is done
to obtain the Lyapunov exponent. The resulting value is λ =
0.616 ± 0.001. In the performance of our RC for this system,
the time divides are set as follows, i.e., N0 = 900, NW =
50, NT = N0(1 − θ ) − NW, and NP = 1000. The number of
nodes in the reservoir is Dr = 500. The hyperparameters are
ρ = 0.2, β = 1.9, and α = 1 × 10−10, determined through
the complete time series.

In Fig. 2, the variations of the VPT 〈Tλ〉 with respect to the
dropoff rate θ for different feeding-in schemes are shown. One
may obviously see that conventional RC exhibits very poor
predictability when we naïvely feed the incomplete time series
into the reservoir, as shown by the black squares in Fig. 2.
The curve shows monotonic decrease and reaches a plateau
at θ � 20%, where the VPT is very close to zero. The VPT is
not more than 2 Lyapunov time even when the dropoff rate θ is
very small, e.g., 1%, where the data missing are negligible. It
can be easily understood if we look back to the structure of the
input data. In an incomplete time series, there are states with
different time intervals, such as one-, two-, three-step, and
even larger ones, which correspond to the information of the
first-, second-, third-, and higher-order mapping, respectively.
While conventional RC uses the one-step-ahead forecasting
mechanism, the time interval is assumed to be one in the
training process. If we simply feed the incomplete input into
the RC, it treats all the states with intervals other than one step
as the one-step state, which is to say that the machine blends
the second- and higher-order iterations of the map and learns
the erratic information of the dynamics of the mapping and
thus cannot give satisfactory results.

The quality of prediction has been considerably improved
when applying our RC with the (D + 1)-dimension I/O
scheme. The result is illustrated by the red circles in Fig. 2.
We found that, at very low dropoff rate (θ � 1%), the VPT
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FIG. 3. Reconstruction of the logistic map when θ = 1%. The
line represents the theoretical values, and the circles are their pre-
dicted counterparts. The root mean square error (RMSE) for the
reconstruction is σ = 1 × 10−6.

reaches 9.6 Lyapunov time. Nevertheless, the shape of the
logistic mapping has been successfully reconstructed for 80
out of 100 distinct random network realizations, as shown in
Fig. 3. The RMSE for the reconstruction is very small, i.e.,
σ = 1 × 10−6. Even when the dropoff rate reaches 30%, the
reconstruction still fits into the mapping function very well,
and the RMSE keeps a low value, i.e., σ = 0.01. In contrast,
conventional RC simply fed by the incomplete time series
cannot do so. Globally, the VPT 〈Tλ〉 decreases monotonically
with the increase of the dropoff rate. It is <1 when θ > 50%,
which gives the maximum dropoff rate before which this
scheme of RC can make a good prediction, denoted by θm =
50%. The result reveals that our approach can only tolerate
the incomplete time series with a lower dropoff rate. The
reason is explained as follows. In general, an incomplete time
series coined by randomly removing states from its complete
counterpart consists of states with different time intervals.
The dominant states in the series are the ones with the time
interval τn = 1 when the dropoff rate is very low. As θ in-

creases, the portion of this kind of state will reduce, while
those with τn > 1 increase. The greater the dropoff rate, the
more it contains states with larger time intervals. The states
with larger time intervals may become dominant when θ is
very large. Here, our approach is set to make one-step-ahead
forecasting. Therefore, it loses the capacity to make a predic-
tion since the system has learned very little information about
the one-step iterations during the training phase.

To verify our argument, we prepare a specific type of
incomplete time series by randomly dropping off data from
a complete time series with the limitation that no two adjacent
data can be removed. Obviously, the resulting time series
consists of only two kinds of states: one with τn = 1 and
the other with τn = 2. Thus, the number of states removed
is the same as the number of states with τn = 2. In princi-
ple, the current RC approach may realize the two-step-ahead
forecast by simply changing the time interval in the output
vector to τn = 2. Based on this special incomplete time series,
we train our RC first and then let it carry out one- and two-
step-ahead prediction, respectively. The results are plotted
in Fig. 4. One may immediately find that the dropoff rate
dependence of the VPT 〈Tλ〉 ends at θ = 50% in Fig. 4(a).
The VPT 〈Tλ〉 by the one-step-ahead forecasting goes to zero
but goes to its maximum in the two-step-ahead forecasting.
The reason is that all the states in the series are those with
two-step states (i.e., τn = 2) in this occasion. Therefore, the
machine cannot predict the one-step iterations. When θ = 0,
the VPT by one-step-ahead forecasting is 〈Tλ〉 ∼ 12, but that
by two-step-ahead forecasting is 〈Tλ〉 = 0. This is because the
time series stores only the knowledge of one-step iterations in
this case; the reservoir learned the full information of one-step
iterations but learned nothing of the two-step-ahead iterations.
Hence, it cannot make a prediction for the two-step iteration.
As θ increases, the VPT by one-step-ahead forecasting de-
creases, but the VPT by the latter increases. The crossover
happens at θ = 25%, where both kinds of forecasting give ap-
proximately the same VPT since half of the training time is for
the one-step and the other for the two-step iterations. The plots
in Figs. 4(b) and 4(c) are the corresponding reconstructions
of the first- and second-order mapping, respectively, which
are shown by the circles. The line represents the theoretical

〉
〈

FIG. 4. Prediction results based on input with two kinds of states. (a) The dropoff rate dependence of valid prediction times (VPTs) by
one-step-ahead (black squares) and two-step-ahead (red circles) predictions, respectively, where the input time series has only two kinds of
time intervals, i.e., τn = 1 and 2. Reconstruction of the (b) first-order and (c) second-order mapping functions when θ = 25%.
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FIG. 5. The θ dependence of valid prediction times (VPTs) for
the Lorenz system. The black squares are the predictions by conven-
tional reservoir computing (RC), and the red circles are those by our
RC scheme with (D + 1)-dimension input and output (I/O).

curve. Obviously, the prediction results fit into the theory very
well. The RMSEs for the reconstruction are σ = 3 × 10−5

and 3 × 10−4, respectively.

B. Lorenz and Rössler systems

Now we extend the application of this scheme to the
differential dynamical systems, e.g., the Lorenz and Rössler
systems. The fourth-order Runge-Kutta method is employed
to generate dynamical trajectories of the two systems, and
the Lyapunov exponents are calculated by the QR decom-
position algorithm, where the time steps are τ̂ = 0.02 and
0.05, respectively. In the simulation, the time interval �t̂n is
rescaled by τ̂ to get an integer number. Here, the time divides
for our RC are set as follows, i.e., N0 = 3100, NW = 100,
NT = N0(1 − θ ) − NW, and NP = 5000. The number of nodes
in the reservoir is Dr = 500.

The Lorenz system is described by the following differen-
tial equations:

ẋ = a(y − x), ẏ = −xz + bx − y, ż = xy − cz. (27)

Here, the parameters are set to a = 10, b = 28, c = 8
3 . The

Lyapunov exponents are {λ1, λ2, λ3} = [0.9, 0,−14.5]. The
hyperparameters for the RC are ρ = 0.7, β = 0.05, and α =
1 × 10−10.

The variations of the VPTs with respect to the dropoff
rate are shown in Fig. 5. As shown by the black squares,
a significant difference is that conventional RC cannot give
any prediction at all, even when the dropoff rate is very
small. However, our RC with the (D + 1)-dimension I/O
scheme clearly improves the predictability, especially when
θ is smaller, as shown by the red circle in the figure. The VPT
shows a very similar dropoff rate dependence to that for the
logistic map (as shown by the red circles in Fig. 2). The VPT
becomes <1 when θ > 38%, i.e., the maximum dropoff rate
is θm = 38%. The overall magnitudes of the VPTs are lower
than those for the logistic map.

FIG. 6. Comparison between predicted and actual time series of
the dynamic state of the Lorenz system when θ = 30%.

In Fig. 6, plotted are the comparisons between the pre-
dicted time series of the dynamical states and the actual
ones. The vertical dashed-line marks the position of the VPT.
The components of the dynamical states predicted by the
RC scheme with (D + 1)-dimension I/O are presented by
the red lines. In this figure, one may find that the predicted
states coincide with the actual ones very well before time
tλm reaches the VPT. When the time is beyond the VPT, the
x and y components exhibit significant deviation, and the z
component shows phase synchronization with the actual dy-
namics. The reason is due to the Lyapunov exponents, which
are a positive, zero, and a negative number along the x, y,
and z directions, respectively. Therefore, going from the top
to the bottom row of the graph, the deviation of the forecast
state components against the actual ones reduces according
to the order of the descent of the corresponding Lyapunov
components.

The other example of the time-continuous dynamical sys-
tem is the Rössler system, which is described by the following
differential equations:

ẋ = −y − z, ẏ = x + ay, ż = b + (x − c)z, (28)

where a = 0.5, b = 2.0, and c = 4.0, at which the sys-
tem is chaotic. The Lyapunov exponents are {λ1, λ2, λ3} =
[0.12, 0,−2.9]. The hyperparameters for the RC are ρ = 0.5,
β = 0.15, and α = 1 × 10−9.

Figure 7 shows the dependencies of the VPTs for the
Rössler system by two schemes, in which a similar climate
but with more significant improvement is observed when com-
pared with those in Fig. 5. The maximum dropoff rate at which
the VPT is <1 occurs at θm = 52%. The time series of the
predicted dynamic states display a similar picture to that of
the Lorenz system, as shown in Fig. 8.

Comparing the results in Figs. 5 and 7 with those in Fig. 2,
one may find that the overall enhancements on the predictabil-
ity of this RC scheme trained by incomplete dynamic states
of the three systems are in the following descending order,
i.e., the Rössler system, the logistic map, and then the Lorenz
system. The details of the characteristic quantities for the
predictions are listed in Table I. It reveals that the maximum
dropoff rates θm and the VPTs at the typical dropoff rates for
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FIG. 7. The θ dependence of valid prediction times (VPTs) for
the Rössler system. The black squares are the predictions by conven-
tional reservoir computing (RC), and the red circles are those by our
RC scheme with (D + 1)-dimension input and output (I/O).

the three systems show roughly negative correlation with the
values of the corresponding maximum Lyapunov exponents.
Thus, the predictability is dependent on the structure and
complexity of the chaotic attractors. In Fig. 9, we show the
reconstructed Lorenz and Rössler attractors when θ = 30%.
The plots reveal that the predicted orbits reproduce the climate
of the original attractors very well, where the precision is
σ = 8 × 10−3 and 3 × 10−4, respectively.

C. KS system

As an illustrative model for a high-dimensional spatiotem-
porally chaotic system, we consider the KS equation, i.e.,

yt = −yyx − yxx − yxxxx, (29)

where y(x, t ) is a scalar field defined in the spatial domain 0 �
x � L. The periodic boundary condition is employed such
that y(x, t ) = y(x + L, t ). Here, we choose L = 60, and the

FIG. 8. Comparison between predicted and actual time series of
the dynamic state of the Rössler system when θ = 30%.

TABLE I. Comparison of the characteristic quantities among the
logistic map and the Lorenz and Rössler systems.

Characteristic Logistic map Lorenz system Rössler system
quantities (λm = 0.616) (λm = 0.90) (λm = 0.12)

θm 50% 37% 51%
〈Tλ〉|θ=0% 11.9 11.9 12.7
〈Tλ〉|θ=1% 9.6 11.4 12.4
〈Tλ〉|θ=10% 7.0 6.2 11.2
〈Tλ〉|θ=20% 4.1 2.7 8.0
〈Tλ〉|θ=30% 2.4 1.9 3.7

maximum Lyapunov exponent of the system is λm = 0.089.
By numerically integrating Eq. (29) on a uniformly spaced
grid of size Q = 128 with τ̂ = 0.25, we obtain a simulated
dataset with Q time series:

u(t ) = [y(�x, t ), y(2�x, t ), . . . , y(Q�x, t )]T , (30)

where �x = L/Q. When applying this RC scheme with (D +
1)-dimension I/O to this system, the time divides are set as
follows: N0 = 50 000, NW = 10 000, NT = N0(1 − θ ) − NW,
and NP = 5000. The number of nodes in the reservoir is Dr =
5000. The hyperparameters for the RC are ρ = 0.4, β = 0.5,
and α = 1 × 10−5.

In Fig. 10(a), plotted is the actual state of the KS sys-
tem obtained by numerical integration, and the corresponding
predicted state by our RC without missing data along the
temporal axis in the input and the deviation of the predicted
state from the true counterpart are shown in Figs. 10(b)
and 10(c), respectively. One may see that this RC scheme
with (D + 1)-dimension I/O gives a pretty good short-term
prediction, where the VPT is ∼6 Lyapunov time. A visual
inspection of the figure shows that the reservoir with this
scheme may have learned the correct climate of the KS system
even after the time duration is beyond the VPT. The result
of the prediction by our RC with Dr = 5000 in this paper
shown in Fig. 10 agrees well with (or even better than) that
by conventional RC with Dr = 9000 in Ref. [4], which is to
say that our RC is an effective scheme for predicting dynamics
of the high-dimensional spatiotemporally chaotic system like
the KS equation.

When 10% of the data along the temporal axis are missing,
this RC scheme has also been successfully applied to predict
the dynamics of the KS system. The corresponding results

FIG. 9. The reconstruction of chaotic attractors. (a) Lorenz at-
tractor. (b) Rösslor attractor.
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FIG. 10. Prediction of the Kuramoto-Sivashinsky (KS) system
by our reservoir computing (RC) when θ = 0%. (a) True state of
the KS system. (b) Reservoir prediction. (c) Error [(b) minus (a)] in
the reservoir prediction.

are shown in Fig. 11, where (a) is the actual state of the KS
equation, (b) is the predicted state based on the input data
with the dropoff rate θ = 10%, and (c) is the deviation of the
prediction from the actual state. One may find that the short-
term forecasting is very good where the VPT is ∼4 Lyapunov
time. Obviously, the current RC scheme can also replicate the
long-term climate of the KS system, even when the data drop
happens. The VPT will decrease to 2 Lyapunov time when we
further increase the dropoff rate to θ = 20%. The maximum
dropoff rate happens at θm = 25% when VPT equals 1. We
must point out that θm and the VPTs at typical dropoff rates of
the KS system are smaller than those of the time-continuous
systems illustrated in the previous section. The reason is that
the spatial dimension in the KS system is very large, and thus,
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FIG. 11. Prediction of the Kuramoto-Sivashinsky (KS) system
by our reservoir computing (RC) when θ = 10%. (a) True state of
the KS system. (b) Reservoir prediction. (c) Error [(b) minus (a)] in
the reservoir prediction.

〉
〈

FIG. 12. δ dependence of the mean valid prediction time (VPT).
(a) For the exponential distribution of time intervals. (b) Poisson
distribution.

the system is more complex and intractable. More nodes of
the reservoir are required to make a good prediction.

D. Effect of the time interval and its distribution
on the prediction ability

The effect of the time interval distribution is an important
problem, especially when we try to apply our RC to the case
of nonuniform sampled intervals instead of missing data. The
results mentioned previously are based on the incomplete data
produced by the way stated in Sec. II D, where it is produced
by randomly removing data from a complete time series with
a uniform probability. The distribution of the time interval τ

can be analytically obtained, which is

P(τ ) = (1 − θ )θτ−1. (31)

It is an exponential distribution governed merely by the
dropoff rate θ . The analytical expressions of the other statisti-
cal quantities are

δ = 〈τ 〉 = 1/(1 − θ ), (32)

σn =
√

θ/(1 − θ ), (33)

P1 = P(τ = 1) = 1 − θ = δ−1. (34)

Here, δ is the mean time interval, σn is its standard error,
and P1 is the portion of time intervals which equal 1. All
these quantities are uniquely determined by the dropoff rate.
Hence, the decreasing of the mean VPTs with respect to
the increasing of θ in the previous subsections can easily
be changed into the mean interval or even its standard error
dependence. In Fig. 12(a), the circles, triangles, and squares
display the mean interval dependence of 〈Tλ〉 for the logis-
tic map and Lorenz and Rössler systems, respectively. The
obvious decreases of mean VPTs as the increasing of mean
time interval are observed. This can be easily understood by
the following argument. In conventional RC, predicting the
dynamics is to reconstruct trajectories of the first-order itera-
tion, in which the input with uniform time intervals contains
only the first-order iterations, while in this paper, the time
intervals are not uniformly sampled; not only does the input
carry the first-order iteration but also the high-order ones since
τ = 1 and n (n > 1) correspond to the first- and high-order
iterations, respectively. Thus, with the increasing of θ , the
mean interval δ becomes >1, and P1 reduces, as shown by the
hollow circles in Fig. 13. The decreasing of P1 is responsible
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FIG. 13. δ dependence of P(τ = 1).

for the reduction of the mean VPT with the increasing of δ

(or θ ) since a good prediction requires a sufficient amount of
samples. If 〈Tλ〉 � 1 is set as a criterion for the bad forecast,
we may get maximum mean intervals δm = 2.0, 1.60, and
2.1, respectively. By Eqs. (34) and (32), we obtain the cor-
responding critical portions P1c = 0.50, 0.63, and 0.49, and
critical dropoff rates θm = 50%, 37%, and 51%, which are
the same as those in Table I. This vision has been shown by
Fig. 4, where the input contains only two kinds of intervals,
i.e., τ = 1 and 2, and the portion of the intervals which equal
1 is P1 = (1 − 2θ )/(1 − θ ). Hence, as θ increases, the VPT
of one-step-ahead prediction decreases, but that of two-step-
ahead prediction increases.

To see the effect of the interval distribution, another sam-
pling method is employed to produce the time intervals
directly by the Poisson distribution. The distribution reads

P(τ ) = e−μμτ−1

�(τ )
, (35)

where �(·) is the Gamma function, and μ is the event rate,
which determines the detail of the distribution. Then the other
corresponding quantities are

δ = 〈τ 〉 = 1 + μ, (36)

σn = √
μ, (37)

P1 = P(τ = 1) = e−μ = e−(δ−1), (38)

θ = μ/(1 + μ) = 1 − 1/δ. (39)

The mean VPTs for the three systems are drawn in Fig. 12(b).
Comparing with the plots in (a), we found that the mean VPTs
have lower values and show faster decay with the increase
of the mean time interval. These can also be explained by
the smaller value of P1 and its steeper decay, as shown by
the solid circles in Fig. 13. Similarly, if we set 〈Tλ〉 � 1 as a
criterion, we get δm = 1.67, 1.7, and 2.0, respectively. Then
according to Eq. (38), we get the corresponding critical por-

tions P1c = 0.50, 0.48, and 0.36. The differences on the decay
rate of VPTs can be clearly illustrated if we aggressively fit
the data in the figures into a scaling relation 〈Tλ〉 ∝ δ−k . In the
case of exponential distribution, the slopes in the double log-
arithm plots are k = 3.67 ± 0.04, 9.8 ± 0.2, and 5.34 ± 0.08,
respectively, while for Poisson distribution, the corresponding
slopes are k = 5.53 ± 0.04, 10.8 ± 0.4, and 6.8 ± 0.2.

In both kinds of distributions, there is a simple relation
between the mean time interval and the dropoff rate, i.e.,
θ = 1 − 1/δ. The above results imply that the time interval
distribution shows a significant influence on the portion of the
time interval that equals 1 and thus affects the forecast skill of
the RC.

IV. CONCLUSIONS

We have proposed a RC with (D + 1)-dimension I/O vec-
tors, in which the first D dimensions store the state vector, and
the additional dimension is the corresponding time interval.
This scheme is a pretty good generalization to RC and is
easy to use since it does not change the basic framework
of conventional RC except for increasing an additional di-
mension to the I/O vectors. Containing both the state and
time information in the input vector enables the reservoir to
learn the whole knowledge of the dynamics of system, and
thus, it can make effective prediction based on complex input.
Here, the complex input can either be the ones with regularly
or randomly missing data or data series created by irregular
sampling, in general, the time series with nonuniform time in-
tervals. Not only can it handle the problems that conventional
RC can but also the ones of incomplete and complex inputs
with irregular time intervals. Furthermore, this scheme can do
multistep-ahead prediction just by changing the time interval
in the output vector to a desired value, which is superior to
conventional RC that can only do one-step-ahead forecasting
based on regular input data. The applications of this scheme
to the logistic map and Lorenz, Rössler and KS systems reveal
that it can effectively predict the future evolution of the time-
discrete and time-continuous chaotic dynamical systems and
the spatiotemporally chaotic system, based on either complete
or incomplete input. We have acquired quite a long VPT for
the short-term prediction and a satisfactory long-term predic-
tion, i.e., the reconstruction of map functions or attractors. The
quality and efficiency of the prediction strongly depends on
the structure and complexity of chaotic attractors. In addition,
the effect of the time interval distribution on the prediction is
discussed. The result reveals that it has a significant influence
on the forecast skill, and the portion of intervals which equal
one is the main cause to govern the variation of VPTs at
different dropoff rates. Meanwhile, it is found that the mean
time interval dependence of the mean VPT obeys the scaling
law at least for the logistic map.
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