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Using coupling imperfection to control amplitude death
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Previous studies of nonlinear oscillator networks have shown that amplitude death (AD) occurs after tuning
oscillator parameters and coupling properties. Here, we identify regimes where the opposite occurs and show
that a local defect (or impurity) in network connectivity leads to AD suppression in situations where identically
coupled oscillators cannot. The critical impurity strength value leading to oscillation restoration is an explicit
function of network size and system parameters. In contrast to homogeneous coupling, network size plays a
crucial role in reducing this critical value. This behavior can be traced back to the steady-state destabilization
through a Hopf’s bifurcation, which occurs for impurity strengths below this threshold. This effect is illustrated
across different mean-field coupled networks and is supported by simulations and theoretical analysis. Since
local inhomogeneities are ubiquitous and often unavoidable, such imperfections can be an unexpected source of
oscillation control.
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Understanding networks of coupled oscillator dynamics is
a central topic in physics [1–3]. They provide a framework
for studying various phenomena in physics and biology [1–3].
Examples from physical science include Josephson junctions
[4], populations of chemical oscillators [5], bursting neurons
[6], and yeast cells [7]. In particular, the emergence of syn-
chrony, oscillation quenching, and resilience in such networks
have received increased attention in recent years [1–3].

Though real-world coupled systems are often heteroge-
neous, most of the studies are conducted with homogeneous
models [1–3]. Heterogeneity plays a central role in coherence
resonance enhancement [8], synchronization [9], or signal
amplification [10]. Intriguingly, a “single” defect (imperfec-
tion or impurity) in a lattice of oscillators enhances the
response to a periodic stimulus [11], improves energy har-
vesting [12], induces the birth and death of breathing modes
[13], turns chaotic dynamics into a regular one [14], optimizes
wave manipulation [15], or helps in the efficient generation
of breathers [16]. The possible role of impurities in oscilla-
tion quenching in networks of coupled units remains an open
problem and is the object of the present study.

When isolated units oscillate, their dynamics can be
quenched if they are adequately coupled [2,3]. There are two
distinct types of oscillation quenching processes: amplitude
death (AD) and oscillation death (OD). The AD results in a
homogeneous steady state (HSS) since all oscillators popu-
late the same state. However, in the case of OD, oscillators
populate different coupling-dependent steady states and thus
give rise to stable inhomogeneous steady states (IHSSs). Yet,
in some circumstances, the cessation of oscillations corre-
sponds to an AD situation with a heterogeneous and stable
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solution. When connected units with IHSSs have oscillation
amplitudes not collapsing into completely new steady states,
the phenomenon is classified as AD rather than OD [17]. As
a result, whether the quenched steady state is new or not
affects the categorization of AD or OD more than whether
it is homogenous or inhomogeneous [17]. This remarkable
phenomenon is well-established theoretically and experimen-
tally across various lattices and networks in physics, biology,
chemistry, and engineering systems [2,3]. The present work
is motivated by leveraging impurity to address the problem of
quenching control in systems of coupled oscillators.

The problem of oscillation restoration in a network pre-
disposed to AD dynamics has received some attention. It is
demonstrated that gradient coupling, processing delay, diffu-
sion self-feedback factors, a linear feedback technique, or a
local low-pass filter restore rhythmicity in the corresponding
parameter space that naturally induces AD [2,3]. Most of these
methods rely on oscillator parameters or attributes of coupling
adjustment over the whole network [2,3]. However, our world
is extensively made of wide networks whose nodes can be
neurons (brain), subjects (social networks, ecology), devices
(power grids), and elements (chemical reactions and bio-
logical systems). Therefore, simultaneously tuning network
properties at all nodes to achieve desired global dynamics can
be challenging. Recently, Tamaševičius et al. [18] stabilized
the entire array of coupled oscillators by deactivating a single
accessed (or randomly chosen) unit. This local deactivation
propagates to the other network nodes, leading to AD [18].
This article intends to elucidate the role of a local coupling
alteration in oscillation restorations.

To investigate the effect of such local alteration, we use
a localized defect in the network linkage such that a unique
oscillator is coupled differently from others. Contrary to [18],
all of the units involved remain identical and have not been
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purposefully deactivated. Below a threshold impurity
strength, the coupling can perturb the steady state of the
network, annihilate AD through Hopf’s bifurcation, and
revive oscillation in the AD regime to retain the sustained
rhythmic functioning of the networks. This critical value for
oscillation revival is estimated analytically as a function of
network size and confronted with numerical simulation.

The first model used as a case study is the Van der Pol
oscillator (VDPO) [19]. The VDPOs are networked through
a mean-field coupling [20–22]: ẋi = yi + εi(Qx − xi ); ẏi =
κ (1 − x2

i )yi − xi. The second model is the Stuart-Landau os-
cillators (SLO) [23]: ẋi = [1 − (x2

i + y2
i )]xi − ωyi + εi(Qx −

xi ); ẏi = [1 − (x2
i + y2

i )]yi + ωxi. The index i = 1, . . . , N
(N � 1) refers to nodes (oscillators) and x = N−1 ∑N

1 xi is
the mean field. The coupling strength is given by εi. The
parameter Q (0 < Q � 1) is the density of the mean field
which controls the influence of the mean field on the system
dynamics. The impurity (or a defect) coupling is only at one
specific node (ε �= ε0), i.e., εi ≡ [ε0, . . . , ε0, ε, ε0, . . . , ε0].
The parameters ε0 and Q are selected such that the system
converges to a steady state when the network is homogeneous
(ε = ε0). The parameter ε stands for impurity strength, while
the remaining N − 1 nodes have a same coupling ε0. The
VDPO shows a nearly sinusoidal oscillation for smaller κ and
relaxation oscillation for larger κ [19]. For an identical VDPO
oscillator with parameters Q = 0.3, ε0 = 1.5, and κ = 0.35,
the coupled systems are expected to be exhibit AD [20–22].
In the absence of the coupling, individual SLO shows an
oscillating dynamics for ω = 5. For the values Q = 0.5 and
ε0 = 5, the coupled SLO system is in AD [23]. The aim is
to find the threshold (or critical) value of ε (εth) allowing a
switch from AD to oscillatory regime.

Analytical method. The standard linear stability is per-
formed to obtain the critical impurity strength [3,20–23].
After linearizing VDPOs and SLOs around the trivial HSS
(x∗

i , y∗
i ) = (0,0), the real parts of the eigenvalues of each

Jacobian matrices are equated to 0 and the thresholds

εth
V = κ

Nκ + N (Q − 1)ε0 − Qε0

κ (N − Q) + N (Q − 1)ε0
(1)

and

εth
S = 4N + 2N (Q − 1)ε0 − 2Qε0

2(N − Q) + N (Q − 1)ε0
(2)

are obtained for VDPOs and SLOs, respectively. When ε <

εth the theory suggests that AD will be annihilated and the
oscillations will be reborn. For the coupled VDPOs, the
critical value decreases for large N and saturates to εth

V ∞ =
limN→∞ εth

V = κ . For the SLO case, the threshold saturates to
εth

S∞ = 2. Thus network size plays a crucial role in the oscilla-
tion revival criterion for a relatively small-sized network.

The threshold value is numerically estimated and tested by
a dichotomic method. Owing the AD occurs when the real part
of the largest eigenvalue [Re(LEV)] (i.e., the rightmost eigen-
value in the complex plane) of the Jacobian matrix at the HSS
is negative [3]; the Re(LEV) is straightforwardly computed
with the usual numerical methods [24]. The expected thresh-
old lies between εth

− and εth
+ , where Re(LEV) is negative and

positive, respectively. The interval [εth
− , εth

+ ] is found through
brute-force procedure and subsequently refined iteratively by

FIG. 1. Comparison between the analytic (blue triangle) and
numeric (red dot) values for the impurity strength threshold with
different network size for VDPO (a) and SLO (b), respectively. For
inner graphics, the network size is N = 50 with the impurity at
node i = 25. The initial conditions [xi(0), yi(0)] are randomly and
uniformly sampled in the interval [−1, 1]. The phase portraits (x̄, ȳ)
are obtained from time series of averaged values for 10 randomly
selected nodes. In (a), Q = 0.30, κ = 0.35, and ε0 = 1.5. In (b),
Q = 0.5, ω = 5.0, and ε0 = 5.0. The values εth

V ∞ and εth
S∞ (horizontal

gray dashed line) are the asymptotic threshold values for N → ∞
corresponding to VDPO and SLO, respectively.

a dichotomic search algorithm, the execution of which is
stopped once a precision |εth

+ − εth
− | < 10−14 is reached, lead-

ing to numerical approximation of εth ≈ (εth
+ + εth

− )/2. This
supports the validity of the analytical results [Eqs. (1) and (2)]
through numerical simulations.

A match between the numerical and analytical method is
observed (Fig. 1). For the VDPO [Fig. 1(a)], εth

V 	 0.35 for the
chosen parameters. It can be noticed that, for ε = 0.36 > εth

V ,
the amplitudes of oscillations die out after a sufficiently long
time. For ε = 0.34 < εth

V the oscillations are sustained. For
the SLO [Fig. 1(b)], εth

S 	 2.11 for the chosen parameters.
When ε = 2.12 > εth

S , the dynamics is quenched. For ε =
2.10 < εth

S the system shifts to an oscillatory regime. For the
VDPO case, the largest eigenvalues (LEVs) are −0.0034 ±
j0.9355 (ε = 0.36) and 0.0066 ± j0.939205 (ε = 0.34). For
the SLO case, the LEVs are −0.0018 ± j4.8986 (ε = 2.12)
and 0.0062 ± j4.90025 (ε = 2.10), respectively (with j2 =
−1). Therefore, when the impurity strength is varied down-
ward below the threshold, the AD state is destabilized through
Hopf’s bifurcation and the oscillations are revived. The stable
HSS region is gradually reduced for decreasing ε. The impu-
rity coupling acts as a feedback and moves the system to the
oscillatory state. Hence, depending on the impurity strength,
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the mean-field coupling suppresses as well as regenerates the
oscillation.

Now, we shall illustrate that the impurity ε is also capa-
ble of annihilating the onset of AD, which is induced by
the birth of a new set of stable IHSS due to the coupling.
For this purpose, we consider coupled Brusselator’s oscilla-
tors (BSLO) [25]: ẋi = −(B + 1)xi + x2

i yi + A + εi(Qx − xi );
ẏi = Bxi − x2

i yi. In the absence of coupling, each oscillator
exhibits limit cycle behavior when B > A2 + 1 [25]. In the
presence of the mean-field coupling, an analytical solution
(xeq

i , yeq
i ) of ẋi = 0 and ẏi = 0 is challenging. To find a value

for the steady state, it is first assumed that the trivial solution is
identical for all nodes (x∗

0, y∗
0) except for the impurity (x∗, y∗).

Therefore,

x∗ = −A[NQε + ε0(N + Q − NQ) + N − Qε]

ε0[N (Q − 1)(ε + 1) − Q] − N (ε + 1) + Qε
, (3)

x∗
0 = −A[Nε + N − Qε + Qε0]

ε0[N (Q − 1)(ε + 1) − Q] − N (ε + 1) + Qε
, (4)

y∗ = B/x∗, and y∗
0 = B/x∗

0 . Starting with an educated guess
[Eqs. (3) and (4)], all the exact xeq

i and yeq
i are then de-

termined using equations ẋi = 0 and ẏi = 0 via a standard
multidimensional root solver based on the Newton-Raphson
method [24]. For analytical tractability, the impurity strength
threshold is only found numerically using the dichotomic
search procedure. Similar to the HSS cases, the threshold
is a decreasing function of the network size and saturates
to a constant value at N → ∞ [Fig. 2(a)]. The solution di-
agrams of the steady states for ε > εth

B and ε < εth
B (εth

B 	
5.14243), respectively, are plotted in Fig. 2(a). The corre-
sponding LEVs shift from −0.0020 ± j0.9742 (ε = 5.15) to
0.0033 ± j0.9778 (ε = 5.13), indicating a Hopf’s bifurcation
through which the stable IHSS loses its stability for decreasing
ε below the critical value εth

B . The presence of impurity ε

in the coupling does not change the structure of the steady-
state solutions, but just switches their stability [Fig. 2(b)]. In
other words, the steady state is not a completely new state
induced by the coupling, but a smooth transformation of the
original equilibrium of the system, which turns out to be node
dependent when the impurity is present. As the steady state
associated with OD corresponds to new states created by the
coupling [3], the observation that here the fixed point is not
new is key to classifying the observed oscillation quenching
mechanism as AD rather than OD. This asserts that inhomo-
geneous AD induced by the coupling can also be destabilized
by the impurity for ε < εth

B leading to sustained oscillations.
To go beyond the standard limit-cycle oscillators previ-

ously considered, the chaotic Rössler oscillator is considered
as an illustrative case. The coupled Rössler oscillators (RLOs)
networked through a mean-field coupling are defined as fol-
lows [3,26]: ẋi = −yi − zi + εi(Qx − xi ), ẏi = xi + ayi, and
żi = b + zi(xi − c). In the absence of the coupling, individ-
ual RLO exhibits a chaotic oscillating dynamics for a = 0.1,
b = 0.1, and c = 18.0. For the values Q = 0.4 and ε0 =
0.2, the identically coupled RLO system is in AD [3,26].
Starting from the homogeneous stationary state obtained in
[26], the true steady state for the nonlinear coupled equa-
tions ẋi = 0, ẏi = 0, and żi = 0 including the impurity is

FIG. 2. Values for the impurity strength threshold (red dots) with
different network size for BSLO (a). For inner graphics in (a),
the network size is N = 50 with the impurity at node i = 25. The
initial conditions [xi(0), yi(0)] are the equilibria states x∗

i and y∗
i

with added perturbations randomly and uniformly sampled in the
interval [0.001,0.01]. The phase portraits (x̄, ȳ) are obtained from
time series of averaged values for 10 randomly selected nodes. In (a),
Q = 0.5, A = 2.0, B = 6.0, and ε0 = 10.6061. In (b), coordinates of
the heterogeneous fixed point of i = 1 · · · N the BSLO system for
ε = 5.15 (gray triangles) and ε = 5.13 (black crosses). There are
two distinct equilibria for each value of ε: one (1) originating from
the impurity, while the second is associated to the identical (N − 1)
other oscillators. This justifies the two separated points obtained for
each parameter ε on the graph. The zooms are applied to distinguish
the fixed points obtained below (black crosses) and above (gray tri-
angles) the impurity strength threshold, confirming the preservation
of the IHSSs structure after bifurcation.

obtained through the iterative correction procedure previously
described.

Similar to the VDPO, SLO, and BSLO systems, the thresh-
old is a decreasing function of the network size and saturates
to a constant value at N → ∞ (Fig. 3). The solution diagrams
of the steady states for ε > εth

R and ε < εth
R (εth

R 	 0.1034) are
plotted in Fig. 3. A very small defect coefficient (ε = 0.01)
does not strongly affect the behavior of the uncoupled system,
because each oscillator remains chaotic, with a high number
and dense orbits in the phase space. Upon increasing the
coupling, to ε = 0.05, the oscillators evolve in quasiperiod-
icity with two orbits in the phase space, but each having a
very close limit-cycle amplitude. A further increase of the
coupling up to ε = 0.10 induces a periodic behavior in the
whole system. Increasing the coupling to ε = 0.15 (ε > εth

R ),
the system reaches a steady state. In a similar manner to
the previous models, the Re(LEV) becomes positive below
the threshold εth

R . Thus the destabilization of the steady state
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FIG. 3. Values for the impurity strength threshold εth
R (red dots)

with different network size for RLO (a). For inner graphics, the
network size is N = 50 with the impurity at node i = 25. The initial
conditions [xi(0), yi(0), zi(0)] are randomly and uniformly sampled
in the interval [−1, 1]. The phase portraits (x̄, ȳ) are obtained from
time series of averaged values for 10 randomly selected nodes.
The parameters used are Q = 0.40, a = 0.1, b = 0.1, c = 18.0, and
ε0 = 0.2. For ε = 0.01, the maximum Lyapunov exponent is positive
(result not reported here), while it is negative for ε = 0.05, 0.10,
and 0.15.

and birth of periodic solution is due to Hopf’s bifurcation.
Therefore, through a unique impurity, it is possible to suppress
AD, control the magnitude of oscillation amplitude, and turn
chaotic dynamics into regular oscillation.

Discussion and conclusions. The oscillation revival phe-
nomenon’s mechanism is very simple: lowering the coupling
ε of one oscillator causes it to enter the oscillatory domain,
despite the fact that all of the other N − 1 oscillators have
parameters that lead to AD (see Q − ε parameter spaces for
oscillatory and AD regimes of homogenous mean-field cou-
pled oscillators depicted in Refs. [19–23]). The current work,
however, indicates that picking impurity parameters from the
Q − ε region for oscillation is insufficient. Using the right
amount of impurity coupling below a specific threshold can
effectively “free” such units from the network and thus restore
oscillations. At the beginning of the dynamics, the amplitude
of the impurity is notably different from others, but over a
long period of time, all of the phases and amplitudes of all
oscillators are identical (result not reported here). Then, this
perturbed oscillator acts as a common periodic driver for the
whole system.

Compared to previous works [3,8–16], we demonstrated
that an impurity competes with the quenching effects of mean-
field coupling in circumventing the onset of AD. The revival
of oscillations by the impurity occurs via Hopf’s bifurcation.
Therefore, a single impurity can revive or revoke oscillations
in the AD parameter regime. This control approach seems
simple and more practical compared to linking sophistication
or all the networked oscillators at once [3].

Previous attempts to induce AD with impurities relied on
the deactivation of a single oscillator [18], in contrast to the
present study, where all the subunits remain nondeactivated
and a comparable result is obtained.

Though there is a maximum system size N beyond
which AD no longer exists in delay-coupled systems, it is
independent of N in homogeneous mean-field diffusion. Un-
expectedly, the present study demonstrates that size is relevant
in the presence of a single impurity. The homogenous ver-
sion of the models has a threshold independent of the size
[20–23,26]; furthermore, in the absence of the impurity, pre-
vious results are recovered [20–23,26].

The results of conventional models such as the limit-cycle
oscillator and the chaotic oscillator show that the underlying
phenomenon is quite general and promising. This approach
may be used to control AD in oscillatory systems with mean-
field diffusion as a generic mechanism.

Despite the fact that this is a theoretical study, analog
electronic-circuit-based experiments in Refs. [20,21] can be
used to implement mean-field coupling. While state variables
x, y, and z are operational amplifier output voltages, resistors
determine system parameters (e.g., κ and ω). Investigation of
the effect of impurity strength can be conducted by suitably
modifying the resistor governing the coupling at a single node
only [20,21]. Since the VDPO, SLO, BLSO, or RLO are
ubiquitously encountered in physical systems, the practical
utility of such an AD control will be highly context dependent.

This unusual effect of impurity in reviving oscillations
could provide a valuable clue to understanding the sustained
oscillatory behavior of many natural systems via a local
change. We believe the presence of even a single impurity will
significantly impact the proper functioning and robustness
of large networks such as coupled biological and chemical
systems, neural networks, socially interacting species, etc.
We anticipate that this study will open the door to further
research into the most effective local repair and regeneration
techniques for network systems.
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