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We present exact multiparameter families of soliton solutions for two- and three-component Manakov equa-
tions in the defocusing regime. Existence diagrams for such solutions in the space of parameters are presented.
Fundamental soliton solutions exist only in finite areas on the plane of parameters. Within these areas, the
solutions demonstrate rich spatiotemporal dynamics. The complexity increases in the case of three-component
solutions. The fundamental solutions are dark solitons with complex oscillating patterns in the individual wave
components. At the boundaries of existence, the solutions are transformed into plain (nonoscillating) vector
dark solitons. The superposition of two dark solitons in the solution adds more frequencies in the patterns of
oscillating dynamics. These solutions admit degeneracy when the eigenvalues of fundamental solitons in the
superposition coincide.
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I. INTRODUCTION

Variety of oscillating localized structures associated with
the scalar nonlinear Schrödinger equation (NLSE) is enor-
mous [1–4]. Oscillating nonlinear solutions are commonly
dubbed as “breathers” [5,6]. They are multiparameter fam-
ilies of solutions that are periodic either in space or time
with periods being the free parameters of the families. More
general family of the lowest-order double-periodic solution is
periodic both in space and in time [7]. It contains particular
subsets such as Akhmediev breathers [8] and Kuznetsov-Ma
solitons [9]. Each of them is still a family of solutions with
a free parameter. Their limiting cases when each period is
infinite leads to a special solution known as Peregrine rogue
wave [10].

Periodic breathers do exist in the focusing regime of the
NLSE. They describe a variety of physical phenomena such
as modulation instability [8,11–13], rogue wave events [14],
Fermi-Pasta-Ulam recurrence [15–18], supercontinuum gen-
eration [19], and even turbulence [20]. Exact multiparameter
families of solutions also exist in the case of defocusing NLSE
[21]. These families also contain double-periodic solutions,
although they describe different sets of physical phenomena.
They involve dark solitons and their interactions.

Vector (two-component) generalization of the NLSE de-
scribes more complex systems such as nonlinear interaction of
two wave components in optical fibers [22], two-atom Bose-
Einstein condensates (BECs) [23,24], and two-way wave
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propagation in the ocean (crossing seas) [25]. The integrable
version of this system is known as the set of Manakov equa-
tions [26]. As mentioned, oscillating structures do exist in the
defocusing NLSE case as well [21]. Their investigation can be
naturally extended to the case of Manakov equations [27–34].
For example, vector defocusing rogue waves have been pre-
dicted in Ref. [29] and observed experimentally in fiber optics
[33,34]. Vector Akhmediev breathers also do exist in the de-
focusing regime [31,32] and they can exhibit unique “hidden”
dynamics in the nonlinear stage [31]. We can expect a variety
of other interesting phenomena when dealing with the whole
family of exact solutions of Manakov equations in the defo-
cusing regime.

Even fundamental (lowest-order) solutions of the Manakov
model are not as simple as we would initially expect. Clearly,
superposition of these solutions produces highly nontrivial
structures especially, when the number of components in the
model exceeds two. Among these phenomena are multisoliton
complexes [35–37], “beating solitons” [38–40], nondegener-
ate solitons [41–44], etc. Another physical phenomenon is the
multivalley dark structure that exists in the defocusing regime
when the number of components N � 3 [44]. Soliton on a
background is a type of structure that exists in these systems
[45,46]. In the defocusing media, solitons on a background
are dark solitons. The study of these objects for Manakov
equations is still incomplete. In this paper, we fill this gap in
the knowledge. In particular, we have found several new types
of dark solitons in the defocusing regime of the Manakov
system and revealed their properties.

The paper is organized as follows. Exact fundamental
(lowest-order) soliton solutions in the defocusing regime of
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Manakov system and their symmetries are presented in Sec. II.
Existence diagrams and characteristics of these solutions in
the two- and three-component cases of the Manakov system
are given in Secs. III and IV, respectively. A special case when
all background amplitudes are equal a j = a is considered in
Sec. VII. Two other special cases when one (a1 = a2 = a,
a3 = 0) or two (a1 = a, a2 = a3 = 0) background amplitudes
are zero are considered in Secs. VIII and IX, respectively.
Finally, Sec. X contains our conclusions.

II. FUNDAMENTAL SOLITON SOLUTIONS
AND THEIR SYMMETRIES

We consider here the set of Manakov equations generally
consisting of N wave components. In dimensionless form,
they are given by

i
∂ψ ( j)

∂t
+ 1

2

∂2ψ ( j)

∂x2
+ σ

j=N∑
j=1

(|ψ ( j)|2)ψ ( j) = 0, (1)

where ψ ( j)(t, x) are the nonlinearly coupled wave compo-
nents of the vector wave field. The physical meaning of
independent variables x and t depends on a particular physical
problem of interest. We have normalized Eqs. (1) in a way
such that σ = ±1. Note that in the case σ = 1, Eqs. (1) refer
to either the focusing (or anomalous dispersion) regime in
optics or the attractive interaction between the atomic com-
ponents of BEC; in the case σ = −1, Eqs. (1) refer to either
the defocusing (or normal dispersion) regime in optics or the
repulsive interaction between the atomic components of BEC.

In our previous work [47], we have demonstrated the dy-
namics of vector solitons in the focusing regime σ = 1 for the
basic Manakov system, when N = 2. In contrast, we present
here an exact multiparameter family of fundamental soliton
solutions in the defocusing regime σ = −1 of N-component
Manakov equations when N = 2 and N = 3. We reveal the
existence conditions and the exact dynamics of solitons sep-
arately for N = 2 and N = 3. This is different from the
fundamental dark-dark and bright-dark soliton solutions of the
defocusing Manakov equations reported recently [48,49].

The applicability of Eqs. (1) with N = 2 in physics has
been verified experimentally in optics [50–53] and for descrip-
tion of multicomponent BECs [54,55]. This task becomes
significantly more difficult when the number of components
in Eqs. (1) increases. Nevertheless, recent experiments [56]
confirmed the physical relevance of Eqs. (1) with N = 3 by
observing the bright-dark-bright solitons in BECs with re-
pulsive forces between the atomic components. Our present
theoretical results may provide a basis for observing more
complex wave patterns in such experiments.

A. Fundamental soliton solutions in general form

A fundamental (first-order) vector soliton solution of
Eqs. (1) can be obtained using a Darboux transformation
scheme [57] with the seed in the form of a plane wave. In
compact form, it is given by:

ψ
( j)
1 (t, x) = ρ ( j)ψ

( j)
0 (t, x)ψ ( j)

f s (t, x), (2)

where ψ
( j)
0 (t, x) is the seed plane-wave solution:

ψ
( j)
0 = a j exp

⎧⎨⎩i

⎡⎣β jx + σ

⎛⎝ j=N∑
j=1

a2
j + 1

2
β2

j

⎞⎠t

⎤⎦⎫⎬⎭, (3)

with the real parameters a j and β j being the amplitudes and
wave numbers, respectively, and

ρ ( j) = χ̃∗ + β j

χ̃ + β j

√
(χ∗ + β j )(χ̃ + β j )

(χ + β j )(χ̃∗ + β j )
, (4)

where

χ̃ = χ + iα

with α( �= 0) being a real parameter. One can readily confirm
that |ρ ( j)| = 1. Moreover,

ψ
( j)
f s = � cosh(� + iδ j ) + cos (� + iγ j )

� cosh � + cos �
, (5)

where

� = α(x + χrt ) + 1

2
ln

(
α + χi

χi

)
, (6)

� = �t = α

(
α

2
+ χi

)
t . (7)

Subscripts r and i denote the real and imaginary parts of
the complex parameter χ, respectively. The latter denotes
the eigenvalue of the Manakov system (1) which obeys the
relation:

1 + σ

N∑
j=1

a2
j

(χ − β j )(χ̃ − β j )
= 0. (8)

In principle, the N-component model can admit 2N roots for
χ. The one-to-one correspondence between the eigenvalue
and the spectral parameter of the associated Lax pair is given
by:

λ = χ − σ

N∑
j=1

a2
j

χ + β j
. (9)

The remaining notations in Eq. (5) are

δ j = arg[(χ∗ + β j )(χ + iα + β j )],

γ j = −1

2
ln

[
(χ∗ − iα + β j )(χ + iα + β j )

(χ∗ + β j )(χ + β j )

]
,

� = α + 2χi

2α + 2χi

√
α + χi

χi
.

Clearly, the solution (2) depends on the background wave
parameters a j , β j , and the real parameter α ( �=0). For any
N-component Manakov system, the solution (2) describes
fundamental dark vector soliton with the plane-wave back-
ground (3) around it. The solution (2) is the direct analog
of the dark soliton of the single component NLSE in the
defocusing (σ = −1) regime. At any t , the deviation of the
soliton profile from the background is localized in x with the
width ∼1/α. These solitons can move with the group velocity
Vg = −χr .
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The new notable feature of the dark soliton of the Manakov
system is that its components may exchange energy and there-
fore may oscillate in t . The period of these oscillations, as we
can see from (5), is 2π/�. Additional oscillations may appear
when two dark solitons are superposed at the same location.
The frequency of these oscillations will be equal to the beating
frequency of two dark solitons. Such superpositions will be
considered below.

The choice of parameters a j , β j strongly influences the
dynamics of solitons. As there are several of them, the variety
of possible dynamics is very large. First, let us consider the
case of identical background amplitudes aj = a. Such a con-
dition (a j = a) has been used in experimental observations of
optical rogue waves in the two-component Manakov system
[33,34]. As particular cases, we consider the characteristics of
dark solitons when one or two of the background amplitudes
vanish. As for the wave numbers β j , we set them as follows:

β1 = −β2 = β, for N = 2, (10)

β1 = −β3 = β, β2 = 0, for N = 3. (11)

B. Symmetries of the solutions

Before entering the details, let us consider the two main
symmetries of the fundamental soliton solution (2). Taking
them into account will simplify the analysis. The first one is
the symmetry of the solution (2) relative to the sign change of
β and simultaneous change of the wave component. For the
case of identical background amplitudes aj = a, we have

ψ
(1)
1 (β ) = ψ

(2)
1 (−β ), when N = 2, (12)

ψ
(1)
1 (β ) = ψ

(3)
1 (−β ), when N = 3. (13)

The second symmetry involving the eigenvalue χ, is not
that simple. Namely, if χi ⇒ −χi − α, then we have

ψ
( j)
1 {(x, t ); χi} = ψ

( j)
1 {(x′, t ′); −χi − α}e(ir j ), (14)

where r j = 2 arg(ρ j ) denotes a constant phase, and x′ = x +
�x, t ′ = t + �t , with �x and �t fixed constant shifts along
the x and t axes, respectively. They are given by

�x = − 1

α

[
4πχr

α + 2χi
+ ln

(
α + χi

χi

)]
,

�t = 4π

α2 + 2αχi
. (15)

Thus, the symmetry (14) defines the periods in the oscillat-
ing patterns of dark soliton. The symmetries (12)–(14) provide
more insight in revealing the richness of soliton properties as
is demonstrated below. Let us start with the analysis of dark
solitons in the two-component Manakov system.

III. DARK SOLITONS IN THE TWO-COMPONENT
MANAKOV SYSTEM

In the defocusing regime of the two-component Manakov
system (N = 2), Eq. (8) admits four roots for the eigenvalue
χ. For the case of identical background amplitudes aj = a,
and for β1 = −β2 = β, the explicit expressions for them are

given by

χ1 = − i

2
α −

√
κ − √

η, χ2 = − i

2
α +

√
κ − √

η,

χ3 = − i

2
α −

√
κ + √

η, χ4 = − i

2
α +

√
κ + √

η, (16)

where κ = β2 + a2 − α2/4 and η = a4 + 4a2β2 − α2β2.
It follows from (16) that

χ1i + χ2i = −α, χ3i + χ4i = −α. (17)

Then, from (14), it also follows that the wave components
{ψ ( j)

1 (χ1), ψ
( j)
1 (χ2)} or {ψ ( j)

1 (χ3), ψ
( j)
1 (χ4)} have the same

amplitude profiles. The only difference between them is the
shifts in x and t equal to �x, �t .

A direct analysis shows that χ3i = χ4i ≡ −α/2, implying
that � ≡ 0. This indicates that the period of ψ

( j)
1 (χ3) in t

(i.e., 2π/�) becomes infinite (no oscillations). Moreover, the
solutions ψ

( j)
1 (χ3), ψ

( j)
1 (χ4) reduce to the background level

everywhere on the (x, t) plane. Thus, these two eigenvalues
describe trivial background wave solutions. They can be ig-
nored in further analysis.

For illustration, Figs. 1(a) and 1(b) show the individual
and total component profiles of the fundamental dark soliton
on the (x, t) plane that corresponds to the eigenvalue χ1.
Two different relative wave numbers β = 0.3 and β = 1.0 are
used. The individual components are periodic in t due to the
energy exchange between them. Figure 1(a) shows a “four-
petal” pattern in each period of oscillations with two areas
of depressed and two areas of elevated amplitudes diagonally
located relative to the center. The central point in this pattern
is a saddle. Figure 1(b) displays a similar pattern but with the
amplitude at the central point being transformed from a saddle
to a minimum. The two areas with depressed amplitudes are
now combined into a single one. With further increase of β,
the oscillations disappear and each component is gradually
transformed into a plain (nonperiodic) dark soliton.

The total amplitudes of the dark soliton |ψ | =√
|ψ (1)

1 |2 + |ψ (2)
1 |2 shown in the right-hand-side columns

of Fig. 1 are also oscillating. The minima are located at the
centres of each four-petal patterns in (a) or coincide with the
minima of the two components in (b). Thus, the solution (2)
generally describes oscillating dark solitons.

Clearly, the choice of the parameters α and β is not arbi-
trary. We need to analyze a Hessian matrix for (2) in order
to find the regions of existence of these solutions. Using the
technique presented in Ref. [47], we constructed the existence
diagrams for the solutions for each of the eigenvalues.

Figure 2 shows these diagrams on the (α, β) plane. For
the first two eigenvalues χ1 and χ2, the solutions are confined
to the elliptical regions bounded by the red solid curves in
Figs. 2(a) and 2(b). Dark solitons do exist in the pink and
cyan areas which correspond to the two types of structures
shown in Fig. 1. The black dashed curve corresponds to the
transition from the saddle point at the center of each periodic
pattern to a minimum. Dark soliton solutions do not exist in
gray areas. The existence diagrams for χ1 and χ2 are identical.
In the limiting case of α = 0, dark solitons are transformed
into vector rogue waves [29]. As mentioned, the eigenvalues
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FIG. 1. Individual |ψ ( j)
1 (χ1)| and the total |ψ | =

√
|ψ (1)

1 |2 + |ψ (2)
1 |2 amplitude profiles of the two-component dark soliton (2) on the (x, t)

plane for two relative wave numbers (a) β = 0.3 and (b) β = 1. Parameters a = 1 and α = 0.5.

χ3 and χ4 describe only trivial solutions. Thus, the diagrams
corresponding to these eigenvalues are fully gray in Fig. 2.

The analytical expression for the boundary of the dark soli-
ton existence in Fig. 2 (the red solid curves) can be extracted
from the conditions

χ1i = −α or χ2i = 0. (18)

FIG. 2. Existence diagrams for the two-component dark solitons
on the (α, β) plane for four eigenvalues χi given by Eqs. (16). Cyan
and pink areas correspond to dark solitons with two types of patterns
shown in Fig. 1. The blue and orange solid circles correspond to
specific solutions shown in Figs. 1(a) and 1(b), respectively. The red
solid lines correspond to the plain dark solitons (no oscillations).
The black solid lines (β = 0) correspond to dark solitons with the
oscillating components but no oscillations in the total amplitude. The
red and black solid circles correspond to specific solutions shown
below in Figs. 3(a) and 3(b), respectively. Parameter a = 1.

Namely, from Eqs. (16) we obtain

β2
c = 2a2 − α2, (19)

where βc denotes the critical wave number. Dark solitons do
exist in the region confined by the condition β2 < β2

c . When
this is the case, the two eigenvalues χ1 and χ2 are purely
imaginary (χr = 0). This implies that these dark solitons have
zero velocity (vg = 0). Two examples are shown in Fig. 1.

When β2 = β2
c , the solution is converted into a plain dark

soiton (no oscillations). The explicit expressions for the com-
ponents of this dark soliton follow from Eq. (2):

ψ
( j)
DS = ψ

( j)
0

[
β j

β j − iα
+ iα

β j − iα
tanh (αx)

]
. (20)

This dark soliton has zero velocity. The solution (20) is re-
duced to the plane wave ψ

( j)
0 when α = 0. One example of the

amplitude profiles of the dark soliton (20) is shown in Fig. 3(a)
with the choice of parameters α = 0.5, β = βc = √

7/2. The
amplitude profiles of the two components of the dark soliton
are identical:

∣∣ψ (1)
DS

∣∣ = ∣∣ψ (2)
DS

∣∣ = a

√
α2 tanh2(αx) + β2

α2 + β2
. (21)

Consequently, the total amplitude
√

|ψ (1)
DS |2 + |ψ (2)

DS |2 of the
dark soliton also has a dark-soliton shape.

When β = 0, dark solitons are located on the black solid
line in Figs. 2(a) and 2(b). They are confined by the condi-
tion α2 < 2a2 (α �= 0). Analytical expression for these dark
solitons can be found from Eq. (2):

ψ
( j)
VBS(χ1) = ψ

( j)
0 (ψDS ∓ ψBS), (22)

ψ
( j)
VBS(χ2) = ψ

( j)
0 (ψ̃DS ∓ ψ̃BS), (23)
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FIG. 3. Amplitude distributions of individual components |ψ ( j)| and the total amplitude |ψ | =
√

|ψ (1)
1 |2 + |ψ (2)

1 |2 of the two-component
dark solitons. (a) Dark soliton given by (20) with β = βc = √

2a2 − α2 [red solid circle in Fig. 2(a)]. (b) Dark soliton with oscillating
components given by (22) with β = 0 [black solid circle in Fig. 2(a)]. (c) Moving dark soliton with oscillating components given by (28)
with β1 = β2 = 0.5. Parameters a = 1 and α = 0.5.

where

ψDS = (4a2 − α2) sinh (αx) − α2 cosh (αx)

(4a2 − α2) cosh (αx) − α2 sinh (αx)
, (24)

ψBS = −2(2a2 − α2) exp
(

1
2 iα2t

)
(4a2 − α2) cosh (αx) − α2 sinh (αx)

. (25)

and

ψ̃DS = ψDS(−x), ψ̃BS = −ψBS(−x). (26)

The solution (23) is the same as (22) but reversed in space.
The two components of the dark soliton are oscillating in t
with the frequency α2/2. This follows from Eq. (25). The
soliton profiles for this case are shown in Fig. 3(b). The two
components are oscillating in the opposite phases. The ele-
vations (depressions) in ψ

(1)
VBS correspond to the depressions

(elevations) in ψ
(2)
VBS. This allows the total amplitude profile√

|ψ (1)
1 |2 + |ψ (2)

1 |2 of the dark soliton to be constant in t . The
explicit expression for it is given by:√∣∣ψ (1)

VBS

∣∣2 + ∣∣ψ (2)
VBS

∣∣2 = a

√
2
α2 tanh2(αx) + β2

α2 + β2
. (27)

This is the same profile as for the dark soliton (20). Indeed,
Eqs. (21) and (27)] are the same. This can also be seen from
the comparison of Figs. 3(a) and 3(b).

When β1 = β2 �= 0, the dark soliton acquires nonzero ve-
locity. The solution can be derived either directly from Eq. (2)
or obtained from the expressions (22) and (23) using Galilean
transformation. For the absolute values of the components, we
have

|ψ ( j)(t, x)| = ∣∣ψ ( j)
VBS(χ1; t, x − β1t )

∣∣,
|ψ ( j)(t, x)| = ∣∣ψ ( j)

VBS(χ2; t, x − β1t )
∣∣. (28)

The amplitude profiles of this solution is shown in Fig. 3(c).
This dark soliton propagates with the velocity β1. Two of its
components remain oscillating. The shape of the total ampli-
tude remains fixed in t . It coincides with the shape of dark
solitons in Figs. 3(a) and 3(b).

IV. DARK SOLITONS IN THE THREE-COMPONENT
MANAKOV SYSTEM

Now we explore the properties of three-component (N =
3) vector dark solitons in the defocusing regime. There are six
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FIG. 4. Individual |ψ ( j)
1 | and the total amplitude distributions |ψ | =

√
|ψ (1)

1 |2 + |ψ (2)
1 |2 + |ψ (3)

1 |2 of the three-component dark solitons (2)
corresponding to the eigenvalues χ1, and χ3, given by Eqs. (29). Parameters a = 1, β = 0.3, and α = 0.5.

eigenvalues χ j in this case. The explicit expressions for them
when a j = a, β1 = −β3 = β, and β2 = 0 are given by

χ1 = i

2
(−α − √

κ1), χ2 = i

2
(−α + √

κ2),

χ3 = i

2
(−α − √

κ2), χ4 = i

2
(−α + √

κ1),

χ5 = i

2
(−α − √

κ3), χ6 = i

2
(−α + √

κ3). (29)

Here

κ1 = α2 + 4

3
i

(
A + i21/3C

B − iB
21/3

)
,

κ2 = α2 + 4

3
i

[
A − (i + √

3)C
(22/3)B + (i − √

3)B
24/3

]
,

κ3 = α2 + 4

3
i

[
A − (i − √

3)C
(22/3)B + (i + √

3)B
24/3

]
,

with

A = i(3a2 + 2β2), B = D +
√

4C3 + D2,

C = −9a4 − 12a2β2 + 3α2β2 − β4,

D = −54a6 − 108a4β2 − 72a2β4 + 18α2β4 + 2β6.

Similarly to the case N = 2 considered above, here not all
eigenvalues describe a soliton. We have found that χ5 and
χ6 correspond to the trivial background solutions, while four
other eigenvalues do correspond to dark solitons. They obey
the relations:

χ1i + χ2i = −α, χ3i + χ4i = −α, (30)

χ1r = χ2r = −χ3r = −χ4r . (31)

The corresponding amplitude profiles satisfy the symmetry
(14): ∣∣ψ ( j)

1 [(x, t ); χ1]
∣∣ = ∣∣ψ ( j)

1 [(x′, t ′); χ2]
∣∣, (32)∣∣ψ ( j)

1 [(x, t ); χ3]
∣∣ = ∣∣ψ ( j)

1 [(x′, t ′); χ4]
∣∣. (33)

This means that ψ
( j)
1 (χ1) and ψ

( j)
1 (χ2) [or ψ

( j)
1 (χ3) and

ψ
( j)
1 (χ4)] have the same amplitude distributions. However,∣∣ψ ( j)

1 [(x, t ); χ1]
∣∣ �= ∣∣ψ ( j)

1 [(x, t ); χ3]
∣∣. (34)

This means that for given values of a, β, and α, we have
two different dark solitons with opposite group velocities
(χ1r = −χ3r).

The amplitude profiles of these two solitons, |ψ ( j)
1 (χ1)|,

|ψ ( j)
1 (χ3)|, are shown in Figs. 4(a) and 4(b), respectively.

Oscillations are now due to the energy exchange between the
three wave components. The first two components in Fig. 4(a)
show the four-petal patterns in each period with a saddle point
at the center. The third component has a minimum at the
center. The total amplitude (right-hand side panel) is still an
oscillating dark soliton. The two solitons shown in Figs. 4(a)
and 4(b) have the same oscillating period. The patterns in the
second case are reversed as well as the direction of propaga-
tion. Nonlinear superposition of these two dark vector solitons
is a second-order “nondegenerate” dark soliton (see Sec. VII).

Figure 5 shows the existence diagrams of dark vector soli-
ton components on the (α, β) plane for three eigenvalues χ1,
χ3, and χ5. Dark solitons do exist only for the case of the
eigenvalues χ1 and χ3. In these two cases, solitons are con-
fined to the eye-shape areas bounded by the red solid curves.
Due to the symmetry (12), the existence regions of ψ

(1)
1 and

ψ
(3)
1 components of dark solitons are symmetric around the

line β = 0. Further comparison of the cases χ1 and χ3 shows
that the existence region of ψ

(1)
1 (χ1) [or ψ

(3)
1 (χ1)] coincides

with that of ψ
(3)
1 (χ3) [or ψ

(1)
1 (χ3)]. Dark solitons do not exist

in the gray areas.
The regions of dark soliton existence for case N = 3 are

limited by the red solid curves obtained from the condition:

χ1i = χ3i = −α or χ2i = χ4i = 0. (35)

At this boundary, the vector dark soitons have the form:

ψ
( j)
DS = ψ

( j)
0

{
β j + χr

β j + χ
+ iα

β j + χ
tanh [α(x + χrt )]

}
. (36)
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FIG. 5. Existence diagrams of the three-components of dark solitons with eigenvalues χ1, χ3, and χ5, given by Eqs. (29) on the (α, β)
plane. Cyan areas correspond to the components with the four-petal patterns in each period and saddle point at the center. The pink areas
correspond to the patterns with the minimum at the center. The red solid lines correspond to the plain dark solitons (no oscillations). The black
solid lines correspond to the dark solitons with the oscillating components but not oscillating total amplitude. The blue and orange solid circles
correspond to dark solitons shown in Figs. 4(a) and 4(b), respectively. The red and black solid circles correspond to dark solitons shown below
in Figs. 6(a) and 6(b), respectively. Parameter a = 1.

The difference from the dark solitons in the case N = 2,
Eq. (20), is that the group velocity −χr is not zero. The
amplitude profiles for these solitons is shown in Fig. 6(a).

Inside the red solid lines, the dark soliton components are
oscillating. Taking β = 0 (i.e., β j = 0, j = 1, 2, 3), we obtain
the soliton solution from (2). The explicit expressions can be
represented in the following forms:

ψ
(1)
VBS(χ1) = ψ

(1)
VBS(χ2) = ψ

(1)
0

[
ψDS + ψ

(1)
BS

]
,

ψ
(2)
VBS(χ1) = ψ

(2)
VBS(χ2) = ψ

(2)
0

[
ψDS + ψ

(2)
BS

]
,

ψ
(3)
VBS(χ1) = ψ

(3)
VBS(χ2) = ψ

(3)
0

[
ψDS + ψ

(3)
BS

]
, (37)

and

ψ
(1)
VBS(χ3) = ψ

(1)
VBS(χ4) = ψ

(1)
0

[
ψDS + ψ

(3)
BS

]
,

ψ
(2)
VBS(χ3) = ψ

(2)
VBS(χ4) = ψ

(2)
0

[
ψDS + ψ

(2)
BS

]
,

ψ
(3)
VBS(χ3) = ψ

(3)
VBS(χ4) = ψ

(3)
0

[
ψDS + ψ

(1)
BS

]
. (38)

Here we separated the solutions into a “bright,” ψ
( j)
BS , and

“dark,” ψDS, parts:

ψDS = 1 + F cosh (αx)−F sinh (αx)
I cosh (αx)+J sinh (αx) , (39)

ψ
(1)
BS = c1ψ

(2)
BS , ψ

(3)
BS = c2ψ

(2)
BS , (40)

ψ
(2)
BS = − F exp

(
1
2 iα2t

)
I cosh (αx)+J sinh (αx) , (41)

where

F = (6a2 − 2α2)α, I = −a2α
(
4 + c2

1 + c2
2

) + α3

J = −α
[
a2

(−2 + c2
1 + c2

2

) + α2
]
,

with c1 = −1.366, c2 = 0.366.
Oscillations in Eqs. (37) and (38) are caused by the

“bright” parts. The corresponding wave profiles in each com-
ponent together with the total soliton amplitude are shown in
Figs. 6(b) and 6(c), respectively. These can be considered as

054206-7



CHE, LIU, AND AKHMEDIEV PHYSICAL REVIEW E 107, 054206 (2023)

FIG. 6. Individual |ψ ( j)
1 | and the total amplitude distributions |ψ | of the three-component dark solitons. (a) Plain dark solitons (36). (b) Dark

solitons with three oscillating components (37) with β = 0. (c) Dark solitons with three oscillating components (38) with β = 0. (d) Moving
dark solitons with two oscillating components (46) with β1 = β2 = β3 = 0.5. Parameters a = 1, and α = 0.5.

the special cases of the solutions shown in Figs. 4(a) and 4(b)
but with β = 0.

Also, from Eqs. (37) and (38), we find that∣∣ψ ( j)
VBS(χ1; x)

∣∣ = ∣∣ψ (4− j)
VBS (χ3; −x)

∣∣. (42)

This means that the components of |ψ ( j)
VBS(χ1)| are reversed in

space components of |ψ (4− j)
VBS (χ3)|. On the other hand, in each

case, all three components are different. Like in the case N =
2, the total amplitude always has the shape of a dark soliton
that does not change in t .

When β j = 0, solitons (37) and (38) have zero velocity.
Using a Galilean transformation, we obtain the moving dark
soliton solution for the case β1 = β2 = β3 �= 0. It is given by

ψ ( j)(t, x) = ψ
( j)
VBS(χ1; t, x − β1t ), (43)

ψ ( j)(t, x) = ψ
( j)
VBS(χ3; t, x − β1t ). (44)

In contrast to the case N = 2, the three-component Man-
akov equations have additional degree of freedom influencing
the dynamics of components. For the same case β1 = β2 =
β3 �= 0, performing the Darboux transformation with a Lax

spectral parameter

λ1 = χ1 + 3a2

χ1 + β1
, (45)

where χ1 = −β1 − iα, we can obtain another family of dark
soliton solutions given by:

ψ
(1)
VBS = ψ

(1)
0 (ψDS + ψBS),

ψ
(2)
VBS = ψ

(2)
0 (ψDS − ψBS),

ψ
(3)
VBS = ψ

(3)
0 (ψDS), (46)

where

ψDS = 1 + (α2 − 3a2) exp [α(x − β1t ) − d]

2a2α2 cosh [α(x − β1t ) + d]
, (47)

ψBS = i(α2 − 3a2) exp (1/2iα2t − d )

a2α cosh [α(x − β1t ) + d]
, (48)

and d = 1
2 ln ( 3

2α2 − 1
2a2 ).

In contrast to the dark soliton solutions [Eqs. (37) and
(38)], the oscillations in the solution (46) occur only in ψ (1)

and ψ (2) components. The ψ (3) component is a plain dark soli-
ton. This solution is shown in Fig. 6(d). The soliton propagates
with the group velocity vg = β1. Only the components ψ

(1)
VBS
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and ψ
(2)
VBS periodically exchange energy. The total amplitude

profile is the same as in Fig. 6(c).
The solutions (46) satisfy a simple transformation. Namely,

the solution obtained by swapping the components ψ
(2)
VBS ⇔

ψ
(3)
VBS,

ψ
(1)
VBS = ψ

(1)
0 (ψDS + ψBS),

ψ
(2)
VBS = ψ

(2)
0 (ψDS),

ψ
(3)
VBS = ψ

(3)
0 (ψDS − ψBS). (49)

is still the solution of Eqs. (1). The nonlinear superposition of
(46) and (49) with different α produces the second-order dark
soliton. It is presented below.

V. SECOND-ORDER DARK SOLITONS
FOR N = 2 WITH aj = a �= 0

Each of the fundamental dark solitons can be part of the
nonlinear superposition of more complex structures. As in
the previous works related to the scalar NLSE case [5,58,59],
the nonlinear superposition of fundamental dark solitons in
the Manakov system can be constructed using next steps
in the Darboux transformation (see Appendix A 1). For the
two-component Manakov system, the fundamental solution
on a constant background can be obtained by using the vector
eigenfunctions of the transformed Lax pair with the coeffi-
cients {1, 1, 0} (see Appendix A 1). A particular case is a dark
soliton solution (2) for N = 2.

First, we consider the case with equal background ampli-
tudes a j = a. Two types of second-order dark solitons are
obtained below: (i) when the wave numbers are unequal β1 =
−β2 = β �= 0 and (ii) when the wave numbers are equal β1 =
β2. In each case, the solitons have the same (zero) velocity.
Then the second-order solution is a bound state of two dark
solitons.

A. Second-order dark soliton with β1 = −β2 = β �= 0

The two components of the fundamental dark soliton (2)
for the cases α = 0.5 and α = 0.4 are shown in Figs. 7(a)
and 7(b), respectively. These components are periodic with
“four-petal” type patterns in each period of oscillations. The
average velocity of the dark soliton is zero. The nonlinear
superposition of these two fundamental solitons is shown
in Fig. 7(c). The result of the superposition is the soliton
structure oscillating with two periods. From the fundamental
solution (2), the beating period of the bound state is given by

Dt =
∣∣∣∣ 2π

�|(α=α1 ) − �|(α=α2 )

∣∣∣∣, (50)

where α1 = 0.5 and α2 = 0.4. The average velocity of this
combined structure is also zero.

B. Second-order dark solitons with β1 = β2

When β1 = β2, the exact solution is given by Eqs. (22)
and (23). The two components and the total amplitude for
two different values of α are illustrated in Figs. 8(a) and
8(b), respectively. The nonlinear superposition of these two
dark solitons again produces “double-beating” soliton pattern

FIG. 7. Fundamental dark soliton components |ψ ( j)
1 (χ1)| given

by (2) on the (x, t) plane when (a) α = 0.5 and (b) α = 0.4.
(c) The two components of the nonlinear superposition |ψ ( j)

2 (χ1)|
of dark solitons shown in (a) and (b). Parameters aj = 1 and
β1 = −β2 = 0.3.

with two frequencies of oscillation. It is shown in Fig. 8(c).
However, the total amplitude profile (right-hand side panel)
shows only a single beating frequency.

VI. SECOND-ORDER DARK SOLITONS
FOR N = 2 WITH a1 �= 0, a2 = 0

Let us now consider higher-order dark solitons for N = 2
when one of the background amplitudes vanishes, e.g., a1 �=
0, a2 = 0. For the defocusing Manakov systems, all back-
ground components cannot be simultaneously equal to zero.

We can use two approaches to investigate the properties of
these solutions. The first one is to consider the limit a2 → 0 in
the solution presented above. The second one is to construct
directly the new exact solution with a2 = 0. Here, we use the
second technique and present the new exact solution although
both of them lead to the same result. We first consider the
valid eigenvalues of the soliton from the general relation (8).
The associated Lax spectral parameters follow from Eq. (9).
Finally, the corresponding soliton solutions can be constructed
by performing the Darboux transformation with these spectral
parameters.

The spectral parameter for the case a1 �= 0, a2 = 0 follows
from (9). It is given by:

λ = χ + a2
1

χ + β1
, (51)

where χ = β1 − iα is the only valid eigenvalue obtained from
(8). Using the Darboux transformation with the spectral pa-
rameter (51), we obtain the higher-order dark soliton. The

054206-9



CHE, LIU, AND AKHMEDIEV PHYSICAL REVIEW E 107, 054206 (2023)

FIG. 8. Dark soliton with oscillating components (22) when (a) α = 0.5 and (b) α = 0.4. (c) Nonlinear superposition of dark solitons
shown in (a) and (b). Parameters aj = 1 and β1 = β2 = 0.

explicit form of this solution is given by:

ψ
(1)
DS = ψ

(1)
0 + ψ

(1)
0 (λ∗ − λ) exp [α(x + β1t ) − d]

(2β1 − iα)2 sinh [α(x + β1t ) + d]
,

ψ
(2)
BS = exp (iθ2)

(λ∗ − λ) exp (1/2iα2t − d )

2 sinh [α(x + β1t ) + d]
, (52)

where d = 1
2 ln ( 4β2

1 +α2−a2
1

4β2
1 +α2 ). Figures 9(a) and 9(b) show this

soliton for two different values of α. As we can see, when
a1 �= 0 and a2 = 0, the fundamental two-component solution
is a dark-bright soliton pair. The velocity of the soliton pair
is −β1. The nonlinear superposition of these two solutions is
shown in Fig. 9(c). It is a dark-bright soliton solution beating
with a single frequency. These solutions can be considered
as the limiting cases of the corresponding solutions shown in
Figs. 7(a)–7(c) when a2 → 0.

Figures 10(a) and 10(b) show the similar dark-bright soli-
ton pairs when β1 = 0. Parameters α = 0.5 and α = 0.4 are
the same as before. The soliton pairs have zero velocity since
β1 = 0. The nonlinear superposition of these two solitons is
shown in Fig. 10(c). The second-order soliton oscillates but its
average velocity is zero. The solutions shown in Figs. 10 can
be considered as the limiting cases of the solutions in Figs. 8
when a2 → 0.

VII. SECOND-ORDER DARK SOLITONS
FOR N = 3 WITH aj = a �= 0

In contrast to the case N = 2, the three-component Man-
akov system admits more eigenvalues. This has been shown
in Sec. IV. Then the number of possibilities in construct-

ing higher-order dark solitons increases. On the other hand,
there are two combinations of the vector eigenfunctions of
the transformed Lax pair to generate different fundamental

FIG. 9. Dark-bright soliton (52) with nonzero velocity when
(a) α = 0.5 and (b) α = 0.4. (c) Nonlinear superposition of the two
solitons shown in (a) and (b). Parameters β1 = 0.3, a1 = 1, and
a2 = 0.
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FIG. 10. Dark-bright soliton (52) with zero velocity when
(a) α = 0.5 and (b) α = 0.4. (c) Nonlinear superposition of the two
solitons shown in (a) and (b). Parameters β1 = 0, a1 = 1, and a2 = 0.

solutions for N = 3. Namely, using the combination with the
coefficients of vector eigenfunctions {1, 1, 0, 0}, we obtain
the fundamental dark soliton which coincides with (2). The
alternative combination with the coefficients {1, 0, 1, 0} yields
the fundamental solution describing the dynamics of general
breathers (see Appendix B 1 a). Nonlinear superposition of
these two fundamental solutions can produce new wave for-
mation.

Like in the case N = 2, we present below two different
types of nondegenerate second-order solitons for the case

N = 3 with the equal background amplitudes aj = a. (i) Non-
degenerate second-order solitons with unequal wave numbers
β1 = −β3 = β �= 0 β2 = 0. (ii) Nondegenerate second-order
solitons with equal wave numbers β1 = β2 = β3.

A. Second-order solutions with β1 = −β3 = β �= 0 and β2 = 0

We first consider the second-order solutions formed by
the nonlinear superposition of two fundamental dark solitons
corresponding to two different eigenvalues χ1 and χ3. These
superpositions also depend on the set of initial parameters a,
β, and α. The details of derivation of exact solutions are given
in Appendix (B 1 a).

Figure 11(a) shows the nonlinear superposition of two fun-
damental dark solitons shown in Fig. 4. As the two original
dark solitons have velocities of opposite sign (χ1r = −χ3r),
the two dark solitons cross each other at t = 0. This superpo-
sition exhibits a typical X shape. The first, ψ (1), and the third,
ψ (3), wave components are mirror images of each other. The
second wave component, ψ (2), is symmetric relative to the t
and x axes. Moreover, the superposition of two dark solitons
shows a typical elastic collision. This can be proved strictly
by the asymptotic analysis shown in Appendix C.

In order to confirm the accuracy of exact solutions, we
used direct numerical simulations of Manakov equations.
Figure 11(b) shows the results of numerical simulations with
the initial conditions extracted from the exact solution at t =
0, namely ψ ( j)(x, t = 0). Comparison of the upper half of the
solution in Fig. 11(a) with the results of numerical simulations
in Fig. 11(b) shows that the exact solutions are indeed correct.

Let us now consider the nonlinear superposition of two
fundamental solutions corresponding to different combina-
tions of the vector eigenfunctions of the transformed Lax pair,
i.e., {1, 1, 0, 0} and {1, 0, 1, 0}. The first combination pro-
duces fundamental dark soliton while the latter combination
{1, 0, 1, 0} produces fundamental general breather. It is given
by:

ψ
( j)
1 (t, x) = ψ

( j)
0 (t, x)ψ ( j)

gb (t, x), (53)

FIG. 11. (a) Nondegenerate soliton formed by nonlinear superposition |ψ ( j)
2 (χ1; χ3)| of two dark solitons with eigenvalues χ1 and χ3 shown

in Fig. 4. (b) Numerical simulations of the solution shown in (a) starting with the initial condition generated by the exact solution at t = 0.
These simulations confirm the exact results. Parameters aj = 1, β = 0.3, and α = 0.5.
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FIG. 12. (a) Fundamental dark soliton (2) with α = 0.5. (b) Fundamental general breather (53) with α = 0.4. (c) Nonlinear superposition
of the solutions shown in (a) and (b). Parameters aj = 1 and β = 0.3.

where

ψ
( j)
gb = Gj cosh(� + υ j ) + Hj cos (� + ϑ j )

Mj cosh � + Uj cos �
, (54)

with

� = (̂χi − χi )x + (̂χrχ̂i − χrχi )t + d, (55)

� = (χr − χ̂r )x + 1
2

(
χ2

r − χ̂2
r − χ2

i + χ̂2
i

)
t + r. (56)

Here d and r are

d = 1

2
ln

(
χ̂∗ − χ̂

χ∗ − χ

)
, r = 1

2i
ln

(
χ∗ − χ̂

χ̂∗ − χ

)
, (57)

while

υ j = 1

2
ln

[
(χ∗ + β j )(̂χ + β j )

(χ + β j )(̂χ
∗ + β j )

]
, (58)

ϑ j = 1

2i
ln

[
(̂χ∗ + β j )(̂χ + β j )

(χ∗ + β j )(χ + β j )

]
. (59)

The coefficients Gj , Hj , Mj , and Uj are respectively:

Gj = (̂χ∗ + β j )

(̂χ + β j )(̂χ
∗ − χ̂)

exp (υ j + d ), (60)

Hj = (χ∗ + β j )

(̂χ + β j )(χ∗ − χ̂)
exp (iϑ j + ir), (61)

and

Mj = exp (d )

(̂χ∗ − χ̂)
, Uj = exp (ir)

(χ∗ − χ̂)
. (62)

The values χ = χ1 or χ3, and χ̂ can be found by solving
Eq. (B2) numerically. Here we use χ̂ = χ1,c. Due to the con-
dition χr �= χ̂r , this solution describes general breather rather
than a dark soliton (2).

The dark soliton (2) and the general breather (53), each
with the eigenvalue χ = χ1 are shown in Figs. 12(a) and 12(b)
for the cases α = 0.5 and α = 0.4 respectively. The nonlinear
superposition of these two solutions is shown in Fig. 12(c).

B. Second-order solutions with β1 = β2 = β3

When N = 3, the number of possible higher-order combi-
nations is larger than in the case N = 2. First, we consider
the nonlinear superposition of solitons with two different
eigenvalues given by Eqs. (46) and (49). The details of
derivation are presented in Appendix B 1 b. Figure 13(a)
shows the amplitude profiles of dark soliton (46) with α = 0.5
while Fig. 13(b) shows the amplitude profiles of the dark
soliton (49) with α = 0.4. These two dark solitons have the
same velocity β1. Their superposition is shown in Fig. 13(c). It
shows complex beating pattern in each component. The total
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FIG. 13. (a) Dark soliton with two oscillating components (46) with α = 0.5, (b) Dark soliton with two oscillating components (49) with
α = 0.4. (c) Second-order nondegenerate solution formed by nonlinear superposition of solutions shown in (a) and (b). Parameters aj = 1 and
β1 = β2 = β3 = 0.3.

amplitude is a bound state of two dark solitons with weakly
attractive interaction around the center (t, x) = (0, 0).

Now let us consider the nonlinear superposition of solu-
tions given by Eqs. (37) and (38) that satisfy the condition
β1 = β2 = β3 = 0. Their amplitude profiles are shown in
Figs. 6(b) and 6(c), respectively. The eigenvalues χ1 = χ3 =
−iα of these solutions are identical. Thus, for any α, the
nonlinear superposition of these solutions is degenerate. This
solution is shown in Fig. 14(a). Due to the degeneracy, in ev-

ery component, the two localized waves are well separated in
x despite the zero shifts of individual solitons in the solution.
The ψ (1) and ψ (3) components consist of two oscillating soli-
tons while the ψ (2) component is a combination of oscillating
and nonoscillating dark soliton. Moreover, the amplitudes of
the right-hand side solitons in ψ (1) and ψ (3) components are
complementary. As the total amplitude should be dark solitons
without oscillation, the right-hand side soliton in the ψ (2)

component exhibits a pure dark structure. The total amplitude

FIG. 14. (a) Amplitude distributions of second-order degenerate beating soliton formed by nonlinear superposition of two beating solitons
shown in Figs. 6(b) and 6(c). (b) Comparison of amplitude profiles between numerical simulations and exact solutions at t = 40. The
parameters are aj = 1, β = 0, and α = 0.5.
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also shows two well-separated dark solitons. This is in sharp
contrast to the nondegenerate case shown in Fig. 13(c).

In order to confirm the validity of the exact solution, we
performed numerical simulations starting from the initial con-
dition which is the exact solution at t = 0. The resulting wave
profiles (dotted lines) after propagation of 40 units (t = 40)
are presented in Fig. 14(b). The wave profiles according to the
exact solutions are shown on the same plots by solid lines. As
expected, the two profiles in each plot coincide.

VIII. SECOND-ORDER SOLUTIONS WITH a1 = a2 �= 0,
a3 = 0 FOR N = 3

Next, we consider the cases when one or two of the back-
ground amplitudes vanish, namely (i) a1 = a2 �= 0, a3 = 0
and (ii) a1 �= 0, a2 = a3 = 0. The case when all a j = 0 is not
allowed in the defocusing Manakov systems. Each of the two
cases produces new nonlinear superposition. In this section,
let us focus our attention on the case a1 = a2 �= 0, a3 = 0.
The corresponding spectral parameter (9) reduces to

λ = χ + a2
1

χ + β1
+ a2

2

χ + β2
, (63)

where χ denotes the valid eigenvalue determined below.

A. Higher-order solitons with β1 = −β3 = β �= 0, β2 = 0

The explicit expressions for the eigenvalues χ j can be
obtained from Eq. (8). Namely,

χ1 = −1

2
i(α + √

κ1 − κ2) − 1

2
β,

χ2 = −1

2
i(α − √

κ1 − κ2) − 1

2
β,

χ3 = β − iα, χ4 = β. (64)

where κ1 = α2 − 4a2 − β2, κ2 = 2
√

4a2 + 4a2β2 − α2β2.
Only complex eigenvalues χ1, χ2, and χ3 are valid. They are
related to each other as follows:

χ1i + χ2i = −α, χ1r = χ2r . (65)

This means that the two eigenvalues χ1, χ2 in vector soliton
formation play the same role. If we use χ1 or χ2 as the eigen-
value, then we obtain vector solitons in ψ (1) and ψ (2) wave
components and a zero solution in ψ (3) wave component. The
derivation is given in Appendix B 2 a. However, if we use the
eigenvalue χ3 = β − iα, then we obtain the solution in the
form of dark-dark-bright solitons. Its explicit form is given
by:

ψ (1)(χ1) =
{

1 + (λ∗ − λ) exp[α(x + βt ) − σ ]

(β1 + χ)2 sinh[α(x + βt ) + σ ]

}
ψ

(1)
0 ,

ψ (2)(χ1) =
{

1 + (λ∗ − λ) exp[α(x + βt ) − σ ]

2 χ sinh[α(x + βt ) + σ ]

}
ψ

(2)
0 ,

ψ (3)(χ1) =
{

(λ∗ − λ) exp(1/2iα2t − σ )

2a sinh[α(x + βt ) + σ ]

}
exp(iθ3). (66)

where σ = 1
2 ln [1 − a2

(β1+χ)(β1+χ∗ ) − a2

χχ∗ ], and λ is given by
Eq. (63).

The nonlinear superposition of ψ ( j)(χ1) and ψ ( j)(χ3)
produces new higher-order solution ψ ( j)(χ1; χ3). Figure 15
shows the amplitude profiles of the fundamental dark solitons
|ψ ( j)(χ1)|, |ψ ( j)(χ3)|, and their superposition |ψ ( j)(χ1; χ3)|.
The solution ψ ( j)(χ1) shows a periodic four-petal pattern in
ψ (1) and ψ (2) wave components while ψ (3) is zero. The solu-
tion ψ ( j)(χ3) is a dark-dark-bright soliton with velocity −β.
Their superposition is the interaction of two dark solitons in
ψ (1) and ψ (2) wave components. This interaction is visible in
ψ (3) component as a phase shift of a bright soliton due to the
nonlinear coupling of wave components. The velocities of the
two fundamental solitons in this example are opposite. The
solution shown in Fig. 15(c) is a particular case of that shown
in Fig. 11 when a3 → 0.

In analogy with the case shown in Fig. 12, we also
consider the solitons corresponding to two different combi-
nations of the coefficients of the vector eigenfunctions of
the transformed Lax pair, i.e., {1, 1, 0, 0} and {1, 0, 1, 0}. In
each combination, we use χ1 = − 1

2 i(α + √
κ1 − κ2) − 1

2β in
Eq. (64) as the eigenvalue. The first combination {1, 1, 0, 0}
produces the oscillations in the ψ (1) and ψ (2) wave compo-
nents, while ψ (3) wave component is zero. The corresponding
amplitude profiles are shown in Fig. 16(a) for α = 0.5. The
second combination {1, 0, 1, 0} produces dark-dark-bright
soliton solution (66). It is illustrated in Fig. 16(b), for α = 0.4.

Velocities of fundamental solutions shown in Figs. 16(a)
and 16(b) are unequal but very close. As a result, their in-
teraction shows complex oscillations of a quasibound state of
two solitons shown in Fig. 16(c). The first two components
ψ (1) and ψ (2) are oscillating dark solitons on the plane-wave
background while the component ψ (3) is an oscillating bright
soliton. It has a two-peak wave profile.

B. Higher-order solutions with β1 = β2 = β3

Here we consider the limiting cases of solutions presented
in Sec. VII B when a1 = a2 �= 0, a3 = 0. These results are
analogs of the solutions shown in Figs. 13 and 14 when a3 =
0. These are solutions (46) and (49) for the case a3 = 0. The
eigenvalues (8) for equal wave numbers β j when a1 = a2 �= 0,
and a3 = 0 are given by:

χ1 = χ3 = −β1 − iα, χ2 = χ4 = −β1. (67)

Only two of them χ1 and χ3 are valid eigenvalues. They
are consistent with (46) in the case a j = a. The Lax spectral
parameter (63) is

λ = χ + 2a2
1

χ + β1
. (68)

This is different from Eq. (45). Using this spectral parameter,
we obtain two types of fundamental solitons for two com-
binations of coefficients of the eigenfunctions: (1,1,0,0) and
(1,0,1,0). The first combination (1,1,0,0) with the eigenvalue
χ1 = −β1 − iα gives:

ψ (1)(χ1) = ψ
(1)
0 (ψDS + ψBS)

ψ (1)(χ1) = ψ
(2)
0 (ψDS − ψBS)

ψ (3)(χ1) = 0, (69)
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FIG. 15. (a) Dark soliton with two oscillating components and zero in ψ (3) component when α = 0.5. (b) Dark-dark-bright soliton (66)
when α = 0.4. (c) Second-order nondegenerate solution formed by the nonlinear superposition of solitons shown in (a) and (b). Parameters
β = 0.3, a1 = a2 = 1, and a3 = 0.

FIG. 16. (a) Oscillating dark soliton solution with one zero component ψ (3) when α = 0.5. (b) Dark-dark-bright soliton (66) when α =
0.4. (c) Second-order nondegenerate solution formed by nonlinear superposition of two solitons shown in (a) and (b). Parameters β = 0.3,
a1 = a2 = 1, and a3 = 0.
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FIG. 17. (a) Oscillating dark soliton solution (69) with zero component in ψ (3) when α = 0.5. (b) Dark-dark-bright soliton (66) with
α = 0.4. (c) Second-order nondegenerate solution formed by nonlinear superposition of (a) and (b). Parameters β j = 0.3, a1 = a2 = 1, and
a3 = 0.

FIG. 18. (a) Oscillating dark soliton solution (69) with the third zero component when α = 0.5. (b) Dark-dark-bright soliton (66) with
α = 0.5. (c) Second-order degenerate solution formed by nonlinear superposition of solutions in (a) and (b). Parameters β = 0, and a3 = 0.
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FIG. 19. (a) Dark-bright soliton (73) with the third zero component when α = 0.5. (b) Dark-bright soliton (75) with the second zero
component when α = 0.5. (c) Second-order nondegenerate solution formed by nonlinear superposition of solitons shown in (a) and (b).
(d) Amplitude profiles in (c) at t = 40 obtained from the exact solutions (solid curves) and numerical simulations (dashed curve). Parameters
β = 0.3, a1 = 1, and a2 = a3 = 0.

where

ψDS = 1 + (α2 − 2a2) exp [α(x − β1t ) − d]

2a2α2 cosh [α(x − β1t ) + d]
, (70)

ψBS = i(α2 − 2a2) exp (1/2iα2t − d )

2a2α cosh [α(x − β1t ) + d]
, (71)

and d = 1
2 ln ( 1

α2 − 1
2a2 ). In this case, the two wave com-

ponents ψ (1) and ψ (2) are oscillating while the third wave
component ψ (3) is zero. Velocity of this soliton is β1. The
solution is shown in Fig. 17(a) for α = 0.5. The difference
from the solution shown in Fig. 13 is that it has oscillations
in ψ (1) and ψ (2) wave components. The ψ (3) wave component
is zero. The second combination {1, 0, 1, 0} yields the vector
dark-dark-bright soliton solution (66) where χ1 = −β1 − iα.
It is shown in Fig. 17(b). Velocity of this soliton is also β1.

The nonlinear superposition of these two fundamental so-
lutions is shown in Fig. 17(c). It reveals complex oscillating
patterns in ψ (1) and ψ (2) wave components. The third wave
component ψ (3) is the two-hump bright soliton also with os-
cillating structure. This result is a limiting case of the solution
shown in Fig. 13 when a3 → 0.

Let us now consider the fundamental dark solitons (37) and
(38) and their nonlinear superposition when a3 = 0. Similarly
to the case shown in Fig. 17, the solution (37) reduces to
(69) with zero velocity, β j = 0. It is shown in Fig. 18(a).
This solution oscillates in ψ (1) and ψ (2) wave components
and has zero third component. The solution (38) becomes a
dark-dark-bright soliton (66) with zero velocity. It is shown
in Fig. 18(b). For a given α, these two solitons have identical
eigenvalues. Thus, their nonlinear superposition is a degen-
erate second-order soliton. It is shown in Fig. 18(c). Due to
the degeneracy, the two solitons are separated in space. They
have the same period in t . However, their phases are shifted
relative to each other. Oscillations are observed only in ψ (1)

and ψ (2) wave components. The ψ (3) component shows two
well-separated bright solitons. These solutions are the limiting
cases of those shown in Fig. 14 when a3 → 0.

IX. SECOND-ORDER SOLUTIONS
FOR N = 3 WHEN a1 �= 0, a2 = a3 = 0

Now we consider the case when two background com-
ponents are zero a2 = a3 = 0 but a1 �= 0. In this case, the
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FIG. 20. (a) Dark-bright vector soliton (73) with zero third component when α = 0.5. (b) Dark-bright vector soliton (75) with the second
zero component when α = 0.4. (c) Second-order nondegenerate solution formed by nonlinear superposition of vector solitons shown in (a) and
(b). (d) Amplitude profiles at t = 80 of the second-order solution shown in (c) obtained from the exact solutions (solid curves) and from
numerical simulations (dashed curves). Parameters β = 0.3, a1 = 1, and a2 = a3 = 0.

resulting Lax spectral parameter becomes

λ = χ + a2
1

χ + β1
, (72)

where χ is determined below. Second-order exact soliton
solution is constructed at the second step of Darboux trans-
formation using the spectral parameter (72). As in Sec. VIII,
two different combinations of the coefficients of the vector
eigenfunctions of the transformed Lax pair are used, i.e.,
{1, 1, 0, 0} and {1, 0, 1, 0}.

In the first case, {1, 1, 0, 0}, the explicit form of the soliton
solution is given by:

ψ (1) = ψ
(1)
0

[
1 + (λ∗ − λ) exp(α(x + χrt ) − ξ )

(β1 + χ)2 sinh(α(x + χrt ) + ξ )

]
,

ψ (2) = (λ∗ − λ) exp
(− i

2 (2χrx + (χ2
r − α2)t ) − ξ

)
2 sinh(α(x + χrt ) + ξ ) exp (−iθ2)

,

ψ (3) = 0. (73)

where

ξ = 1

2
ln

[−a2
1 + (β1 + χ)(β1 + χ∗)

a2
1(β1 + χ)(β1 + χ∗)

]
. (74)

This solution describes dark and bright solitons in ψ (1) and
ψ (2) wave components, respectively. The third component is
zero.

The second combination, {1, 0, 1, 0}, provides a similar
solution but with zero in the second component:

ψ (1) = ψ
(1)
0

{
1 + (λ∗ − λ) exp[α(x + χrt ) − ξ ]

(β1 + χ)2 sinh[α(x + χrt ) + ξ ]

}
,

ψ (2) = 0,

ψ (3) = (λ∗ − λ) exp(1/2iα2t − ξ )

2 sinh[α(x + χrt ) + ξ ]
exp (iθ3). (75)

Below, we consider these two solitons for specific
eigenvalues.
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FIG. 21. (a) Dark-bright vector soliton (73) with zero third component when α = 0.5. (b) Dark-bright vector soliton (75) with zero second
component when α = 0.4. (c) Second-order nondegenerate solution formed by nonlinear superposition of vector solitons shown in (a) and
(b). (d) Amplitude profiles of the second-order solution shown in (c) at t = 40 obtained from the exact solutions (solid curves) and numerical
simulations (dashed curves). Parameters β j = 0.3, a1 = 1, and a2 = a3 = 0.

A. Second-order solutions when β1 = −β3 = β �= 0 and β2 = 0

The four eigenvalues in this case are given by:

χ1 = −iα, χ2 = 0,

χ3 = −iα + β, χ4 = β. (76)

As discussed, only complex eigenvalues χ1, χ3 are valid.
Figure 19(a) shows the evolution of amplitude profiles of

the vector soliton (73) corresponding to the eigenvalue χ1 =
−iα. The solution is a zero velocity dark soliton in the first
component ψ (1) and a bright soliton in the second component
ψ (2). The third component ψ (3) is zero. The amplitude profiles
of the vector soliton (75) with the eigenvalue, χ3 = −iα + β,
are shown in Fig. 19(b). This soliton has a nonzero velocity
−β. It is a dark soliton in the first component, ψ (1), and bright
soliton in the third component, ψ (3). The second component,
ψ (2), is zero.

The nonlinear superposition of these two solitons is shown
in Fig. 19(c). The plot shows an elastic collision of two vector
solitons with a phase shift at t = 0. The phase shift can be
clearly seen also in the second and third components of the

wave field. These results are the limiting cases of those shown
in Fig. 11 when a2 → 0, a3 → 0.

In order to confirm the validity of the exact solutions, we
performed numerical simulations of this higher-order solution
starting from the initial conditions provided by the exact so-
lution at t = 0. The amplitude profiles of the exact solution
(solid curves) and the numerical simulations (dashed curves)
at t = 40 are shown in Fig. 19(d). There is an excellent agree-
ment between them, as expected.

Another type of a higher-order solution is formed by the
nonlinear superposition of solutions (73) and (75) correspond-
ing to a single eigenvalue (either χ1 or χ3) but with different α.
To be specific, we chosen the eigenvalue χ1. The correspond-
ing fundamental soliton solutions are shown in Figs. 20(a)
and 20(b). These two solitons have zero velocity due to the
condition χ1r = 0. Their superposition results in a new form
of bound state of two solitons. It is shown in Fig. 20(c). The
first component, ψ (1), is an asymmetric bound state of two
dark solitons with the profile that has two unequal dips. The
ψ (2) and ψ (3) components are the asymmetric bound states of
two bright solitons with two unequal humps.
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FIG. 22. (a) Dark-bright vector soliton (73) with zero third component when α = 0.5. (b) Dark-bright vector soliton (75) with zero second
component when α = 0.5. (c) Second-order degenerate solution formed by nonlinear superposition of vector solitons shown in (a) and (b).
(d) Amplitude profiles of the second-order solution shown in (c) at t = 40 obtained from the exact solutions (solid curves) and numerical
simulations (dashed curves). Parameters β = 0 and a2 = a3 = 0.

These results are limiting cases of those shown in Fig. 12
when a2 → 0, a3 → 0. Namely, the moving vector solitons
shown in Fig. 12(c) reduce to the ones shown in Fig. 20(c)
when a2 → 0 and a3 → 0. Validity of the results shown in
Fig. 20(c) are confirmed using numerical simulations starting
from the initial conditions provided by the exact solution at
t = 0. Figure 20(d) shows the wave profiles at t = 80 obtained
from the exact solutions (solid curves) and from the numerical
simulations (dashed curves). As expected, the two profiles
coincide.

B. Second-order solutions when β1 = β2 = β3

In the case of equal wave numbers β1 = β2 = β3, the
eigenvalues are given by

χ1 = χ3 = −β1 − iα, χ2 = χ4 = −β1. (77)

Here, only one of the complex eigenvalues (either χ1 or χ3) is
valid. Using χ1, we construct the fundamental vector soliton
solutions for different combinations of the eigenfunctions.
These solutions are given by (73) and (75). They are shown
in Figs. 21(a) and 21(b), respectively. These two fundamental

solitons have the same velocity β1. The soliton in Fig. 21(a)
has the ψ (1) component in the form of a dark soliton and
the ψ (2) component in the form of a bright soliton while the
third component ψ (3) is zero. The soliton in Fig. 21(b) has
the ψ (1) component in the form of a dark soliton and the ψ (3)

component in the form of a bright soliton while the second
component ψ (2) is zero. The nonlinear superposition of these
two fundamental vector solitons is shown in Fig. 21(c). Simi-
larly to the case shown in Fig. 20, the superposition is a bound
state of two solitons but with finite velocity β1 = 0.3. The
ψ (1) component is a bound state of two equal dark solitons.
On the other hand, the ψ (2) (ψ (3)) component is a bound state
of two unequal in-phase (out-of-phase) bright solitons. These
results are the limiting case of those shown in Fig. 13 when
a2 → 0, and a3 → 0. Figure 21(d) shows the comparison of
the wave profiles at t = 40 obtained from the exact solutions
and numerical simulations. This way, we confirmed that the
exact solutions shown here are indeed correct.

We finally consider the second-order vector solitons cor-
responding to the solution shown in Fig. 14(a) when a3 → 0
(or the solution shown in Fig. 18(c) when both a2 → 0, and
a3 → 0). Figures 22(a) and 22(b) show the fundamental vec-

054206-20



FUNDAMENTAL AND SECOND-ORDER DARK SOLITON … PHYSICAL REVIEW E 107, 054206 (2023)

tor solitons used for obtaining the second-order solution. The
nonlinear superposition of these two vector solitons results in
a second-order soliton. It is shown in Fig. 22(c). It is a degen-
erate solution because the eigenvalues of the two fundamental
solutions coincide. The situation is similar to the one shown
in Fig. 18(c). The resulting second-order solution consists of
two equal well-separated dark-bright solitons propagating in
parallel. Each of the wave profiles shown in Fig. 22(d) is sym-
metric in x. The parallel solitons shown in Figs. 20(c), 21(c),
and 22(c), come from the nonlinear superposition between
two fundamental dark-bright solitons with the same velocity,
each associated with a zero solution in different components.

X. CONCLUSIONS

In conclusion, we have studied fundamental vector soli-
tons and their interaction in the defocusing regime of
Manakov equations. We derived multiparameter family of
fundamental vector soliton solutions in analytic form and
presented the existence diagrams of these solitons for the
two- and three-component Manakov equations. We have
found that vector solitons exist only in finite areas of
the (α, β) plane. Within these areas, the dark soliton
components oscillate. At the boundaries of the existence di-
agrams, vector solitons are transformed into plain vector dark
solitons.

We have also provided exact solutions for the interaction
of fundamental solitons. These are nonlinear superpositions
of fundamental vector dark solitons. We found a rich variety
of interaction patterns of two solitons each with it own eigen-
value. The two eigenvalues may differ or they can coincide.
The corresponding solutions are nondegenerate or degen-
erate second-order solutions, respectively. We confirmed
the correctness of our theoretical results using numerical
simulations.

Because of the widespread fundamental and practical
interest to physical systems described by the set of Man-
akov equations in the defocusing regime, we believe that
our results may have a significant impact on experimental
physics.
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APPENDIX A: VECTOR SOLITON SOLUTIONS FOR N = 2

1. Vector solitons for N = 2 with aj = a �= 0

a. Vector solitons when β1 = −β2 = β �= 0

We represent Eqs. (1) as the condition of compatibility of
two linear equations:

	x = U�, 	t = V�, (A1)

with the matrices

U = i

[
λ

2
(σ + I) + Q

]
,

V = i

[
λ2

4
(σ + I) + λ

2
Q − 1

2
σ(Q2 + iQx ) + a2I

]
(A2)

where

Q =
(

0 −ψ†

ψ 0N×N

)
, σ =

(
1 01×N

0N×1 −IN×N

)
. (A3)

Here, the vector function ψ=(ψ (1), ψ (2), . . . , ψ ( j) )T, † de-
notes the matrix transpose and complex conjugate, I is
an identity matrix, λ is the spectral parameter, and a2 =∑ j=N

j=1 (a2
j ). The system of Manakov equations (1) follows

from the compatibility condition

Ut − Vx + [U, V] = 0. (A4)

For N = 2, using a diagonal matrix S = diag(1, e−iθ1 , e−iθ2 ),
the Lax pair can be rewritten as:

Ũ = i

⎛⎝ λ −a1 −a2

a1 −β1 0
a2 0 −β2

⎞⎠, Ṽ = − i

2
Ũ2 + 2ia2I. (A5)

The linear eigenvalue problem in terms of the transformed Lax
pair (A5) is given by

det(Ũ − iχ) = 0. (A6)

Equation (A6) admits three eigenvalues χn,l , (l = a, b, c). To
obtain the solution of Eq. (A2), we further diagonalize the
matrices Ũ and Ṽ. Namely, we have

ϕx = Ũϕ, ϕt = Ṽϕ, ϕ = H−1S	, (A7)

where the transformation matrix H is

H =

⎛⎜⎜⎝
1 1 1
a1

β1+χn,a

a1
β1+χn,b

a1
β1+χn,c

a2
β2+χn,a

a2
β2+χn,b

a2
β2+χn,c

⎞⎟⎟⎠. (A8)

Solving Eq. (A7), we have

ϕn,l = cn,l exp
[
iχn,l x + 1

2

(
4a2 + χ2

n,l

)
t
]
, (A9)

where cn,1 (l = a, b, c) are arbitrary constants corresponding
to the vector eigenfunctions of the transformed Lax pair ϕn,l .
Finally, the eigenfunctions 	n = (Rn, Sn,Wn) are given by

Rn = ϕn,a + ϕn,b + ϕn,c,

Sn = ψ
(1)
0

(
c∑

l=a

ϕn,l

β1 + χn,l

)
,

Wn = ψ
(2)
0

(
c∑

l=a

ϕn,l

β2 + χn,l

)
. (A10)

The fundamental (first-order, n = 1) vector solution of the
two-component Manakov equations can be obtained through
the Darboux transformation [57]. Namely

ψ
(1)
1 = ψ

(1)
0 + (λ∗

1 − λ1)R∗
1S1

|R1|2 − |S1|2 − |W1|2 ,

ψ
(2)
1 = ψ

(2)
0 + (λ∗

1 − λ1)R∗
1W1

|R1|2 − |S1|2 − |W1|2 . (A11)
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If one of the c1,l is zero, then we obtain exact solutions that
describe the dynamics of a single soliton. However, for the
defocusing case, we have to set c1,c = 0 so that ϕ1,c = 0.
Below we clarify this point.

Let us focus on the linear eigenvalue problem (A6). The
latter directly leads to

λ = χ +
2∑

j=1

a2
j

χ + β j
, (A12)

where the eigenvalue χ is given by Eq. (8). However, not
all these eigenvalues are valid, as shown in Sec. III. Sub-
stituting one of the valid eigenvalues [e.g., χ1 (or χ2) given
by (16)] into (A12), we obtain the corresponding Lax spec-
trum λ1. Using this spectrum and solving (A6), we obtain
three eigenvalues (χ1,a, χ1,b, χ1,c). We find that χ1,a = χ1,
χ1,b = χ2 = χ1 + iα, and χ1,c �= χ1,a,χ1,b. Clearly, χ1,a, χ1,b
are valid eigenvalues. However, χ1,c cannot be used to gen-
erate any valid solution. Without loss of generality, we use
the coefficients: (c1,a, c1,b, c1,c) = (1, 1, 0). Using this set of
the coefficients, we obtain the fundamental soliton solution of
the two-component Manakov equations. The explicit form of
(A11) is given by (2).

b. Vector solitons when β1 = β2

The general soliton solution derived above reduces to the
soliton solution with zero velocity when β = 0. The moving
soliton can be obtained by employing a Galilean transforma-
tion. Below, we show how to obtain the general vector soliton
solution via the Darboux transformation. When β1 = β2, the
eigenvalue χn,a = −β1 − iα, χn,b = −β1. The transformation
matrix H can be rewritten as:

H =

⎛⎜⎝ 1 0 1
a1

β1+χn,a
a1

a1
β1+χn,c

a2
β2+χn,a

−a2
a2

β2+χn,c

⎞⎟⎠. (A13)

The corresponding eigenfunctions (Rn, Sn,Wn) are given by

Rn = ϕn,a + ϕn,c,

Sn = ψ
(1)
0

(
ϕn,a

β1 + χn,a
+ ϕn,b + ϕn,c

β1 + χn,c

)
,

Wn = ψ
(2)
0

(
ϕn,a

β2 + χn,a
− ϕn,b + ϕn,c

β2 + χn,c

)
. (A14)

Here, we still use the coefficients: {c1,a, c1,b, c1,c} = {1, 1, 0}.
Substituting (A14) into (A11) yields the fundamental vector
soliton solutions for N = 2. The explicit form coincides with
Eq. (28).

2. Vector solitons for N = 2 with a1 �= 0, a2 = 0

When a2 = 0, the spectral parameter is given by (51). The
transformation matrix H takes the form:

H =
⎛⎝ 1 0 1

a1
β1+χn,a

0 a1
β1+χn,c

0 1 0

⎞⎠. (A15)

Using (51) and solving the associated Lax pair, we have the
eigenfunctions:

Rn = ϕn,a + ϕn,c,

Sn = ψ
(1)
0

(
ϕn,a

β1 + χn,a
+ ϕn,c

β1 + χn,c

)
,

Wn = ϕn,b exp (iθ2). (A16)

Substituting (A16) into (A11) with the coefficients:
{c1,a, c1,b, c1,c} = {1, 1, 0} yields the fundamental dark-bright
soliton solution (52).

3. Second-order solutions for N = 2

The second-order solutions can be obtained in the next
iteration of the Darboux transformation. They are

ψ
(1)
2 = ψ

(1)
1 + (λ∗

2 − λ2)(P)12, (A17)

ψ
(2)
2 = ψ

(2)
1 + (λ∗

2 − λ2)(P)13. (A18)

Here ψ
( j)
1 denote the fundamental vector solution obtained

above. (P)1i represents the element of the matrix (P) in the
first row and ith column, and

T = I − λ1 − λ∗
1

λ2 − λ∗
1

	1	
†
1�

	†
1�	1

, (A19)

P = 	2[1]	†
2[1]�

	†
2[1]�	2[1]

, 	2[1] = T	2, (A20)

where � = diag(1,−1,−1). When the two eigenvalues are
different, these solutions describe the second-order nondegen-
erate solitons on the same vector background.

APPENDIX B: VECTOR SOLITON SOLUTIONS FOR N = 3

1. Vector solitons for N = 3 with aj = a �= 0

a. Vector solitons when β1 = −β3 = β �= 0, β2 = 0

For N = 3, the Lax pair can be rewritten as:

Ũ =

⎛⎜⎜⎝
λ −a1 −a2 −a3

a1 −β1 0 0
a2 0 −β2 0
a3 0 0 −β3

⎞⎟⎟⎠, Ṽ = − i

2
Ũ2 + 2ia2I,

(B1)

by using a diagonal matrix S = diag(1, e−iθ1 , e−iθ2 , e−iθ3 ). The
linear eigenvalue problem of the transformed Lax pair (B1) is
given by

det(Ũ − iχ ) = 0. (B2)

There are four eigenvalues χn,l (l = a, b, c, d). The transfor-
mation matrix in this case is

H =

⎛⎜⎜⎜⎝
1 1 1 1
a1

β1+χn,a

a1
β1+χn,b

a1
β1+χn,c

a1
β1+χn,d

a2
β2+χn,a

a2
β2+χn,b

a2
β2+χn,c

a2
β2+χn,d

a3
β3+χn,a

a3
β3+χn,b

a3
β3+χn,c

a3
β3+χn,d

⎞⎟⎟⎟⎠. (B3)

The vector solution of the transformed Lax pair is

ϕn,l = cn,l exp
{
iχn,l x + 1

2

(
4a2 + χ2

n,l

)
t
}
, (B4)
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where l = a, b, c, d . The corresponding eigenfunctions
(Rn, Sn,Wn, Xn) are given by

Rn = ϕn,a + ϕn,b + ϕn,c + ϕn,d ,

Sn = ψ
(1)
0

(
d∑

l=a

ϕn,l

β1 + χn,l

)
,

Wn = ψ
(2)
0

(
d∑

l=a

ϕn,l

β2 + χn,l

)
,

Xn = ψ
(3)
0

(
d∑

l=a

ϕn,l

β3 + χn,l

)
. (B5)

The fundamental vector soliton solution (n = 1) can be ob-
tained at the first step of the Darboux transformation:

ψ
(1)
1 = ψ

(1)
0 + (λ∗

1 − λ1)R∗
1S1

|R1|2 − |S1|2 − |W1|2 − |X1|2 ,

ψ
(2)
1 = ψ

(2)
0 + (λ∗

1 − λ1)R∗
1W1

|R1|2 − |S1|2 − |W1|2 − |X1|2 .

ψ
(3)
1 = ψ

(3)
0 + (λ∗

1 − λ1)R∗
1X1

|R1|2 − |S1|2 − |W1|2 − |X1|2 .

(B6)

To obtain the solution describing a single soliton, two of the
coefficients c1,l (l = a, b, c, d) should be zero. Below, we
show that three combinations of the coefficients can be used
to generate valid solution.

The linear eigenvalue problem (B2) directly leads to

λ = χ +
3∑

j=1

a2
j

χ + β j
, (B7)

where the eigenvalue χ is given by Eq. (8). Substituting one
valid eigenvalue χ1 given by (29) into (B7), we obtain the cor-
responding Lax spectrum λ1. Using this spectrum and solving
(B2), we have four different eigenvalues χ1,a, χ1,b, χ1,c, and
χ1,d . The valid ones are: χ1,a = χ1, χ1,b = χ2 = χ1 + iα. One
of the eigenvalues is invalid. Without loss of generality, we let
χ1,d to be invalid.

There are three combinations of the coefficients that can
be used to generate fundamental soliton solutions. These
are {c1,a, c1,b, c1,c, c1,d} = {1, 1, 0, 0}, {c1,a, c1,b, c1,c, c1,d} =
{1, 0, 1, 0}, and {c1,a, c1,b, c1,c, c1,d} = {0, 1, 1, 0}. The non-
trivial finding is that the case {1, 1, 0, 0} leads to the
three-component soliton solution. The explicit form of (B6) is
given by Eq. (2) with N = 3. The two other cases {1, 0, 1, 0}
and {0, 1, 1, 0} lead to the solutions describing the dynamics
of general breathers. Without loss of generality, we use the
combination {1, 0, 1, 0}. The explicit form of the solution is
given by (53).

b. Vector solitons when β1 = β2 = β3

Here, using Darboux transformations, we derive the solu-
tions (46) and (49). When β1 = β2 = β3, the eigenvalues (29),
reduce to

χ1 = χ3 = −β1 − iα,

χ2 = χ4 = −β1.
(B8)

In this case, only one eigenvalue (either χ1 or χ3) is valid. The
transformation matrix (B3) can be rewritten as:

H =

⎛⎜⎜⎜⎝
1 0 0 1
a1

β1+χn,a
−a2 −a3

a1
β1+χn,d

a2
β2+χn,a

a1 0 a2
β2+χn,d

a3
β3+χn,a

0 a1
a3

β3+χn,d

⎞⎟⎟⎟⎠. (B9)

The corresponding eigenfunctions are

Rn = ϕn,a + ϕn,d ,

Sn =
(

a1ϕn,a

β1 + χn,a
− a2ϕn,b − a3ϕn,c + a1ϕn,d

β1 + χn,d

)
exp (iθ1),

Wn =
(

a2
ϕn,a

β2 + χn,a
+ a1ϕn,b + a2ϕn,d

β2 + χn,d

)
exp (iθ2),

Xn =
(

a3
ϕn,a

β3 + χn,a
+ a1ϕn,c + a3ϕn,d

β3 + χn,d

)
exp (iθ3).

(B10)

Substituting (Rn, Sn,Wn, Xn) into (B6) with the coefficients
(1,1,0,0) or (1,0,1,0) yields the fundamental soliton solutions
for N = 3. The case (1,1,0,0) yields the solution defined by
Eq. (46) while the case (1,0,1,0) produces the solution (49).
As shown above, the solutions are connected through a simple
transformation ψ

(2)
VBS ⇔ ψ

(3)
VBS. The nonlinear superposition

of these two solutions with different α is a nondegenerate
second-order solution. It is shown in Fig. 13(c).

The soliton solutions (37) and (38) are derived using the
condition β1 = β2 = β3 = 0. These are different from the so-
lutions (46) and (49). The transformation matrix (B3) in this
case is

H =

⎛⎜⎜⎜⎜⎜⎝
β3+χn,a

a3

β2+χn,b

a2

β1+χn,c

a1
1

a1(β3+χn,a )
a3(β1+χn,a )

a1(β2+χn,b)
a2(β1+χn,b) 1 a1

β1+χn,d
a2(β3+χn,a )
a3(β2+χn,a ) 1 a2(β1+χn,c )

a1(β2+χn,c )
a2

β2+χn,d

1 a3(β2+χn,b)
a1(β3+χn,b)

a3(β1+χn,c )
a1(β3+χn,c )

a3
β3+χn,d

⎞⎟⎟⎟⎟⎟⎠.

(B11)

When a j = a, the eigenfunctions are given by:

Rn =χn,a

a
ϕn,a + χn,b

a
ϕn,b + χn,c

a
ϕn,c + ϕn,d ,

Sn =
(

ϕn,a + A1ϕn,b + ϕn,c + a

χn,d
ϕn,d

)
exp (iθ1),

Wn =
(

ϕn,a + ϕn,b + A2ϕn,b + a

χn,d
ϕn,d

)
exp (iθ2),

Xn =
(

ϕn,a + A3ϕn,b + A4ϕn,c + a

χn,d
ϕn,d

)
exp (iθ3),

(B12)

where A1, A2, A3, A4 are real constants to be deter-
mined. Here, for the case of solution (37), we have
{A1, A2, A3, A4} = {−1.366, 2.732, 0.366,−3.732}. For
the case of solution (38), we have {A1, A2, A3, A4} =
{0.366,−0.732,−1.366,−0.268}.

Substituting (Rn, Sn,Wn, Xn) into (B6) with the coeffi-
cients {c1,a, c1,b, c1,c, c1,d} = {1, 1, 0, 0} yields the fundamen-
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tal soliton solutions (37) and (38). For a given α, solutions (37)
and (38) correspond to the same eigenvalue (or Lax spectral
parameter). Therefore, their nonlinear superposition forms a
degenerate second-order solution. It is shown in Fig. 14.

2. Vector solitons for N = 3 with a1 = a2 �= 0, a3 = 0

a. Vector solitons when β1 = −β3 = β �= 0, β2 = 0

The soliton solution with one zero component in ψ (3) and
dark-dark-bright solution (66) are derived below.

When a3 = 0, the valid eigenvalues (29) reduce to

χ1 = −1

2
i(α + √

κ1 − κ2) − 1

2
β,

χ2 = −1

2
i(α − √

κ1 − κ2) − 1

2
β,

χ3 = β − iα, χ4 = β. (B13)

Among them, the eigenvalues χ1, χ2, and χ3 are valid. The
transformation matrix H takes the form:

H =

⎛⎜⎜⎜⎜⎝
1 1 0 1
a1

β1+χn,a

a1
β1+χn,b

0 a1
β1+χn,d

a2
β2+χn,a

a2
β2+χn,b

0 a2
β2+χn,d

0 0 1 0

⎞⎟⎟⎟⎟⎠. (B14)

The corresponding eigenfunctions are

Rn = ϕn,a + ϕn,b + ϕn,d ,

Sn = ψ
(1)
0

(
ϕn,a

β1 + χn,a
+ ϕn,b

β1 + χn,b
+ ϕn,d

β1 + χn,d

)
,

Wn = ψ
(2)
0

(
ϕn,a

β2 + χn,a
+ ϕn,b

β2 + χn,b
+ ϕn,d

β2 + χn,d

)
,

Xn = ϕn,c exp (iθ3). (B15)

Substituting (Rn, Sn,Wn, Xn) into (B6) with the coefficients
(1,1,0,0) yields the soliton solution with one zero com-
ponent in ψ (3). It is illustrated in Figs. 15(a) and 16(a).
The case (1,0,1,0) produces the dark-dark-bright soliton
solution (66).

b. Vector solitons when β1 = β2 = β3

The soliton solution (69) with one zero component in ψ (3))
is derived below.

When a3 = 0, the eigenvalues (29) reduce to

χ1 = χ3 = −β1 − iα,

χ2 = χ4 = −β1. (B16)

Among them, only one eigenvalue (either χ1 or χ3) is valid.
The transformation matrix H takes the form:

H =

⎛⎜⎜⎜⎜⎝
1 0 0 1
a1

β1+χn,a
−a2 0 a1

β1+χn,d

a2
β2+χn,a

a1 0 a2
β2+χn,d

0 0 a1 0

⎞⎟⎟⎟⎟⎠. (B17)

The corresponding eigenfunctions are

Rn = ϕn,a + ϕn,d ,

Sn =
(

a1ϕn,a

β1 + χn,a
− a2ϕn,b + a1ϕn,d

β1 + χn,d

)
exp (iθ1),

Wn =
(

a2
ϕn,a

β2 + χn,a
+ a1ϕn,b + a2ϕn,d

β2 + χn,d

)
exp (iθ2),

Xn = (a1ϕn,c) exp (iθ3). (B18)

Substituting (Rn, Sn,Wn, Xn) into (B6) with the coefficients
(1,1,0,0) yields the soliton solution with one zero component
in ψ (3) (69). The case (1,0,1,0) produces the dark-dark-bright
solution (66). For a given α, the two solutions (69) and
(66) have identical eigenvalues (or Lax spectral parameter).
Therefore, their nonlinear superposition forms a degenerate
second-order solution. It is shown in Fig. 18.

3. Vector solitons for N = 3 with a1 �= 0, a2 = a3 = 0

The solutions (73) and (75) with a2 = a3 = 0 are derived
below. The spectral parameter, λ, in this case is given by

λ = χ + a2
1

χ + β1
, (B19)

while the transformation matrix, H, is

H =

⎛⎜⎜⎝
1 0 0 1
a1

β1+χn,a
0 0 a1

β1+χn,d

0 1 0 0
0 0 1 0

⎞⎟⎟⎠. (B20)

The components of the eigenfunction are

Rn = ϕn,a + ϕn,d ,

Sn = ψ
(1)
0

(
ϕn,a

β1 + χn,a
+ ϕn,d

β1 + χn,d

)
,

Wn = ϕn,b exp (iθ2),

Xn = ϕn,c exp (iθ3). (B21)

Substituting (Rn, Sn,Wn, Xn) into (B6) with the coefficients
{c1,a, c1,b, c1,c, c1,d} = {1, 1, 0, 0} yields the dark-bright-zero
soliton solution (73). The case {1, 0, 1, 0} produces the dark-
zero-bright soliton solution (75). For a given α, the solutions
(73) and (75) have identical eigenvalues (or Lax spectral
parameter). Thus, their nonlinear superposition forms a de-
generate second-order solution. It is shown in Fig. 22.

4. Second-order solutions for N = 3

The second-order solutions of the three-component Man-
akov equations are given by:

ψ
(1)
2 = ψ

(1)
1 + (λ∗

2 − λ2)(P)12, (B22)

ψ
(2)
2 = ψ

(2)
1 + (λ∗

2 − λ2)(P)13, (B23)

ψ
(3)
2 = ψ

(3)
1 + (λ∗

2 − λ2)(P)14. (B24)
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Here (P)1i is the matrix element of P in the first row and ith
column, and

T = I − λ1 − λ∗
1

λ2 − λ∗
1

	1	
†
1�

	†
1�	1

, (B25)

P = 	2[1]	†
2[1]�

	†
2[1]�	2[1]

, 	2[1] = T	2, (B26)

where � = diag(1,−1,−1,−1) and † denotes the matrix
transpose and complex conjugate.

APPENDIX C: ASYMPTOTIC ANALYSIS

We show here the asymptotic behavior of two solitons
described by the second-order soliton solution ψ

( j)
2 (t, x).

Namely, when t → ±∞, we have

ψ
( j)
2l = ψ

( j)
0

M−
l

N−
l

, t → −∞,

ψ
( j)
2l = ψ

( j)
0

M+
l

N+
l

, t → +∞, (C1)

where the subscript l (=1, 2) represents the single soliton 1
and 2. Moreover,

M−
1 = z j

03 exp (ω1r ) + z j
02 exp (−ω1r ) + z j

05 exp (�1)

+ z j
06 exp (−�1),

M+
1 = z j

01 exp (ω1r ) + z j
04 exp (−ω1r ) + z j

07 exp (�1)

+ z j
08 exp (−�1),

M−
2 = z j

04 exp (ω2r ) + z j
02 exp (−ω2r ) + z j

12 exp (�2)

+ z j
10 exp (−�2),

M+
2 = z j

01 exp (ω2r ) + z j
03 exp (−ω2r ) + z j

09 exp (�2)

+ z j
11 exp (−�2),

N−
1 = m01 exp (ω1r ) + m02 exp (−ω1r ) + m03 exp (�1)

+ m04 exp (−�1),

N+
1 = m05 exp (ω1r ) + m06 exp (−ω1r ) + m07 exp (�1)

+ m08 exp (−�1),

N−
2 = m06 exp (ω2r ) + m02 exp (−ω2r ) + m09 exp (�2)

+ m10 exp (−�2),

N+
2 = m05 exp (ω2r ) + m01 exp (−ω2r ) + m11 exp (�2)

+ m12 exp (−�2).

Here ωlr = (χn
li − χm

li )x + (χn
lrχ

n
li − χm

lrχ
m
li )t , �l = i[(χm

lr −
χn

lr )x + ((χm
lr )2 − (χm

li )
2 + (χn

li )
2 − (χn

lr )2)/2t]. Note that χk
l

(k = m, n) are the valid eigenvalues of the soliton solutions

we have analyzed. For the case N = 2, we let χm
l = χa, χm

l =
χb, where χa,b are the complex roots of Eq. (A6). For the case
N = 3, we must have χm

l = χa, χm
l = χb or χc, with χa,b,c

being the complex roots of Eq. (B2). Complex parameters
(z j

01 ∼ z j
12, m01 ∼ m12) are given at the end of the Appendix.

On the other hand, we shall rewrite the single soliton solu-
tion as

ψ
( j)
1l = ψ

( j)
0

Ml

Nl
, (C2)

where

Ml =
(
χm∗

l + β j
)

exp (ωlr )(
χm

l + β j
)
(χm∗

l − χm
l )

+
(
χn∗

l + β j
)

exp (�l )(
χm

l + β j
)(

χn∗
l − χm

l

)
+

(
χm∗

l + β j
)

exp (−�l )(
χn

l + β j
)(

χm∗
l − χn

l

) +
(
χn∗

l + β j
)

exp (−ωlr )(
χn

l + β j
)(

χn∗
l − χn

l

) ,

Nl = exp (ωlr )

χm∗
l − χm

l

+ exp (�l )

χn∗
l − χm

l

+ exp (−�l )

χm∗
l − χn

l

+ exp (−ωlr )

χn∗
l − χn

l

.

By comparing (C1) with (C2), we have

ψ
( j)
2l = exp

(
φ

(n)
l

)
ψ

( j)
1l

{ ± ωlr ± s(n)
l ,±�l ± θ

(n)
l

}
,

t → −∞,

ψ
( j)
2l = exp

(
φ

(m)
l

)
ψ

( j)
1l

{ ± ωlr ± s(m)
l ,±�l ± θ

(m)
l

}
,

t → +∞. (C3)

Here φ
(k)
l (k = m, n) denote the additional phase of vector

plane wave, s(k)
l and θ

(k)
l are the position and phase shifts,

respectively. Their expressions are given by

s(k)
1 = 1

2
ln

[(
χm

1 − χk
2

)(
χk

2 − χn∗
1

)(
χm∗

1 − χk∗
2

)(
χk∗

2 − χn
1

)(
χm∗

1 − χk
2

)(
χk

2 − χn
1

)(
χm

1 − χk∗
2

)(
χk∗

2 − χn∗
1

)],

s(k)
2 = 1

2
ln

[(
χk

1 − χm
2

)(
χk∗

1 − χm∗
2

)(
χk∗

1 − χn
2

)(
χk

1 − χn∗
2

)(
χk∗

1 − χm
2

)(
χk

1 − χm∗
2

)(
χk

1 − χn
2

)(
χk∗

1 − χn∗
2

)],

θ
(k)
1 = i arg

[(
χm

1 − χk
2

)(
χn

1 − χk∗
2

)(
χn

1 − χk
2

)(
χm

1 − χk∗
2

)],

θ
(k)
2 = i arg

[(
χm

2 − χk
1

)(
χn

2 − χk∗
1

)(
χk∗

1 − χm
2

)(
χk

2 − χn
2

)],

φ
(k)
1 = i arg

[
β j + χk∗

2

β j + χk
2

]
, φ

(k)
2 = i arg

[
β j + χk∗

1

β j + χk
1

]
.

Equation (C3) clearly shows that the second-order solution
ψ

( j)
2 (t, x) at t → ±∞ turns out to be the elastic collision

between two single solitons with position shift s(k)
l , phase shift

θ
(k)
l , and additional phase of vector plane wave φ

(k)
l . As an

example, we have shown the elastic collision for N = 3 in
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Fig. 11(a). Finally, the remaining complex parameters are

z j
01 =

(
β j + χm∗

1

)(
χm

1 − χm
2

)(
χm∗

1 − χm∗
2

)(
β j + χm∗

2

)(
β j + χm

1

)(
χm

1 − χm∗
1

)(
χm∗

1 − χm
2

)(
β j + χm

2

)(
χm

1 − χm∗
2

)(
χm

2 − χm∗
2

) ,

z j
02 =

(
β j + χn∗

1

)(
χn

1 − χn
2

)(
χn∗

1 − χn∗
2

)(
β j + χn∗

2

)(
β j + χn

1

)(
χn

1 − χn∗
1

)(
χn∗

1 − χn
2

)(
β j + χn

2

)(
χn

1 − χn∗
2

)(
χn

2 − χn∗
2

) ,

z j
03 =

(
β j + χm∗

1

)(
χm

1 − χn
2

)(
χm∗

1 − χn∗
2

)(
β j + χn∗

2

)(
β j + χm

1

)(
χm

1 − χm∗
1

)(
χm∗

1 − χn
2

)(
β j + χn

2

)(
χm

1 − χn∗
2

)(
χn

2 − χn∗
2

) ,

z j
04 =

(
β j + χn∗

1

)(
χn

1 − χm
2

)(
χn∗

1 − χm∗
2

)(
β j + χm∗

2

)(
β j + χn

1

)(
χn

1 − χn∗
1

)(
χn∗

1 − χm
2

)(
β j + χm

2

)(
χn

1 − χm∗
2

)(
χm

2 − χm∗
2

) ,

z j
05 =

(
β j + χn∗

1

)(
χm

1 − χn
2

)(
χn∗

1 − χn∗
2

)(
β j + χn∗

2

)(
β j + χm

1

)(
χm

1 − χn∗
1

)(
χn∗

1 − χn
2

)(
β j + χn

2

)(
χm

1 − χn∗
2

)(
χn

2 − χn∗
2

) ,

z j
06 =

(
β j + χm∗

1

)(
χn

1 − χn
2

)(
χm∗

1 − χn∗
2

)(
β j + χn∗

2

)(
β j + χn

1

)(
χn

1 − χm∗
1

)(
χm∗

1 − χn
2

)(
β j + χn

2

)(
χn

1 − χn∗
2

)(
χn

2 − χn∗
2

) ,

z j
07 =

(
β j + χn∗

1

)(
χm

1 − χm
2

)(
χn∗

1 − χm∗
2

)(
β j + χm∗

2

)(
β j + χm

1

)(
χm

1 − χn∗
1

)(
χn∗

1 − χm
2

)(
β j + χm

2

)(
χm

1 − χm∗
2

)(
χm

2 − χm∗
2

) ,

z j
08 =

(
β j + χm∗

1

)(
χn

1 − χm
2

)(
χm∗

1 − χm∗
2

)(
β j + χm∗

2

)(
β j + χn

1

)(
χn

1 − χm∗
1

)(
χm∗

1 − χm
2

)(
β j + χm

2

)(
χn

1 − χm∗
2

)(
χm

2 − χm∗
2

) ,

z j
09 =

(
β j + χm∗

1

)(
χm

1 − χm
2

)(
χm∗

1 − χn∗
2

)(
β j + χn∗

2

)(
β j + χm

1

)(
χm

1 − χm∗
1

)(
χm∗

1 − χm
2

)(
β j + χm

2

)(
χm

1 − χn∗
2

)(
χm

2 − χn∗
2

) ,

z j
10 =

(
β j + χn∗

1

)(
χn∗

1 − χm∗
2

)(
β j + χm∗

2

)(
χn

1 − χn
2

)(
β j + χn

1

)(
χn

1 − χn∗
1

)(
χm∗

2 − χn
1

)(
χn∗

1 − χn
2

)(
χm∗

2 − χn
2

)(
β j + χn

2

) ,

z j
11 =

(
β j + χm∗

1

)(
χm∗
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