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Chaotic chimera attractors in a triangular network of identical oscillators
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A prominent type of collective dynamics in networks of coupled oscillators is the coexistence of coherently
and incoherently oscillating domains known as chimera states. Chimera states exhibit various macroscopic
dynamics with different motions of the Kuramoto order parameter. Stationary, periodic and quasiperiodic
chimeras are known to occur in two-population networks of identical phase oscillators. In a three-population
network of identical Kuramoto-Sakaguchi phase oscillators, stationary and periodic symmetric chimeras were
previously studied on a reduced manifold in which two populations behaved identically [Phys. Rev. E 82, 016216
(2010)]. In this paper, we study the full phase space dynamics of such three-population networks. We demonstrate
the existence of macroscopic chaotic chimera attractors that exhibit aperiodic antiphase dynamics of the order
parameters. We observe these chaotic chimera states in both finite-sized systems and the thermodynamic limit
outside the Ott-Antonsen manifold. The chaotic chimera states coexist with a stable chimera solution on the
Ott-Antonsen manifold that displays periodic antiphase oscillation of the two incoherent populations and with
a symmetric stationary chimera solution, resulting in tristability of chimera states. Of these three coexisting
chimera states, only the symmetric stationary chimera solution exists in the symmetry-reduced manifold.

DOI: 10.1103/PhysRevE.107.054205

I. INTRODUCTION

Comprehending the dynamics of coupled oscillator en-
sembles is crucial for various applications, including laser
physics [1,2] or Josephson junctions [3,4] to biology [5–7]
and neural science [8,9]. Among the fascinating collective
behaviors exhibited by identical oscillators is the coexistence
of synchrony and asynchrony. This intriguing state was first
identified by Battogtokh and Kuramoto [10] 20 years ago, and
was subsequently named a chimera state [11] to underscore its
peculiarity.

While originally chimera states were investigated in a spa-
tially extended ring geometry [12–14], simpler settings, in
particular two-population networks, revealed essential prop-
erties of chimera states [15,16]. Here, a chimera state consists
of one fully synchronized and one incoherent population. The
success of this model relied on two pillars: first, each oscillator
is sinusoidally influenced by an effective force that depends
only on the macroscopic dynamics and measures the degree
of synchrony of the individual populations [17]. Second, di-
mension reduction methods allow for the investigation of the
dynamics of each population in terms of a few macroscopic
variables rather than directly studying the microscopic indi-
vidual oscillators. In the thermodynamic limit, an invariant
manifold, called Ott-Antonsen (OA) manifold [18,19], exists
on which the evolution equation for the complex order param-
eter can be written in a closed form. For finite-sized systems,
a so-called Watanabe-Strogatz (WS) transformation [20,21]
maps the microscopic dynamics of each population to three

*seungjae.lee@tum.de
†krischer@tum.de

macroscopic variables and N − 3 independent constants of
motion [22–25].

Much about chimera states was learned from two-
population networks of identical Kuramoto-Sakaguchi (KS)
phase oscillators, arguably the best studied oscillator model
and the simplest network configuration. Three types of sta-
ble chimera states were identified: stationary chimera states
where the incoherent population possesses a constant degree
of partial coherence, i.e., a stationary magnitude of the Ku-
ramoto order parameter of the incoherent population, and
breathing chimeras where the degree of partial coherence,
respectively the Kuramoto order parameter, oscillates peri-
odically [16,24,26], and quasiperiodic chimeras, exhibiting
quasiperiodic motion of the order parameter [22,23]. In con-
trast, chaotic motion of the macroscopic dynamics seems
to require more complex settings, such as the presence of
heterogeneities [27–29], higher-order interactions [30,31], or
higher-dimensional individual oscillators [32,33].

Chaotic chimeras, however, are also far less studied, and
the settings under which macroscopic chaotic chimeras exist
in ensembles of identical KS phase oscillators are not well un-
derstood. Note that when we talk here about chaotic chimera
states we refer to (macroscopic) chaotic order parameter dy-
namics in large ensembles of oscillators, not to chaotic (weak)
chimeras in systems of just a few, e.g., three [34] or four
oscillators [27], where it is not clear to which order parameter
dynamics the chaotic motion translates in the thermodynamic
limit [35]. In this paper, we study what seems to be the sim-
plest topology of a network of identical KS phase oscillators
that exhibits, as we will show below, chaotic chimera states:
a three-population network of identical KS phase oscillators
globally coupled within each population and arranged in a
triangle with equal interpopulation coupling strengths.
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Three-, or more generally, multipopulation networks can
be seen as toy models for networks of networks and have
been investigated in different contexts. They may exhibit a
variety of dynamical states; besides chimera states [36–39]
and heteroclinic switching between saddle chimeras [40,41],
effects of nonresonant natural frequencies [42], comparison
with three-modal natural frequency distribution [43], and the
impact of repulsive coupling [44,45] have been studied.

The macroscopic dynamics of chimera states in three-
population networks of identical KS phase oscillators was
studied for symmetric solutions where two populations be-
have identically [36,37]. In these studies the thermodynamic
limit was considered using the OA approach. Two kinds of
chimera states were identified, so called DSD- and SDS-type
chimeras, respectively. Here, “S” stands for a completely
synchronized population while “D” denotes a desynchronized
population. On the symmetry-reduced manifold both of these
types of chimeras are stable in some range of the parameters
and the degree of coherence of the D populations can be either
stationary or breathing. As the author noted [36], nothing
can be said about the stability of these symmetric chimeras
off the symmetry-reduced manifold or about the existence
of nonsymmetric solutions, in particular of DSD′ chimeras,
where the D′ indicates that the two desynchronized popula-
tions display a different order parameter dynamics. This holds
for solutions on the full OA manifold as well as outside it.
In this context, macroscopic chaotic chimera states showing
aperiodic motion of the order parameter of incoherent popu-
lations are of particular interest, as this would be an example
of macroscopic chaotic chimeras of identical KS phase oscil-
lators in the thermodynamic limit.

This paper addresses these questions and provides detailed
dynamical and spectral properties of observable chimera
states. Starting with the microscopic equations, we introduce
the order parameter dynamics in both the thermodynamic
limit on the full OA manifold and finite-sized ensembles
using WS reduction in Sec. II. In Sec. III, we elucidate the
coexistence of periodic and chaotic antiphase DSD′ chimera
attractors on and off the Ott-Antonsen manifold, respectively,
and demonstrate that these two states also coexist with a
symmetric SDS stationary chimera state on the OA manifold.
The results are summarized in Sec. IV.

II. GOVERNING EQUATIONS

Consider a system of identical Kuramoto-Sakaguchi phase
oscillators, each oscillator j being described by a phase vari-
able φ

(a)
j (t ) ∈ [−π, π ) =: T where a = 1, 2, 3 denotes the

population of a three-population network and each popula-
tion consists of N oscillators. The 3N microscopic governing
equations are given by

d

dt
φ

(a)
j = ω + Im

[
Ha(t )e−iφ(a)

j
]

= ω +
3∑

b=1

Kab
1

N

N∑
k=1

sin
(
φ

(b)
k − φ

(a)
j − α

)
(1)

with j = 1, . . . , N and a, b = 1, 2, 3. Ha(t ) represents
a mean-field forcing defined by Ha(t ) := e−iα (μ�a(t ) +
ν�b(t ) + ν�c(t )) where (a, b, c) is a permutation of (1,2,3).

�a(t ) denotes the complex Kuramoto order parameter of each
population, which is defined as

�a(t ) = ra(t )ei�a (t ) := 1

N

N∑
j=1

eiφ(a)
j (t ). (2)

The phase-lag parameter α is conveniently written as α =
π
2 − β. In this work, we fix β = 0.025. Since the oscillators
are identical, we can set ω = 0 and the intrapopulation cou-
pling strength μ = 1. The interpopulation coupling strength
ν, which we assume to be always weaker than the intrapopula-
tion coupling strength, is expressed through ν = 1 − A where
A ∈ [0, 1]. Note that the larger the parameter A, the weaker
the coupling between populations [36]. In matrix form, the
coupling strength of this triangular, symmetric network [37]
is thus given by

(Kaa′ ) =
⎛
⎝μ ν ν

ν μ ν

ν ν μ

⎞
⎠

for a, a′ = 1, 2, 3.
Below we analyze the dynamics of Eq. (1) on the levels

of the OA and WS reductions. To derive the global dynamics
of the finite-sized system, we exploit the WS transformation
[17,21,23]:

eiφ(a)
j = ei
a

ρa + ei
(
ψ

(a)
j −a

)
1 + ρaei

(
ψ

(a)
j −a

) (3)

for j = 1, . . . , N and a = 1, 2, 3. For each population, the
radial variable ρa(t ) measures the degree of coherence, and

a(t ) the mean phase; note, though, that these quantities are
not exactly identical to ra(t ) and �a(t ) of the Kuramoto order
parameter. The second angular variable, a(t ), specifies the
motion of the oscillators with respect to the mean phase and
{ψ (a)

j }N
j=1 are N − 3 independent constants of motion that

satisfy three constraints:
∑N

j=1 cos ψ
(a)
j = ∑N

j=1 sin ψ
(a)
j =

0 and
∑N

j=1 ψ
(a)
j = 0 for a = 1, 2, 3 [17,21–23]. The WS

macroscopic variables are related to the complex Kuramoto
order parameter via [22,23]:

�a(t ) = ρa(t )ei
a (t )γa(ρa, a; t ), (4)

where γa is defined by

γa = 1

ρa
(ζa + iξa)

:= 1

ρaN

N∑
k=1

2ρa + (
1 + ρ2

a

)
cos

(
ψ

(a)
k − a

)
1 + 2ρa cos

(
ψ

(a)
k − a

) + ρ2
a

+ i
1

ρaN

N∑
k=1

(
1 − ρ2

a

)
sin(ψ (a)

k − a)

1 + 2ρa cos
(
ψ

(a)
k − a

) + ρ2
a

(5)

for a = 1, 2, 3. With these definitions, the governing equa-
tions of the 9D WS variables are given as [22–24]

dρa

dt
= 1 − ρ2

a

2

3∑
a′=1

Kaa′ (ζa′ cos(
a′ − 
a − α)

− ξa′ sin(
a′ − 
a − α)),
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da

dt
= 1 − ρ2

a

2ρa

3∑
a′=1

Kaa′ (ζa′ sin(
a′ − 
a − α)

+ ξa′ cos(
a′ − 
a − α)),

d
a

dt
= 1 + ρ2

a

2ρa

3∑
a′=1

Kaa′ (ζa′ sin(
a′ − 
a − α)

+ ξa′ cos(
a′ − 
a − α)) (6)

for a = 1, 2, 3.
The OA dynamics can be obtained from the WS dynam-

ics for uniform constants of motion ψ
(a)
j = −π + 2π ( j−1)

N for
j = 1, . . . , N , taking the thermodynamic limit N → ∞. Un-
der this condition, the Kuramoto order parameter is exactly
described by �a(t ) = ρa(t )ei
a (t ) since γa = 1 for a = 1, 2, 3
and the governing equations read [22,23,36]

dρa

dt
= 1 − ρ2

a

2

3∑
a′=1

Kaa′ρa′ cos(
a′ − 
a − α),

d
a

dt
= 1 + ρ2

a

2ρa

3∑
a′=1

Kaa′ρa′ sin(
a′ − 
a − α) (7)

for a = 1, 2, 3.

III. SYMMETRY-BROKEN CHIMERAS

We first focus our attention on observable, i.e., stable
chimera states in the thermodynamic limit, which live on the
Ott-Antonsen manifold. As mentioned above, there are two
basic types of chimera states, SDS- and DSD-type chimeras.
The detailed analysis of the symmetric SDS and DSD chimera
states, which do not lead to a chaotic chimera state, are given
in Appendix. Here, we concentrate on the symmetry-broken
DSD′ chimera states, which are connected to the chaotic
chimeras.

A bifurcation diagram of DSD-type chimera states is de-
picted in Fig. 1. The black curves correspond to the symmetric
DSD chimeras with ρ1(t ) = ρ3(t ) < 1 while ρ2(t ) = 1 and

1(t ) = 
3(t ) ∈ T that live in the symmetry-reduced man-
ifold. Their dynamics within this manifold was studied in
Ref. [36]. Our results are in agreement with these data, but
reveal that all symmetric DSD chimera states, i.e., also those
that were found to be stable within the reduced manifold, have
at least one transversally unstable direction, which drives the
two symmetric D populations in opposite directions, and are
thus unstable (see Appendix A2 for details). Not reported be-
fore are the asymmetric DSD′ chimeras with ρ1(t ) �= ρ3(t ) <

1,
1(t ) �= 
3(t ) that live off the reduced manifold. Among
these states are stable asymmetric DSD′ chimera states (blue)
in which the two incoherent populations exhibit antiphase
character: ρ1(t ) = ρ3(t − T

2 ) where T is the period of the
oscillation, and thus, ρ1(t ) �= ρ3(t ) for t ∈ R+ almost every-
where. Time series of the three moduli of the order parameters
are shown in Fig. 2(a). These antiphase DSD′ chimeras are
born in a double-homoclinic cycle of the stationary symmetric
DSD chimeras, which is point symmetric in the projection on
the ρ1ρ3 plane with respect to the diagonal line (ρ1 = ρ3). The
homoclinic bifurcation (Hom) lies very close to a pitchfork

FIG. 1. Top: Bifurcation diagram of DSD-type chimera states.
Bottom: Enlargement of the gray box in the top panel. Dashed
and solid lines indicate unstable and stable curves, respectively.
Black: symmetric stationary DSD. Red: asymmetric stationary
DSD′. Green: symmetric and asymmetric breathing chimeras. Blue:
antiphase DSD′ chimera states.

bifurcation (PF) at which a pair of stationary DSD′ chimeras
(red) bifurcates off the stationary DSD chimera state (black).
The homoclinic bifurcation throws off unstable antiphase
DSD′ chimeras (dashed blue) that are at somewhat larger
values of A stabilized in a subcritical torus bifurcation (TR).
Further increasing A, the antiphase chimera state eventually
becomes unstable again via a subcritical torus bifurcation.

Though the antiphase DSD′ chimera state results from
the broken symmetry due to the transversal instability,
the dynamics of it inherits another symmetry of the so-
lution: 
̇a(t ) = 
̇a(t − T ), ρ̇a(t ) = ρ̇a(t − T ) for a = 1, 3
and 
̇2(t ) = 
̇2(t − T

2 ), 
̇1(t ) = 
̇3(t − T
2 ), which leads to

ρ1(t ) = ρ3(t − T
2 ). Thus, antiphase chimera states possess

just two effective degrees of freedom. This fact is also re-
flected in the spectrum of the Lyapunov exponents (LEs)
[Fig. 2(b)] [46–48]. There are two zero Lyapunov exponents
due to continuous symmetries, i.e., time and phase shift invari-
ance, with two slightly negative and two prominently negative
Lyapunov exponents. Hence, the antiphase DSD′ chimeras in
the OA manifold are a stable periodic motion, i.e., a periodic
antiphase chimera.

In Fig. 2(c), the antiphase chimera state in a finite-sized
system obtained from the WS dynamics (6) with uniform
constants of motion is shown. Although it displays oscillating
antiphase motion of the two incoherent populations similar
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FIG. 2. (a) Radial variables of the 6D OA dynamics (red: first;
blue: third population; and orange: second population) and (b) Lya-
punov exponents along the antiphase chimera trajectory. (c) Radial
variables of the 9D WS dynamics with uniform constants of motion
and N = 20 and (d) and the corresponding Lyapunov exponents. In
subfigures: A = 0.35 and all are measured after t > 105.

to the one of the OA dynamics, its motion is not periodic but
rather aperiodic, and thus the state does not possess the above-
mentioned spatiotemporal symmetry, i.e., ρ1(t ) �= ρ3(t − T

2 ).
In fact, the Lyapunov analysis [Fig. 2(d)] clearly shows two
positive Lyapunov exponents. In other words, the antiphase
chimera state of the small-sized system in the Poisson sub-
manifold (defined as a manifold of finite size N as close
as possible to the OA manifold, and obtained with uniform
constants of motion) is chaotic. Furthermore, besides the evi-
dence of the two positive LEs, the chaotic motion of the WS
dynamics in small-N systems can be detected in a Poincaré
section defined by 1 ≡ 2π [Fig. 3(a)] [24]. For N = 30,

FIG. 3. Poincaré section of 9D WS dynamics with uniform con-
stants of motion and 1 ≡ 2π for (a) N = 30 and (b) N = 100.
(c) The largest and the second largest LEs as a function of N for
9D WS dynamics. (d) Real (orange) and imaginary (gray) parts of γ1

as a function of time after t > 104. All the results are obtained with
uniform constants of motion of WS dynamics, and A = 0.35.

FIG. 4. (a) Moduli of the Kuramoto order parameters of the
three populations for the microscopic dynamics (1) with N = 40
after t > 105. (b) Radial variables of the WS dynamics (6) with
N = 40 after t > 105. (c) The largest and the second largest LEs as
a function of N . The 9D WS dynamics is obtained with nonuniform
constants of motion and the microscopic dynamics from a random
initial condition. The parameter used here is A = 0.3.

the dynamics in the section follows a scattered motion on a
bandlike region, as expected for motion on a chaotic attractor.

Opposed to this, the dynamics of the large system with
N = 100 oscillators resides on a one-dimensional (1D) curve
in the Poincaré section [Fig. 3(b)] suggesting that the chaotic
motion is restricted to small system sizes. This conjecture is
further supported by calculations of the two largest Lyapunov
exponents as a function of system size N . In Fig. 3(c) we
can see that the two positive Lyapunov exponents decrease
until N ≈ 60 where they become numerically indistinguish-
able from zero. The deterministic small-size effect that gives
rise to a chaotic motion of antiphase chimeras arises from
the influence of γa ∈ C on the WS variables. For small N ,
γa significantly affects the dynamics given by Eq. (6) and
renders the WS dynamics different from the OA dynamics.
The irregular motion of the real and the imaginary part of γa

as a function of time of the chaotic chimera state depicted in
Fig. 3(a) is displayed in Fig. 3(d). As N approaches infinity,
Re(γa) → 1 and Im(γa) → 0, so that Eq. (6) becomes identi-
cal to Eq. (7) and the aperiodic WS dynamics coincides with
the periodic OA motion.

Off the OA manifold, the picture is different. First, we
observe that starting from random initial conditions picked
from T 3N for simulations of the microscopic dynamics (1),
chaotic antiphase chimera states are observed as well. An
example is shown in Fig. 4 with N = 40 where the evolu-
tion of the moduli of the Kuramoto order parameters for the
microscopic dynamics [Fig. 4(a)] is depicted together with
the radial variables of the WS dynamics [Fig. 4(b)]. The
latter is obtained from nonuniform constants of motion that
are generated using ψ

(a)
j = (1 − q)π

2 + πq( j−1)
N/2 and ψ

(a)
j+N/2 =

−(1 + q)π
2 + πq( j−1)

N/2 with q = 0.85 for j = 1, . . . , N
2 and for

a = 1, 2, 3 [22,23]. The moduli of the Kuramoto order pa-
rameters exhibit a qualitatively similar envelope to the radial
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variables, but with further fluctuations superimposed, as ex-
pected from the impact of γa in Eq. (4). However, different
from the dynamics in the OA manifold, outside of it, the
chaotic motion persists for systems as large as N = 4, 000.
The two largest Lyapunov exponents of simulations with
nonuniformly distributed constants of motion are shown in
Fig. 4(c). Up to about N = 100 they decrease with system
size, but then saturate at a positive, nonzero value, indicat-
ing that outside the OA manifold the chaotic attractors exist
even in the thermodynamic limit. Likewise, the Poincaré sec-
tion elucidates similar scattered characteristics to Fig. 3(a)
even for N = 200 with nonuniform constants of motion (not
shown here). Note that this chaotic motion is not microscopic
chaos but rather it is a macroscopic chaos of the order pa-
rameter dynamics [49,50]. Consequently, we show that in
the thermodynamic limit, a system of identical Kuramoto-
Sakaguchi phase oscillators in three-population networks
supports the coexistence of periodic antiphase chimeras
within the OA manifold and chaotic antiphase chimeras out-
side of it. These symmetry-broken chimeras arise due to the
transversal instability of symmetric DSD chimeras between
two symmetric populations. Above we discussed that in the
thermodynamic limit, three populations support the coexis-
tence of periodic antiphase chimeras within the OA manifold
and chaotic antiphase chimeras outside it. In fact, in addition
to these two, the stationary SDS chimera state coexists with
these two states in a wide parameter range (see Appendix A1
for details of stability of the symmetric SDS chimeras). There-
fore, we evidence the coexistence of three observable chimera
states. In addition, the fully synchronized solution is stable in
the entire parameter range in which chimera states exist. Yet,
from 200 simulations from random initial condition within
and off the OA manifold each at, e.g., A = 0.3, about half
of them lead to antiphase chimeras (periodic in the OA and
chaotic off the OA) and the other half of them to symmetric
SDS chimeras (see Appendix A1), evidencing that the basins
of the three coexisting chimera states occupy most of the
phase space.

IV. SUMMARY

Our studies revealed that in three-population networks of
identical Kuramoto-Sakaguchi phase oscillators, a variety of
qualitatively different chimera states not only exists, but dif-
ferent chimera states also coexist and jointly attract most of
the initial conditions in phase space.

Previously, symmetric chimera states, namely SDS and
DSD chimeras with two populations behaving alike, were
reported to exist in the symmetry-reduced manifold [36].
In the current work, we have lifted the symmetry con-
straint and studied the full dynamics at the level of both
microscopic dynamics and macroscopic dynamics, using the
Watanabe-Strogatz and the Ott-Antonsen approaches. In full
phase space, the symmetric DSD chimeras are unstable to
transversal perturbations, i.e., perturbations in which the two
D populations move in opposite directions, resulting in DSD′

states. These asymmetric DSD′ chimeras are stable in a wide
parameter range. They form chaotic antiphase chimera attrac-
tors in both finite-sized systems and in the thermodynamic
limit outside the Ott-Antonsen manifold. In the OA mani-

fold, such an antiphase chaotic chimera is rendered periodic.
Hence, these two types of antiphase DSD′ chimeras coexist
in the thermodynamic limit. Furthermore, these two types of
chimeras coexist with a symmetric stationary SDS chimera
state in apparently the entire parameter range of their exis-
tence. The simple transition from two- to three-population
networks results thus in a quantum jump in the richness of
dynamics, and in particular supporting tristability of chimera
attractors, whereby the three coexisting states encompass sta-
tionary, oscillating and chaotic chimeras.

This work illustrates in detail how rich the order parameter
dynamics of oscillators with identical natural frequencies in
more complex network topologies can be. It thus comple-
ments and supports recent results on M-population networks
of coupled heterogeneous oscillators [38] and will certainly
lead to further investigations in the future.
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APPENDIX: SYMMETRIC CHIMERAS

In order to determine the likeliness of observing periodic
and chaotic antiphase chimera states, we performed 200 sim-
ulations with the OA dynamics [Eq. (7)], the WS dynamics
[Eq. (6)], and the microscopic dynamics [Eq. (1)], respec-
tively. For the WS dynamics, we used uniform constants
of motion for N = 80. They are all initialized with random
initial conditions of the corresponding dynamical variables.
The outcome is shown in Fig. 5. In the range between 0.2 �
A � 0.4, the coexistence of the symmetric stationary SDS
chimeras and the antiphase DSD′ chimeras is observed in the
OA and WS dynamics. Here, the antiphase chimeras are peri-
odic. From the microscopic dynamics, which corresponds to
nonuniform constants of motion in the WS dynamics, chaotic
antiphase chimeras are coexisting with symmetric stationary
SDS chimera states, though in a somewhat smaller param-
eter interval. Besides these, also symmetric breathing SDS
chimeras are found, though at different values of A. Note
that in Ref. [36], the authors considered only solutions on
the symmetry-reduced manifold where the populations one
and three behave alike in the Ott-Antonsen dynamics. They
observed stable symmetric stationary or breathing SDS and
DSD chimera states in the reduced manifold. However, the
symmetric stationary and breathing DSD chimera states are
unstable in the entire phase space.

1. Symmetric chimera states of SDS type

SDS-type symmetric chimera states in three-population
networks behave similarly to those in two-population net-
works [16,24,26]. In this section, we discuss their dynamical
and spectral properties. First, we investigate the stationary
SDS chimera states in the 6D Ott-Antonsen manifold. This
solution is characterized by ρ1(t ) = ρ3(t ) = 1, ρ2(t ) = ρ0 <

1, ∂t
a(t ) = � ∈ R for a = 1, 2, 3. Figure 6(a) shows ρa(t )
of a stationary SDS at A = 0.35. The angular velocity is
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FIG. 5. The number of dynamical states at t = 20000 starting
from 200 random initial conditions for different values of A. (a) 6D
Ott-Antonsen dynamics. (b) 9D Watanabe-Strogatz macroscopic
dynamics with N = 80 and uniform constants of motion. (c) 3N-
dimensional microscopic dynamics with N = 80.

numerically found to be � = −2.13448. In a frame rotating
with �, this solution can be viewed as a fixed point. Hence
we can perform a linear stability analysis and determine the
eigenvalues of the Jacobian matrix evaluated at the fixed
point solution. In Fig. 6(b), the six eigenvalues are plotted in
the complex plane. All the eigenvalues have nonpositive real
parts. The eigenvalue, λ1 = 0 has an accompanying eigenvec-
tor given by δx1 = (0, 0, 0, δa, δa, δa)	 where δa = 1/

√
3,

which results from the phase shift invariance and does not
affect the stability. Thus, the fixed point solution is stable. The
pair of complex conjugate eigenvalues, λ2 = λ3 corresponds
to the eigenvector within the symmetry-reduced manifold:
δx2 = δx3 = (0, δa, 0, δb, δc, δb)	 for δa, δc ∈ C and δb ∈
R. The real negative eigenvalue λ4 is related to the pertur-
bation transverse to the symmetry-reduced manifold in the
angular direction: δx4 = (0, 0, 0, δa, 0,−δa)	 where δa =
1/

√
2. The last two eigenvalues λ5 = λ6 are real negative and

degenerate.
A bifurcation diagram of the stationary SDS chimera state

is depicted in Fig. 6(c). It follows the same bifurcation sce-
nario as chimeras either in two-population networks [16,24]

FIG. 6. Stationary SDS chimeras in the 6D OA dynamics.
(a) Time evolution of the radial variables of 6D OA dynamics after
a transient time of 105 units for A = 0.35. (b) The eigenvalues of
the Jacobian matrix evaluated at the stationary SDS chimera fixed
point solution shown in (a) in the complex plane. Red circles indicate
the eigenvalues in the 6D OA dynamics, and the blue squares those
in the 2D symmetry-reduced manifold. (c) Bifurcation diagram of
SDS chimeras. The states are born in a limit point bifurcation (LP).
The red dashed and solid curves indicate the location of unstable
and stable stationary SDS chimeras, respectively. The green curve
shows the maxima of the radial variable of a breathing chimera state
emerging in a supercritical Hopf bifurcation (HB).

or in three-population networks restricted to the symmetry-
reduced manifold [36]. They are created (destroyed) in a limit
point (LP) bifurcation, creating a stable and an unstable SDS
branch. Following the stable branch to large values of A, it
is destabilized in a supercritical Hopf bifurcation (HB) gen-
erating a stable breathing SDS chimera state. This breathing
chimera disappears in a homoclinic bifurcation as the pa-
rameter A is further increased (compare this to Fig. 5(a) in
Ref. [36]).

In Fig. 7, we explore the 9D WS dynamics (6) for the sta-
tionary SDS chimeras with uniform constants of motion. The
macroscopic WS dynamics displays a prominent dependence
on system size N . For large N , the radial variables [Fig. 7(a)]
are stationary and characterized by ρ1(t ) = ρ3(t ) = 1 (red
and blue) and ρ2(t ) = ρ0 < 1 (orange coinciding with black,
see below). For this solution, we find the angular variable
∂t
a(t ) = � for a = 1, 2, 3, which in fact have the same
characteristic as in the 6D OA dynamics above, i.e., ρ0 =
0.74769 and � = −2.13448 for A = 0.35. The other angular
variables read ∂ta(t ) = 0 for a = 1, 3, and ∂t2(t ) = �̃ =
−0.60369. For small N [Fig. 7(b)], the radial variables are
slightly fluctuating around the values of the OA dynamics
(orange not coinciding with black), however, the fluctuations
are so small that they can be neglected. The dependence on the
system size is more evident in the Kuramoto order parameter
calculated from Eq. (4). For small N , the modulus of the
Kuramoto order parameter of the incoherent population shows
an oscillating motion along the ρ0 value [black, in Fig. 7(b)].
Such a secondary oscillation disappears as the system size
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increases [black, in Fig. 7(a)], similar to Fig. 4(a) in Ref. [26]:
Both the amplitude and the period are decreasing as N grows.
This phenomenon can be understood as follows. First, we use

the following form of the Watanabe-Strogatz transformation
[17,21,23]:

tan

(
φ

(a)
j − 
a

2

)
= 1 − ρa

1 + ρa
tan

(
ψ

(a)
j − a

2

)
(A1)

for a = 1, 2, 3 and j = 1, . . . , N . This transformation directly gives a time derivative of each phase variable in terms of the WS
global variables and the constants of motion. Starting with Eq. (A1) and its time derivative, we obtain

d

dt
(φ j − 
) = 2

d

dt

[
tan−1

(
g tan

(
ψ j − 

2

))]
= 2

1 + g2 tan2
(ψ j−

2

)
[

ġ tan

(
ψ j − 

2

)
+ g

cos
(ψ j−

2

)
(

− 1

2
̇

)]

= g

cos2
(ψ j−

2

) + g2 sin2
(ψ j−

2

)
(

ġ

g
sin(ψ j − ) − ̇

)
(A2)

for j = 1, . . . , N and g := 1−ρ

1+ρ
. The denominator can be written, using the trigonometric identity, as

cos2

(
ψ j − 

2

)
+ g2 sin2

(
ψ j − 

2

)
= 1 + cos(ψ j − )

2
+ g2 1 − cos(ψ j − )

2

= 1 + ρ2

(1 + ρ)2
+ 2ρ

(1 + ρ)2
cos(ψ j − ) = 1 + ρ2 + 2ρ cos(ψ j − )

(1 + ρ)2
. (A3)

The time derivative of g is

ġ

g
= −ρ̇(1 + ρ) − ρ̇(1 − ρ)

(1 + ρ)2

1 + ρ

1 − ρ
= −2ρ̇

1 − ρ2
. (A4)

Substituting Eqs. (A3)–(A4) into Eq. (A2), the phase velocity can be written as

φ̇ j = 
̇ + 1 − ρ2

1 + ρ2 + 2ρ cos(ψ j − )

(
−2ρ̇

1 − ρ2
sin(ψ j − ) − ̇

)
(A5)

for j = 1, . . . , N . Hence, we obtain the instantaneous phase velocity of each oscillator

φ̇
(a)
j (t ) = 
̇a − 1 − ρ2

a

1 + ρ2
a + 2ρa cos

(
ψ

(a)
j − a

)
(

̇a + 2ρ̇a

1 − ρ2
a

sin
(
ψ

(a)
j − a

))
. (A6)

Plugging the macroscopic variables ρ2 = ρ0, 
̇2(t ) = �,
2(t ) = �̃t + 2(0) and the constants of motion ψ

(a)
j uni-

formly distributed in [−π, π ] into Eq. (A6), we obtain

φ̇
(2)
j (t ) = � − �̃

(
1 − ρ2

0

)
1 + ρ2

0 + 2ρ0 cos
[
ψ

(2)
j − �̃t − 2(0)

]
= � − �̃(1 − ρ2

0 )

1 + ρ2
0 + 2ρ0 cos

[
ψ

(2)
j − �̃

(
t − 2π

�̃

) + 2(0)
]

= φ̇
(2)
j (t − T ) where T := 2π

|�̃|
for j = 1, . . . , N . This indicates that the instantaneous phase
velocity of each oscillator is a periodic function with the
period T = 2π

|�̃| . Furthermore, all the oscillators have the same
functional form since they are determined by the same three
WS variables (ρ0,�, and �̃), and they are equally spaced
within the time interval T due to the uniform constants of
motion [Fig. 7(c)]. From this fact, we can assume φ̇

(2)
i (t −

j
N T ) = φ̇

(2)
i+ j (t ) for an arbitrary j ∈ {1, . . . , N}, which gives

φ
(2)
i (t − 1

N T ) = φ
(2)
i+1(t ) + C for i = 1, . . . , N with φ

(2)
N+1 ≡

φ
(2)
1 where C ∈ R is a constant. This assumption [26,51]

leads to

r2(t ) = |�2(t )| =
∣∣∣∣ 1

N

N∑
k=1

eiφ(2)
k+1(t )

∣∣∣∣
=

∣∣∣∣e−iC

N

N∑
k=1

eiφ(2)
k (t− T

N )

∣∣∣∣ =
∣∣∣∣ 1

N

N∑
k=1

eiφ(2)
k (t− T

N )

∣∣∣∣
= r2

(
t − T

N

)
= r2

(
t − 2π

|�̃|N
)

, (A7)

where the period 2π

|�̃|N is decreasing as N increases. In
Fig. 7(d), we numerically measure the periods of the modulus
of the Kuramoto order parameter for different sizes N of the
incoherent population (red circles) and compare them with

2π

|�̃|N . The good agreement between the two curves evidences
that the stationary SDS chimera state in a small-sized system
continuously approaches the OA dynamics as N → ∞ in a
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FIG. 7. Stationary SDS chimera states in the 9D Watanabe-
Strogatz dynamics. (a), (b) Time evolution of the radial macroscopic
variables after a transient time of 105 units for A = 0.35. Blue and
red lines indicate ρ1(t ) = ρ3(t ) = 1 and the orange line ρ2(t ) < 1.
The black line shows the modulus of Kuramoto order parameter
r2(t ) calculated from the relation between Kuramoto order param-
eter and the WS variables with uniformly distributed constants of
motion: (a) N = 40 and (b) N = 10. The inset of (b) shows the radial
variables and Kuramoto order parameter with nonuniform constants
of motion with N = 10. (c) Instantaneous phase velocities obtained
from Eq. (A6) for N = 10 with uniform constants of motion. (d) Pe-
riod of the modulus of the Kuramoto order parameter as a function
of system size N . The red circles are numerically obtained periods
and the black solid line is the curve 2π

|�̃|N . (e) Lyapunov exponents of
the 9D macroscopic variables of the WS dynamics.

similar way found for the two-population networks [26]. The
stationary SDS chimeras strongly depend on the constants
of motion (equivalently, an initial condition of the micro-
scopic dynamics). The inset of Fig. 7(b), shows the temporal
evolution of the radial WS variables and the Kuramoto or-
der parameter for slightly nonuniform constants of motion.
Clearly, the time series exhibit non-Poisson chimera features
typical for chimeras outside the Poisson submanifold [22,26].

To determine the stability of these SDS chimeras, we de-
termined the Lyapunov exponents [Fig. 7(e)]. Regardless of
system size N , the stationary SDS chimeras in 9D WS dynam-
ics are neutrally stable. Two of the zero Lyapunov exponents
arise from the two continuous symmetries: the time shift and
the phase shift invariance. There are two further zero expo-
nents while the remaining Lyapunov exponents are negative.
Thus, the SDS chimeras of the 9D WS dynamics are neutrally
stable. For the breathing SDS chimeras, they follow the same
dynamical and spectral properties as the breathing chimeras
in two-population networks [16,24], i.e., they possess an ad-
ditional zero Lyapunov exponent due to the Hopf frequency.

FIG. 8. Stationary SDS chimera states in 3N-dimensional micro-
scopic dynamics. (a), (b) Time series of the moduli of the Kuramoto
order parameters of the three populations with (a) PIC and (b) n-
PIC for N = 10 and A = 0.35 after a transient time of 105 units.
(c) Lyapunov exponents of the SDS chimeras initiated from a PIC
for N = 20 and A = 0.35.

Finally, we explore the 3N-dimensional microscopic dy-
namics. To this end, two different initial conditions are
exploited [26,36]. A Poisson initial condition (PIC) is ob-
tained by determining a fixed point solution of the 2D reduced
OA equations in Eq. (13) in Ref. [36], ρ0 and ϕ0. Then, the
initial phases of the incoherent population are obtained by

i − 1
2

N
= 1

2π

∫ φ
(a)
i (0)

−π

1 − ρ2
0

1 − 2ρ0 cos(φ − ϕ0) + ρ2
0

dφ

for i = 1, . . . , N . The initial phases of the synchronized pop-
ulation are selected from a delta distribution. In contrast, an
n-PIC (non-Poisson initial condition), i.e., a random initial
condition, is generated by randomly selecting phases for all
three populations from the uniform distribution of [−π, π ).

In Figs. 8(a) and 8(b), the moduli of Kuramoto order
parameters calculated from the microscopic dynamics are de-
picted for a PIC and an n-PIC, respectively, with N = 10. For
a PIC, the order parameter dynamics shows the same behavior
as in Fig. 7(b), reflecting that a PIC corresponds to uniform
constants of motion [24]. As the system size N increases, the
amplitude and the period of the secondary oscillation are de-
creasing and approach the OA dynamics for the same reason
as discussed above for the WS dynamics. On the other hand,
an n-PIC in Fig. 8(b) gives a non-Poisson chimera motion
qualitatively similar to the inset of Fig. 7(a), corresponding
to nonuniform constants of motion.

As far as Lyapunov stability is concerned, both PICs and
n-PICs exhibit the same spectral characteristics in Fig. 8(c).
Stationary SDS chimeras are neutrally stable with N −
1 zero Lyapunov exponents, which explains their strong
dependence on the initial condition (or constants of mo-
tion). N − 3 of the zero Lyapunov exponents (blue) arise
from the N − 3 constants of motion, the remaining two
(orange, zero) are expected to arise from the macroscopic
dynamics. The two nearly identical and negative macroscopic
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FIG. 9. Unstable stationary DSD chimera state in 6D OA dy-
namics. (a) Radial variables ρ2(t ) = 1 (orange line), ρ1(t ) = ρ3(t ) =
ρ0 < 1 (red and blue lines) as a function of time for A = 0.55.
(b) Time series of the angular variables with the same color scheme
as used in (a). In (a) and (b) the first 105 time units were discarded.
(c) Eigenvalues of the Jacobian matrix evaluated at the DSD solution
in the rotating reference frame.

Lyapunov exponents (orange) describe the stability with re-
spect to perturbation along the two synchronized populations,
the strongly negative one (orange) is related to the WS radial
variable of the incoherent population [26]. Moreover, there
are 2(N − 1)-fold degenerate Lyapunov exponents (red). The
covariant Lyapunov vectors (CLVs) [47,48,52] corresponding
to these Lyapunov exponents, given by

δxtrans = (δa1, . . . , δaN , 0, . . . , 0, δb1, . . . , δbN )	,

where
N∑

k=1

δak =
N∑

k=1

δbk = 0, (A8)

reveal that these Lyapunov exponents determine the stability
transverse to the synchronized populations.

2. Symmetric chimera states of DSD type

Figure 5 shows that in none of the simulations a stationary
or breathing DSD symmetric chimera state was observed.
These states will turn out to be unstable later in this section. To
investigate their dynamical and spectral properties, we need
a very specific initial condition. In the 6D OA dynamics,
we again look for a symmetric fixed point solution of the
OA equations obeying ρ1(0) = ρ3(0) = ρ0 < 1, ρ2(0) = 1,

1(0) = 
3(0) = ϕ0 ∈ T , and 
2(0) = 0. Here, ρ0 and ϕ0

are the stable symmetric DSD solutions in the reduced mani-
fold (see Eq. (14) in Ref. [36]). In Figs. 9(a)–9(b), a stationary
DSD symmetric chimera state from such an initial condi-
tion is shown. It is characterized by ρ1(t ) = ρ3(t ) = ρ0 < 1,
ρ2(t ) = 1, 
1(t ) = 
3(t ) = �t + ϕ0, and 
2(t ) = �t . For
A = 0.55 where a stable stationary DSD symmetric chimera
can be found in the reduced manifold, the numerical values
are ρ0 = 0.52579 and � = −1.4709. Likewise, in a rotating
reference frame with �, it is a fixed point solution, which
allows us to perform a linear stability analysis and determine
the eigenvalues of the Jacobian matrix.

In Fig. 9(c), the eigenvalues are depicted in the
complex plane. Two of them have positive real parts:
λ1 = λ2 with corresponding eigenvectors δx1 = δx2 =
(δa, 0,−δa, δb, 0,−δb)	 for δa ∈ C and δb ∈ R. This
demonstrates that the unstable directions are transverse to
the symmetry-reduced manifold, i.e., the first and the third
populations are opposite to each other. The eigenvector cor-
responding to λ3 = 0 is given by δx3 = (0, 0, 0, δa, δa, δa)	
with δa = 1/

√
3, and thus describes a common phase shift.

The perturbations corresponding to the pair of complex conju-
gate eigenvalues λ4 = λ5 are parallel to the symmetry-reduced
manifold: δx4 = δx5 = (δa, 0, δa, δb, δc, δb)	 for δa, δb ∈ C
and δc ∈ R. Finally, δx6 = (δa, δb, δa, δc, δc, δc)	 for
δa, δb, δc ∈ R points in the radial direction parallel to the
reduced manifold with a common phase shift for all three
populations.

On the level of the WS dynamics with uniform constants
of motion, we also require a specific initial condition to study
the unstable stationary DSD symmetric chimera state that can
be obtained in the symmetry-reduced WS dynamics: ρ1 =
ρ3 =: ρ < 1, ρ2 = 1, ϕ := 
1 − 
2 = 
3 − 
2, and 1 =
3 with  := 1 − 2 = 3 − 2 governed by

ρ̇ = 1 − ρ2

2
(μ(ζ cos α + ξ sin α) − ν sin(ϕ + α)

+ ν(−ζ sin α + ξ cos α))

̇ = 1 − ρ2

2ρ
(μ(−ζ sin α + ξ cos α) − ν sin(ϕ + α)

+ ν(−ζ sin α + ξ cos(ϕ − α)))

ϕ̇ = 1 + ρ2

2ρ
(μ(−ζ sin α + ξ cos α) − ν sin(ϕ + α)

× ν(−, ζ sin α + ξ cos α)) − ( − μ sin α

+ 2ν(ζ sin(ϕ − α) + ξ cos(ϕ − α))),

where

ζ = 1

N

N∑
k=1

2ρ + (1 + ρ2) cos(ψk − )

1 + 2ρ cos(ψk − ) + ρ2
,

ξ = 1

N

N∑
k=1

(1 − ρ2) sin(ψk − )

1 + 2ρ cos(ψk − ) + ρ2

for ψk = −π + (2π ) k−1
N , k = 1, . . . , N . In this reduced

system, the symmetric DSD chimeras are found to be
stable. Then, we use ρ1(0) = ρ3(0) = ρ(T ), ρ2(0) = 1,

1(0) = 
3(0) = 0,
2(0) = ϕ(T ), and 1(0) = 3(0) =
(T ), 2(0) ∈ T as an initial condition of Eq. (6) for T � 1.

Figures 10(a)–10(c) display the temporal dynamics of such
a DSD symmetric chimera when starting (within our nu-
merical resolution) directly on the unstable state. However,
imposing a minor perturbation on these initial conditions, the
stationary symmetric DSD chimera state occurs only as a
transient, and evolves then through an antiphase oscillation
to a breathing SDS chimera state [Fig. 10(d)]. The Lyapunov
exponents of the stationary DSD chimeras in the 9D WS
dynamics are shown in Fig. 11(a). There are two positive
Lyapunov exponents: �1 and �2. This does not indicate a
chaotic attractor since any symmetric DSD chimera does not
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FIG. 10. Unstable stationary DSD chimera states in 9D WS
dynamics. (a)–(c) Time evolution of the 9D Watanabe-Strogatz
macroscopic variables after a transient time of 105 units with the
same color scheme in Fig. 9. (d) Time evolution of the radial vari-
ables with a small perturbation on the specific initial condition.
A = 0.55 and N = 40.

involve any chaotic motion and thus should be considered as
an unstable solution. Moreover, the CLVs of them have the
form δx1,2 = (δa, 0,−δa, δb, 0,−δb, δc, 0,−δc). This also
confirms that the unstable directions of the stationary symmet-
ric DSD chimera state are transverse to the symmetry-reduced
manifold, i.e., the perturbations of population one and three
are opposite to each other. This fact explains why one can
obtain symmetric DSD chimeras in the reduced manifold but
not in the full dynamics.

For the microscopic dynamics, even when starting from
a precise PIC (equivalently, uniform constants of motion),
we obtain a strange transient. First the system apparently

FIG. 11. (a) Lyapunov exponents of the 9D WS dynamics for
N = 40 corresponding to Figs. 10(a)–10(c). (b) Lyapunov expo-
nents of the 3N-dimensional microscopic dynamics for N = 40.
(c)–(d) Time evolution of the moduli of the Kuramoto order pa-
rameters for the 3N-dimensional microscopic dynamics with N = 40
starting from a PIC. A = 0.55.

approaches the stationary DSD state in an oscillatory manner
and resides close to it for some hundred time units, before
it attains a transient antiphase motion and finally reaches a
breathing SDS chimera state [Figs. 11(c)–11(d)]. Since in the
microscopic dynamics, we were not able to observe a sym-
metric DSD chimera that lives long enough to investigate the
Lyapunov stability, we detour to the 9D WS variables ρa(t ),
a(t ), and 
a(t ) and uniform constants of motion together
with the inverse WS transformation from Eq. (A1):

φ
(a)
j (t ) = 
a(t ) + 2 tan−1

(
1 − ρa(t )

1 + ρa(t )
tan

(
ψ

(a)
j − a(t )

2

))

for j = 1, . . . , N and a = 1, 2, 3. First, we implement a nu-
merical integration of the 9D WS equations with the very
initial condition for the stationary DSD chimeras. Then, we
obtain the macroscopic variables as a function of time, which
are plugged into the above transformation. This gives the time
evolution of each phase variable. Then, the tangent space
dynamics is governed by the Jacobian matrix defined by

(J)i j (t ) =

⎛
⎜⎜⎜⎜⎜⎝

∂φ̇
(1)
i

∂φ
(1)
j

∂φ̇
(1)
i

∂φ
(2)
j

∂φ̇
(1)
i

∂φ
(3)
j

∂φ̇
(2)
i

∂φ
(1)
j

∂φ̇
(2)
i

∂φ
(2)
j

∂φ̇
(2)
i

∂φ
(3)
j

∂φ̇
(3)
i

∂φ
(1)
j

∂φ̇
(3)
i

∂φ
(2)
j

∂φ̇
(3)
i

∂φ
(3)
j

⎞
⎟⎟⎟⎟⎟⎠ (A9)

evaluated at φ
(a)
j (t ) above for i, j = 1, . . . , 3N . The tangent

linear propagator is defined by M(t, t0) = O(t )O(t0)−1 where
Ȯ(t ) = J(t )O(t ) with O(0) = I3N [47,48,52]. Then, we obtain
the Lyapunov exponents as

�i = lim
t→∞

1

t
log

||M(t, t0)δui(t0)||
||δui(t0)|| ,

where δui(t0) belongs to each Oseledets’ splitting for i =
1, . . . , 3N [46,53].

In Fig. 11(b), we show the Lyapunov exponents of 3N-
dimensional microscopic dynamics as obtained with the above
numerical scheme. There are two positive exponents with
CLVs of the form

δx1,2 = (δa1, . . . , δaN , 0, . . . , 0, δb1, . . . , δbN )	,

where δbi = −δai

for i = 1, . . . , N , which again elucidates that the unstable
directions are transverse to the symmetry-reduced manifold.
Also, there are 2(N − 3) zero Lyapunov exponents (blue)
from the constants of motion for the two incoherent popula-
tions. The CLVs corresponding to the (N − 1)-fold degenerate
transverse Lyapunov exponents (red) are given by

δxtrans = (0, . . . , 0, δa1, . . . , δaN , 0, . . . , 0)	,

where
N∑

k=1

δak = 0. (A10)

The other Lyapunov exponents including three zero-valued
ones (orange) are expected to occur from the WS macro-
scopic variables and perturbations along the synchronized
population.
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