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of FitzHugh-Nagumo oscillators
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For the study of symmetry-breaking phenomena in neuronal networks, simplified versions of the FitzHugh-
Nagumo model are widely used. In this paper, these phenomena are investigated in a network of
FitzHugh-Nagumo oscillators taken in the form of the original model and it is found that it exhibits diverse
partial synchronization patterns that are unobserved in the networks with simplified models. Apart from the
classical chimera, we report a new type of chimera pattern whose incoherent clusters are characterized by spatial
random swings among a few fixed periodic attractors. Another peculiar hybrid state is found that combines
the features of this chimera state and a solitary state such that the main coherent cluster is interspersed with
some nodes with identical solitary dynamics. In addition, oscillation death including chimera death emerges in
this network. A reduced model of the network is derived to study oscillation death, which helps explaining the
transition from spatial chaos to oscillation death via the chimera state with a solitary state. This study deepens
our understanding of chimera patterns in neuronal networks.
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I. INTRODUCTION

A multitude of natural phenomena can be explained as
macroscopic collective dynamics of many interacting ob-
jects [1]. Oscillators models coupled in diverse configurations
have been used as a paradigm for such behavior. A much
investigated collective behavior of interacting elements is syn-
chronization which can be simply defined as the entrainment
of rhythms of interacting elements [2,3]. Since the first report
on synchronization by Christiaan Huygens in 1665 [2], the
study of this phenomenon has discovered many variants in in-
creasingly complex coupled systems. A particularly intriguing
synchronization phenomenon is the chimera state which is a
form of partial synchronization where alternating clusters of
synchronized elements and desynchronized elements emerge
spontaneously. Surprisingly, the chimera state arises in net-
works of symmetrically coupled identical elements [4] as a
consequence of spontaneous symmetry breaking. Over the
past few decades, another symmetry-breaking phenomenon
has been intensively investigated, namely oscillation death.
An oscillation death state is a quenched oscillation state where
coupling-induced symmetry-breaking gives rise to inhomoge-
neous steady states [5,6] (for a recent review on oscillation
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quenching in networks and related topics, see Ref. [7]). An
important connection between these two symmetry-breaking
states, namely chimera and oscillation death, coined as
chimera death, was reported for the first time in Ref. [8]; it
combines the features of chimera states and oscillation death,
i.e., the coexistence of spatially coherent and incoherent re-
gions of steady states. Another symmetry-breaking state that
was found more recently is the solitary state, that is a form
of partial synchronization where individual solitary oscillators
leave the synchronous cluster at random positions in space [9].
Solitary states have been found in oscillator networks of vari-
ous types [10–15]. Chimera and solitary states are often seen
as dynamical scenarios of the transition from completely syn-
chronized behavior to completely irregular behavior [4,14]. In
this context, a peculiar partial synchronization pattern has also
been reported, namely the solitary state chimera that combines
the features of chimera state and solitary state: coexistence of
coherent and incoherent domains where the incoherent cluster
involves the solitary state [16,17].

In the particular context of neuroscience, synchronization
in neuronal networks (including mechanisms of desynchro-
nization) is believed to play a crucial role in explaining
the brain functioning under normal and pathological condi-
tions (for a review, see Refs. [18,19]). Specifically, chimera
states have been found to explain unihemispheric sleep
(where the neurons in the sleepy hemisphere of the brain are
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synchronized and the neurons in the awake hemisphere are
desynchronized) exhibited by certain aquatic mammals and
multiple bird species [20,21]. Strong neuronal synchrony
among the neurons is believed to produce adverse effects,
such as Parkinson’s disease [22] and epilepsy [23]. Therefore,
the possible transitions from the pathological synchronized
regimes to the healthy desynchronized states (or vice versa)
can involve hybrid patterns such as chimera states and solitary
states [24]. For example, a parallel has been drawn between
epileptic seizures and the collapse of the chimera state into a
global synchronous state in coupled neurons [25,26]. There-
fore, the study of chimera states, solitary states, and solitary
state chimeras in neuronal networks is of particular impor-
tance in explaining macroscopic brain behavior that would
be considered as manifestation of partial synchronization of
neurons. On the other hand, the oscillation death phenomenon
has been used to interpret the phenomenon of winner-takes-
all dynamics in neurons [27]. Overall, the suppression of
rhythms in neuronal ensembles suggests a dynamical strategy
for rapidly and effectively preventing or even terminating a
wide range of deleterious neural activity such as epileptic
seizures, Parkinson’s disease, and schizophrenia [7].

For the study of brain microscopic dynamical functions,
relevant models include Hodgkin-Huxley, Izhikevich, and
Rulkov map dynamics, whereas for neuronal ensembles, phe-
nomenological models span FitzHugh-Nagumo, Hindmarsh-
Rose, and Kuramoto oscillators [28]. The FitzHugh-Nagumo
oscillator is the most widely used model when investigat-
ing chimera states and solitary states in brain networks
[4,18,19,29]. However, to the best of our knowledge, the origi-
nal model of the FitzHugh-Nagumo oscillator, which contains
the stimulus current intensity (a parameter corresponding to
membrane current in the original Hodgkin-Huxley equations)
has not yet been considered in this context. This stimulus
current intensity term is responsible for various inherent dy-
namics of the FitzHugh-Nagumo model, such as absence of
all-or-none spikes, excitation block, and anodal break excita-
tion [30]. Therefore the natural question arises: How does the
original FitzHugh-Nagumo model behave in a network with
respect to symmetry-breaking phenomena? In this paper, we
aim to investigate the possible symmetry-breaking phenom-
ena in a network of the original FitzHugh-Nagumo model.
Apart from the classical chimera state, which was found in the
literature, we observe additional symmetry-breaking states.
Two novel chimera patterns are observed, namely (i) type-1
chimera, where the incoherent clusters are characterized by
spatial random swings among a few fixed periodic attractors,
and (ii) type-2 chimera, a peculiar hybrid state that combines
the features of type-1 chimera state and a solitary state such
that the main coherent cluster is interspersed with some nodes
with identical solitary dynamics. We further observe chimera
death and multicluster coherent oscillation death states.

In general, depending on how the oscillators are organized
in the incoherent cluster, two main types of chimera states
have been identified. For the first type, which was histor-
ically observed first [31,32], the incoherent cluster is in a
spatiotemporal chaos regime while the coherent cluster may
either be periodic or remain close to a steady state [33,34].
In the second type, the incoherent cluster is in a spatial chaos
regime while the coherent cluster may either be a homoge-

neous steady state or a periodic state [33,34]. In Ref. [35],
these first and second types of chimeras was identified as “t-
chimera” and “s-chimera,” respectively. As the basic chimera
structure, the “t-chimera” state has been extensively studied
in various coupled systems (for reviews, see Refs. [4,36]).
Contrarily, the “s-chimera” state has been less observed
[33,34]. For example “s-chimera” states have found to me-
diate the transition from complete spatial coherence to spatial
chaos in networks of discrete time systems (coupled maps)
[37–39]. Besides, in most of the previous works investigating
symmetry-breaking phenomena in networks of FitzHugh-
Nagumo systems, the prominent patterns found were the
“t-chimera” state (see for example Refs. [15,18,19,29,40]), a
variant known as coherence-resonance chimera [41–43], and
solitary states [14,15,17,44]. A coherence-resonance chimera,
obtained in networks of excitable elements under the ef-
fect of noise, combines the temporal features of coherence
resonance and the spatial features of chimera states. In the
coherence-resonance chimeras obtained in networks of ex-
citable FitzHugh-Nagumo systems, the location of coherent
and incoherent domains of the “t-chimera” state switch alter-
nately in the course of time. In the present paper we report
a form of “s-chimera” state in coupled time-continuous sys-
tems, namely type-1 chimera state, whose incoherent cluster
involves a particular form of spatial chaos characterized by
a phase-fliplike instability. The dynamics of all oscillators
converge to a few periodic trajectories that show constant
phase lags. The spatial chaos in type-1 and type-2 chimeras
found here also look like salt-and-pepper states [45] observed
in networks of FitzHugh-Nagumo oscillators under the effect
of time delay [46,47]. These novel chimera states are observed
for the first time in coupled FitzHugh-Nagumo systems.

II. THE NETWORK MODEL

We consider a ring-network of N identical FitzHugh-
Nagumo oscillators where each oscillator is diffusively
coupled through the two dynamical variables to its 2R neigh-
bors (R on each side). The coupling between two units
involves direct and cross couplings between the two variables.
This mixed coupling is modeled by a rotational coupling
matrix [40]. We consider here the original version of the
FitzHugh-Nagumo model of neurons [48]. Let the variables u
and v describe the membrane voltage and the coarse-grained
action of gating variables, respectively, and σ the coupling
strength. Then the network is described by the following set
of differential equations:

ε
duk

dt
= vk + uk − 1

3
u3

k + I

+ σ

2R

k+R∑
j=k−R

[buu(u j − uk ) + buv (v j − vk )],

dvk

dt
= −uk − δvk + γ

+ σ

2R

k+R∑
j=k−R

[bvu(u j − uk ) + bvv (v j − vk )], (1)

where k = 1, 2, . . . , N , and periodic boundary conditions
are assumed, the rotational coupling matrix is given by
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FIG. 1. Initial conditions.

(buu buv

bvu bvv
) = ( cos φ sin φ

− sin φ cos φ) with φ ∈ [−π, π ) [40], ε is a
small parameter responsible for the occurrence of relaxation
oscillations, and I is the stimulus intensity, a parameter
corresponding to membrane current in the Hodgkin-Huxley
equations. The values of the parameters are chosen very close
to those considered by FitzHugh in his pioneering work [48],
namely ε = 0.1, δ = 0.8, and γ = 0.7. The parameter I was
considered in Ref. [48] as a control parameter to determine
the number of equilibrium points and whether the system is
in the excitable or oscillatory regime. In the present work, the
value of I is set at −0.5 such that each uncoupled FitzHugh-
Nagumo oscillator exhibits oscillatory behavior (relaxation
oscillations) around only one equilibrium point.

If one applies the transformation v → −v and sets I = δ =
0 in Eq. (1), then one uncovers another version of the network
model with the simplified FitzHugh-Nagumo model very of-
ten considered in the context of studies on chimera states
[4,17–19,25,29,40]. In what follows, the network behavior is
explored numerically (with N = 300) with the help of certain
characterization tools, with respect to the following control
parameters: the coupling strength σ , the coupling range or
coupling radius r = R/N , and the coupling phase φ. The ini-
tial conditions are randomly distributed on the circle of radius
equal to 2 (i.e., [uk (0)]2 + [vk (0)]2 = 4), with an increasing
density as |tan−1[vk (0)/uk (0)]| gets closer to π/2 (see Fig. 1).

III. NETWORK BEHAVIOR: CHARACTERIZATION
TOOLS AND NUMERICAL SIMULATION RESULTS

A quantitative measure, namely the strength of incoherence
S was introduced [49] (with some corrections in Ref. [50]) to
distinguish various collective dynamical states according to
their degree of spatial incoherence. The strength of incoher-
ence is a global order parameter based on the local standard
deviation given by:

σm =
〈√√√√1

n

mn∑
j=n(m−1)+1

[z j − 〈z〉m]2

〉
t

, (2)

where n = N/M, M is the number of bins of oscillators
of equal size n, m = 1, 2, . . . , M, z j = u j − u j+1, 〈z〉m =
[
∑mn

j=n(m−1)+1 z j]/n, and 〈·〉t denotes the time average. Then
the strength of incoherence was introduced as:

S = 1 −
∑M

m=1 H (σth − σm)

M
, (3)
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FIG. 2. The strength of incoherence S versus the coupling phase
φ for σ = 0.30 and r = 134/300 ≈ 0.447. The black dots denote
collective oscillatory (Coll. Osc.) states and red dots for oscillation
death (OD) states. The markers on the φ axis show the values of φ

used to illustrate the prominent dynamical regimes: the square for
Fig. 3, the diamond for Fig. 4, the circle for Fig. 5, the star for
Fig. 6(b), and + for Fig. 7. The gray areas show the range of S
for three distinct chimera states: (A) for the chimera state shown in
Fig. 5, (B) for the chimera state shown in Fig. 4, and (C) for the
chimera state shown in Fig. 6. As noted in the text, ε = 0.1, δ = 0.8,
γ = 0.7, and I = −0.5.

where H (·) is the Heaviside function and σth is a predefined
threshold. The strength of incoherence S ≈ 1 for incoherent
patterns including spatial chaos and totally incoherent oscil-
lation death states, S = 0 for fully coherent patterns like the
in-phase synchronized state, and S has intermediate values
between 0 and 1 for hybrid states including chimera states,
solitary states, chimera death states, and other partially in-
coherent oscillation death states. When the network is in the
oscillation death regime, small values of S may characterize
cluster oscillation death states. As the strength of incoherence
is no longer of any use in making the distinction between
collective oscillatory states and oscillation death states, we use
the intrinsic properties of the corresponding time series of uk ,
k = 1, 2, . . . , N , with an emphasis on oscillation death states
for which uk (t ) ≈ u+ for certain values of k and uk (t ) ≈ u−
for the other values of k, where u+ and u− are constant values
that characterize the two branches of the oscillation death
state.

In order to check whether the partially synchronous
patterns characterized by 0 < S < 1 are classical phase
chimeras or not, we use the mean phase velocity profile
{ωk = 2πMk/	t, k = 1, 2, . . . , N}, where Mk is the number
of oscillation periods performed by the kth oscillator in the
time interval 	t [40]. The mean phase velocity profile is
typically arc shaped for incoherence with respect to the phase,
while it is flat for coherence of phases.

Figure 2 shows the variations of the strength of incoherence
S with respect to the coupling phase φ for σ = 0.30 and
r = 134/300. This figure shows that there is a transition from
incoherent oscillatory states (black dots with S ≈ 1) to par-
tially incoherent oscillation death states (red dots) via chimera
states (black dots with 0 < S < 1).

The totally incoherent collective oscillatory state depicted
in Fig. 3 is characterized by spatial random swings between
two periodic attractors; this is why we will refer to it as spatial
chaos. Indeed Figs. 3(b) and 3(d) shows that the dynamics of
all the oscillators is confined to two periodic attractors except
for one oscillator (k = 222) whose dynamics evolves on a
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FIG. 3. Spatial chaos obtained for σ = 0.30, r = 134/300 ≈
0.447, and φ = π/2 − 0.160: (a) space-time plot for the variable u;
(b) snapshot at t = 3008.8; (c) mean phase velocity profile; (d) time
series uk (t ) for all the oscillators, i.e., for k = 1, 2, . . . , N ; (e) phase
portraits [uk (t ), vk (t )] of three oscillators corresponding to the three
periodic attractors shown in (d). As shown in (b), the oscillator
k = 222 breaks away from the two characteristic clusters represented
by the periodic attractors depicted by blue and green curves in (d) and
(e); the dynamics of this solitary oscillator is depicted by red curves
in (d) and (e). The gray lines in the snapshot serve as a guide to the
eye. Other parameters as in Fig. 2.

different periodic attractor. All the three attractors mentioned
have the same period, which is confirmed by the mean phase
velocity profile shown in Fig. 3(c). The spatial chaos shown
in Fig. 3 looks similar to the spatial phase-flip instability
observed in the behavior of a network of identical Rössler
oscillators interacting through a dynamic environment [50].
In this case, the oscillators undergo a random segregation into
two clusters whose characteristic oscillations are antiphase. In
the case shown in Fig. 3, even if the two periodic attractors
characterizing the two clusters almost merge in the phase
space [see Fig. 3(e)], their oscillations are not exactly an-
tiphase because their phase lag is a bit less than π . This type of
spatial chaos pattern was observed in networks of FitzHugh-
Nagumo oscillators under the effect of time delay [4,46,47]
and was identified as a partially synchronized salt-and-pepper
state. In a salt-and-pepper state, due to a short wavelength
instability [45] all the nodes oscillate with the same phase
velocity but they are incoherently distributed between two
slightly different states with constant phase lag [47]. There is
also some resemblance to spatial chaos patterns found in net-
works of identical chaotic systems (logistic maps and Lorenz
systems) with nonlocal coupling [38].

Now, with increasing value of the coupling phase φ,
prominent clusters of synchronized oscillators may appear
spontaneously in this form of spatial chaos giving rise to a
novel form of chimera state illustrated in Fig. 4. The inco-
herent regions of this chimera pattern are characterized by the
spatial random swings between a few periodic attractors (three
in the case depicted in Fig. 4) that have the same period [see
Fig. 4(c)]. Thereafter, we will refer to this type of chimera
as type-1 chimera. This chimera state belongs to the class of
“s-chimera” states [33–35], as the incoherent cluster is in a

FIG. 4. Chimera state obtained for σ = 0.30, r = 134/300 ≈
0.447, and φ = π/2 + 0.006: (a) space-time plot for the variable u;
(b) snapshot at t = 3003.6; (c) mean phase velocity profile; (d) time
series uk (t ) for all the oscillators, i.e., for k = 1, 2, . . . , N ; and (e)
phase portraits [uk (t ), vk (t )] of three oscillators corresponding to the
three periodic attractors shown in (d). The gray lines in the snapshot
serve as a guide to the eye. Other parameters as in Fig. 2.

spatial chaos regime. It is worthwhile to point out that the
spatial chaos in the incoherent regions of this type-1 chimera
pattern is more complex than the one of the totally incoherent
state shown in Fig. 3 in that it involves three different attrac-
tors that do not merge in the phase space [see Fig. 4(e)]. Also,
this is a novel chimera state that should not be confused with
the solitary state chimera whose incoherent region is a solitary
state, i.e., an ensemble of solitary nodes that are localized in
space [17].

Type-1 chimera states are very rare. Indeed for the chosen
set of parameters and the φ step used for Fig. 2, only one
value of φ gives rise to this chimera [the only thick black
dot in region (B) in Fig. 2]. This is due to the fact that very
often some oscillators with solitary dynamics appear in the
synchronous cluster. So, one obtains another chimera pattern
with solitary nodes as shown in Fig. 5 where we can see that
all the oscillators including the solitary ones have the same
period [see Fig. 5(c)], which is a feature of solitary states and
solitary state chimeras in coupled FitzHugh-Nagumo oscilla-
tors [17]. This second type of chimera that we will refer to
as type-2 chimera corresponds to region (A) in Fig. 2. This
“s-chimera” involving a solitary state is observed for the first
time.

Another chimera with the lowest degree of incoherence
[corresponding to region (C) in Fig. 2] emerges abundantly,
we call it type-3 chimera which is nothing but the classical
chimera observed in the earlier studies. Two examples of this
type-3 chimera state are shown in Fig. 6 where we can notice
arc-shaped patches in the mean phase velocity profile as a
signature of classical chimeras. As shown in this figure, the
size of the incoherent regions decreases with increasing value
of the coupling range r, in such a way that for high value of r,
this chimera pattern appears as a cluster synchronized state.

Besides the collective oscillatory states, the network ex-
hibits various oscillation death states (steady states) that occur
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FIG. 5. Chimera pattern with solitary state obtained for σ =
0.30, r = 134/300 ≈ 0.447, and φ = π/2 − 0.022: (a) space-time
plot for the variable u; (b) snapshot at t = 3008.2; (c) mean phase
velocity profile; (d) time series uk (t ) for all the oscillators, i.e.,
for k = 1, 2, . . . , N ; and (e) phase portraits (uk (t ), vk (t )) of three
oscillators corresponding to the three periodic attractors shown in
(d). The coherent background and the incoherent clusters are ruled
by the two attractors depicted by blue and green lines in (d) and (e)
while the solitary oscillators dynamics is represented by the attractor
depicted by red lines. The gray lines in the snapshot serve as a guide
to the eye. Other parameters as in Fig. 2.

at higher values of the coupling phase φ as shown in Fig. 2.
Among the plethora of oscillation death patterns observed,
some particular ones retain our attention, namely chimera
death states and coherent oscillation death states. Some exam-
ples of these patterns are shown in Fig. 7 where the number of
clusters in a pattern refers to the number of uniform coherent
domains. However, the number of clusters does not increase
systematically following a clear bifurcation scenario as in
Refs. [8,51,52].

Using the above characterization tools and arguments, the
prominent dynamical regimes occurring in the network of
FitzHugh-Nagumo oscillators are mapped in the coupling pa-
rameter space as shown in Fig. 8. One can notice that there
are no clear boundaries between the dynamical states due to

FIG. 6. Space-time plots and corresponding mean phase velocity
profiles showing chimera patterns obtained for σ = 0.30: (a) r =
120/300 = 0.400 and φ = π/2 − 0.102; (b) r = 134/300 ≈ 0.447
and φ = π/2 + 0.028. Other parameters as in Fig. 2.

high multistability. However, there is predominance of each
state in a certain region of the parameter space. Overall, there
is a transition from totally incoherent collective oscillatory
states (spatial chaos) to partially coherent oscillation death
states (including chimera death states) via chimera states.
This overview confirms the rare occurrence of type-1 chimera
states and the abundance of type-2 chimera states.

It would be interesting to verify the results summarized in
Fig. 8 from a statistical point of view. To do so, the coupled
system equations are solved repeatedly for a large number
of arbitrarily chosen initial conditions of the same type, and
the probability of obtaining each possible state is evaluated as
the total number of occurrences of this state normalized to the
total number of sets of initial conditions. For this statistical
analysis, we consider 50 sets of initial conditions of the same
type as those of Fig. 1, and we obtain the empirical probabil-
ities shown in Fig. 9 for r = 134/300 ≈ 0.447. For this value
of r and for a given set of initial conditions, the behavior of
the network can be read following the orange line in Fig. 8.
Figure 9 confirms the prior results of Fig. 8, since each state
is obtained with the highest probability in the region where it
appears in Fig. 8. For example, spatial chaos is obtained with
the maximum probability at low values of φ, while oscillation
death (chimera death and coherent oscillation death) states
are obtained with the maximum probability at high values
of φ, and chimera states appear at intermediate values of
φ. This statistical analysis demonstrates once more the rare
occurrence of type-1 chimera.

Let us recall that for the above results, we have used
a weighted distribution of initial conditions (see Fig. 1). It
is worthwhile to point out that when the initial conditions
follow a uniform random distribution as usually consid-
ered, we do not observe any chimera state—only oscillation
death states are observed. In order to show how the chimera
states disappear with decreasing inhomogeneity in the ini-
tial conditions, we still consider that the initial conditions
{(uk (0), vk (0)), k = 1, 2, . . . , N} are distributed on the circle
with radius equal to 2, but now uk (0) = 2 cos(ϕk ) and vk (0) =
2 sin(ϕk ), where ϕk is an element of two superimposed Gaus-
sian distributions with means −π/2 and π/2, respectively.
The common standard deviation of the two Gaussian distri-
butions σgauss is a control parameter that modulates the degree
of inhomogeneity in the initial conditions. The degree of inho-
mogeneity decreases with increasing value of σgauss. Figure 10
shows two sets of initial conditions with different degrees of
inhomogeneity, where the distribution is strongly weighted in
(a) (as in Fig. 1), while it is “uniform” in (b). The network is
statistically studied following the procedure described above,
for r ≈ 0.447 and φ = 0.006, and for σgauss varying between
the two values used for Fig. 10, i.e., σgauss ∈ [0.6, 1.4]. For
the values of r and φ considered, the network has a nonzero
probability to exhibit the two novel chimera states that are
type-1 and type-2 chimera states (see the dashed gray line in
Fig. 9). Figure 11 shows how the probabilities of obtaining
the different dynamical states vary with respect to the degree
of inhomogeneity in the initial conditions. As the degree of
inhomogeneity decreases (σgauss increases from 0.6) the prob-
ability of obtaining spatial chaos states decreases while the
probability of obtaining oscillation death states increases up
to σgauss ≈ 1.0. When the value of σgauss approaches unity, the
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FIG. 7. Space-time plots and corresponding snapshots at t = 3040 showing some oscillation death states for σ = 0.30 and r = 134/300 ≈
0.447: (a) 2-cluster chimera death for φ = π/2 + 0.036; (b) 1-cluster chimera death for φ = π/2 + 0.054; (c) multicluster coherent oscillation
death for φ = π/2 + 0.088. The gray regions in the snapshots serve as guides to the eye for the visualization of the oscillation death incoherent
regions. Other parameters as in Fig. 2.

probabilities of chimera states begin to decrease. Beyond the
value σgauss ≈ 1.0, the probability of oscillation death states
approaches and reaches the value 1, while the probability
of collective oscillatory states including chimera states ap-
proaches and reaches the value 0. This shows that the chimera
states disappear when the initial conditions become uniform.

IV. BIFURCATION ANALYSIS OF OSCILLATION DEATH
AND SOLITARY STATES IN A REDUCED MODEL

In order to explain the occurrence of oscillation death
in networks of Stuart-Landau oscillators, the behavior of
reduced models was analyzed in Refs. [51–53]. Here we per-
form a similar analysis for the FitzHugh-Nagumo system.

In oscillation death patterns, including chimera death pat-
terns, certain oscillators populate the upper steady state branch
characterized by u+ and the others populate the lower steady
state branch characterized by u−. We introduce the new vari-
ables u∗ and v∗ as follows: u∗ = u± characterizes any branch
of the oscillation death state, and ū∗ the other branch, i.e.,

0.35 0.4 0.45

r

-0.2

-0.1

0

0.1

0.2

φ
 -

 π
/2

Cluster OD
CD and other OD
Type-1 chimera
Type-2 chimera
Type-3 chimera
Spatial chaos

FIG. 8. Dynamical regimes map in the plane (coupling range
r, coupling phase φ). Other parameters as in Fig. 2. OD and CD
denote oscillation death and chimera death, respectively. By other
OD, we mean other partially coherent OD states—totally incoherent
OD states are unobserved. The orange line shows the value r ≈ 0.447
used for Figs. 2 and 9.

ū∗ = u− if u∗ = u+ and ū∗ = u+ if u∗ = u−. And the same
reasoning for v∗ and v̄∗. Consider that (uk, vk ) = (u∗, v∗), then
in Eq. (1) u j − uk = 0 (and v j − vk = 0) if the jth and kth
units belong to the same branch of the oscillation death pat-
tern, and otherwise u j − uk = ū∗ − u∗ (and v j − vk = v̄∗ −
v∗). Then, the network cluster populating the branch (u∗, v∗)
is described by to the following equations:

v∗ + u∗ − u3
∗

3
+ I + σ ′[buu(ū∗ − u∗) + buv (v̄∗ − v∗)] = 0,

−u∗ − δv∗ + γ + σ ′[bvu(ū∗ − u∗) + bvv (v̄∗ − v∗)] = 0,

(4)

0

0.5

1

p

Spatial chaos

Type-1 chimera

-0.2 -0.1 0 0.1 0.2

φ - π/2

0

0.5

1

p

Cluster OD

CD and other OD

0

0.5

1

p

Type-2 chimera

Type-3 chimera

-0.04 0 0.04

0
0.03

FIG. 9. Empirical probabilities p of obtaining the different dy-
namical states versus coupling phase φ, and other parameters as in
Fig. 2 along the vertical orange line in Fig. 8. OD and CD denote
oscillation death and chimera death, respectively. The color code is
the same as in Fig. 8. The vertical dashed gray line shows the value
φ = 0.006 used for Fig. 11.
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v k(0
)

(a)
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uk(0)
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-1

0

1

2 (b)

FIG. 10. Initial conditions obtained with two superimposed
Gaussian distributions with peaks at tan−1[vk (0)/uk (0)] = −π/2 and
π/2, and with a common standard deviation σgauss: (a) σgauss = 0.6
and (b) σgauss = 1.4.

where

σ ′ =
∑k+R

j=k−R δ j,k

2R
σ, (5)

with

δ j,k =
{

0 if (u j, v j ) = (uk, vk ) = (u∗, v∗),
1 if (u j, v j ) = (ū∗, v̄∗) 	= (uk, vk ).

Note that the value of the sum
∑k+R

j=k−R δ j,k in the formula
of σ ′ depends on k and on the considered oscillation death
pattern. However, regardless of the considered k and oscilla-
tion death pattern, 0 � ∑k+R

j=k−R δ j,k � 2R, so 0 � σ ′ � σ . By
analogy, the network cluster populating the branch (ū∗, v̄∗) is

0

0.5

1

p

Spatial chaos

Type-1 chimera

0

0.5

1

p

Type-2 chimera

Type-3 chimera

0.6 0.8 1 1.2 1.4
σgauss

0

0.5

1

p

Cluster OD
CD and other OD
Incoherent OD

FIG. 11. Empirical probabilities of obtaining the different dy-
namical states versus σgauss measuring the degree of inhomogeneity
in the initial conditions, for r ≈ 0.447, φ = 0.006, and other param-
eters as in Fig. 2. OD and CD denote oscillation death and chimera
death, respectively. The color code is the same as in Fig. 8.

described by:

v̄∗ + ū∗ − ū3
∗

3
+ I + σ ′[buu(u∗ − ū∗) + buv (v∗ − v̄∗)] = 0,

−ū∗ − δv̄∗ + γ + σ ′[bvu(u∗ − ū∗) + bvv (v∗ − v̄∗)] = 0,

(6)

It is worthwhile to point out that the set of equations given by
Eqs. (4) and (6) is identical to the set of those describing oscil-
lation death in a system of two FitzHugh-Nagumo oscillators
coupled in the same way as in the considered network (with
the only difference that the coupling strength is equal to σ ′),
namely:

ε
duk

dt
= vk + uk − 1

3
u3

k + I + σ ′[buu(u j − uk )

+ buv (v j − vk )],

dvk

dt
= −uk − δvk + γ + σ ′[bvu(u j − uk ) + bvv (v j − vk )],

(7)

where j and k = 1, 2, and j 	= k. Thus, studying the oscil-
lation death phenomenon in the considered network would
amount to studying oscillation death in this system of
two coupled oscillators [52,53]. Each equilibrium point
of Eq. (7) is given by the set E = {(u1∗, v1∗), (u2∗, v2∗)}.
An oscillation death state is characterized by the set
E = {(u+, v+), (u−, v−)} or E = {(u−, v−), (u+, v+)}, where
(u+, v+) represents the upper branch of the oscillation death
state, and (u−, v−) the lower branch. The equilibrium points
of Eq. (7) and their bifurcations are investigated with the
help of the Matlab continuation toolbox Matcont [54], and
the results are depicted in Fig. 12 for 0 � σ ′ � σ = 0.30 as
justified above. Figure 12(a) shows that for small values of σ ′,
the system of two coupled oscillators has only one equilibrium
point E0 = {(u0, v0), (u0, v0)}. This only equilibrium point is
unstable and is surrounded by a stable limit cycle, which
corresponds to oscillatory behavior in the coupled system. As
the value of σ ′ increases, E0 undergoes a subcritical pitchfork
bifurcation giving rise to two new unstable equilibrium points.
The two new branches gain stability via a fold bifurcation of
equilibria on the one hand and a subcritical Hopf bifurcation
on the other hand. These two branches are given by E1 =
{(u+, v+), (u−, v−)} and E2 = {(u−, v−), (u+, v+)}, which is
typical of the oscillation death phenomenon. We obtain the
same bifurcation scenario with respect to φ [see Fig. 12(b)].
Overall, Fig. 12 shows that the oscillation death phenomenon
can occur in the system of two coupled FitzHugh-Nagumo
oscillators, which justifies the occurrence of oscillation death
states in the considered network, on the basis of the similarity
between Eqs. (4) and (6) on the one hand and the equations de-
scribing Eq. (7) equilibrium points on the other hand. Note
that for the other values of φ in [π/2 − 0.2, π/2 + 0.2] as
considered in Fig. 8, the results shown in Fig. 12 do not
change significantly. However, it can happen that a stable limit
cycle and stable equilibrium points E1 = {(u+, v+), (u−, v−)}
and E2 = {(u−, v−), (u+, v+)} coexist, underlining the coex-
istence of collective oscillatory behavior and oscillation death
states in the network. The fact that there might exist Hopf
bifurcations triggering the formation of new limit cycles at
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FIG. 12. Bifurcation diagram of the reduced system [Eq. (7)]
with respect to the coupling strength σ ′ (a) for φ = π/2 + 0.05, and
with respect to the coupling phase φ (b) for R = 126 (i.e., r = 0.42)
and

∑k+R
j=k−R δ j,k = 210 in the formula of σ ′ given by Eq. (5). Other

parameters as in Fig. 2. Red (respectively, black) lines indicate sta-
ble (respectively, unstable) steady states. Red (respectively, black)
dots represent the amplitudes of stable (respectively, unstable) limit
cycles. The cyan line (going through the folds of cycles originating
from the Hopf bifurcation labeled H) marks the threshold between
oscillatory behavior (on the left) and oscillation death behavior (on
the right). LP, BP, and SNIC denote limit point (also known as fold
of equilibria), branching point (also known as pitchfork bifurcation)
and saddle-node on invariant circle bifurcation, respectively.

the transition from oscillation death to oscillatory behavior
in the system of two coupled oscillators, would explain the
multistability responsible for the formation of solitary states
in chimera patterns at the transition from spatial chaos to
oscillation death states in the network. This chimera with
solitary state exists in a small region of the parameter space
because the newly created limit cycles would exist only in a
small region of the parameter space as they rapidly vanish via
saddle-node on invariant circle (SNIC) bifurcations as shown
in Fig. 12.

Furthermore, the bifurcation analysis of the reduced sys-
tem given by Eq. (7) can help explaining the shape of the
boundary in Fig. 8 between collective oscillatory states and
oscillation death states in the plane (r, φ). Indeed, this bound-
ary looks like a simple curve. To do so, a two-parameter
bifurcation diagram in the plane (r, φ) is derived from the
one-parameter bifurcation diagram shown in Fig. 12(b). The
result is shown in Fig. 13, where we can see that the Hopf
bifurcation curves have the same shape as the boundary be-
tween oscillatory states and oscillation death states in Fig. 8.
We should remember that this Hopf bifurcation is in close
proximity to the folds of cycles marking the threshold between

FIG. 13. Codimension-two bifurcation diagram of the reduced
system [Eq. (7)] with respect to the coupling range r and coupling
phase φ. The bifurcation curves are obtained for different values
of the sum

∑k+R
j=k−R δ j,k in the formula of σ ′ given by Eq. (5),∑k+R

j=k−R δ j,k = 210, 220, 230, 240, and 250. Other parameters as in
Fig. 2. BP for branch point (pitchfork) bifurcation and H for Hopf
bifurcation.

oscillatory states and oscillation death states in the reduced
system (see Fig. 12).

V. CONCLUSION

A network of the original FitzHugh-Nagumo model in the
presence of a stimulus has been studied in the context of
symmetry-breaking phenomena. It has been found that this
network exhibits diverse symmetry-breaking patterns includ-
ing classical chimera states and two novel chimera states.
Apart from those oscillatory states, a plethora of partially
coherent oscillation death states have been identified, such
as chimera death and multicluster coherent oscillation death
states. The oscillators in the patterns of these novel chimeras
evolve on a few fixed periodic attractors; the incoherent region
being characterized by spatial random swings between these
few periodic attractors. The coherent region of the simplest
of these chimera patterns is characterized by total coherence.
However, very often some oscillators with identical solitary
dynamics appear in the coherent region of this chimera pat-
tern giving rise to a more complicated pattern. Finally, we
have explained the occurrence of oscillation death based on
the bifurcation scenarios of the reduced model of the net-
work. The bifurcation diagram of equilibrium points of the
reduced two-oscillator system shows that there might exist
Hopf bifurcations creating new limit cycles at the transition
from oscillation death to oscillatory behavior, which would
help explaining the multistability underlying the formation
of chimeras with solitary states at the transition from spatial
chaos to oscillation death states in the considered network.
Our study reveals that the original FitzHugh-Nagumo model
in the presence of a stimulus can give rise to several exotic
states that are not exhibited by the simplified models.
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