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Screened Coulomb interaction in insulators with strong disorder
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We study the effect of disorder on the excitons in a semiconductor with screened Coulomb interaction.
Examples are polymeric semiconductors and/or van der Waals structures. In the screened hydrogenic problem,
we consider the disorder phenomenologically using the so-called fractional Scrödinger equation. Our main
finding is that joint action of screening and disorder either destroys the exciton (strong screening) or enhances the
bounding of electron and hole in an exciton, leading to its collapse in the extreme case. Latter effects may also be
related to the quantum manifestations of chaotic exciton behavior in the above semiconductor structures. Hence,
they should be considered in device applications, where the interplay between dielectric screening and disorder is
important. Our theoretical results permit one to predict the various excitonic properties in semiconductor samples
with different degrees of disorder and Coulomb interaction screenings.
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I. INTRODUCTION

Disordered and amorphous semiconductors have im-
pressive functional properties and are therefore useful for
technological applications, see [1] and references therein.
Despite remarkable advances in the understanding of exci-
ton creation and dissociation in the above highly disordered
semiconductors, important questions still remain [2–6]. For
example, as the dielectric screening is particularly strong in
semiconductors and can be well described by the band the-
ory, inherent in perfectly ordered substances, its influence
on exciton properties in strongly disordered substances re-
mains unclear. That being said, the joint action of (strong)
disorder and dielectric screening on the exciton properties
is not well understood to date. One of the basic physical
mechanisms here is so-called compositional disorder, i.e., the
exciton scattering by fluctuations of the crystal composition.
Such kind of disorder is always present in the semiconductor
structures, and it is especially important in magnetooptical
and photovoltaic applications [7]. The magnetooptical effects,
being most prominent in diluted magnetic semiconductors like
Cd1−xMnxTe, are highly sensitive to the above composition
fluctuations [7]. Many additional types of disorder occurs in
semiconductor structures, used for photovoltaic applications
[2,6,8,9]. To name a few, these are chemical impurities, dislo-
cations, conformational and structural disorders in polymeric
substances, etc. [10]. These impurities may not only adversely
influence the functionality of an electronic device but can also
play a useful role. Namely, the varying degree of disorder
(e.g., by doping) gives one more possibility to control the
physical properties of the substance, which can be useful for
the proper functioning of a corresponding device. This is the
case for Cd1−xMnxTe [7], where the amplitude of randomiz-
ing potential can be easily controlled by x variation. It is well
known, that the noninteracting, individual point defects (the
usual case of weak disorder) can be traps for excitons. The
properties of such systems are already well understood [11].

On the other hand, when we have a strong disorder, leading
to substance amorphization, we know neither the details of
the exciton creation process nor its properties. As the latter
effects are significant for proper functioning of photovoltaic
cells, nanolasers, and light-emitting diodes [12,13], the the-
oretical understanding of strong disorder effects is highly
desirable.

It is common knowledge that the weak disorder can be well
described by the Gaussian distributions. This is because the
width of the latter distribution is always small, corresponding
to an almost ordered situation. If the concentration of defects
and/or impurities is large, the randomness becomes high so
that the width of the corresponding distribution increases. In
this case, the Gaussian approximation is often insufficient so
that more general distributions should be utilized [14]. Such
non-Gaussian distributions emerge naturally in many physical
systems, ranging from charge transport in amorphous solids
and optical lattices to the excitons in semiconductors [15–20].
Note that in the above systems, the unjustified substitution of
actual non-Gaussian distributions by Gaussian ones leads of-
ten to cataclysmic results [15,20,21], especially in more than
one spatial dimension. The convenient phenomenological tool
to model non-Gaussian distributions is so-called fractional
derivatives, see [22,23] and references therein. These deriva-
tives, in particular, generate so-called Lévy stable probability
distributions [24–26], which are used widely to describe non-
Gaussian properties of many physical, chemical, biological,
and financial entities [26–30]. Furthermore, it’s worth men-
tioning that using fractional Laplacians in random walks
won’t produce Lévy stable distributions. Rather, the corre-
sponding propagators only share the asymptotics with latter
distributions.

One more application of non-Gaussian processes is so-
called fractional quantum mechanics [31], dealing with the
substitution of the ordinary Laplacian with the fractional one
in the corresponding stationary Schrödinger equation. In the
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n-dimensional case, the definition of the fractional Laplacian
reads

|�|μ/2 f (x) = −An,μ

∫
f (u) − f (x)

|u − x|μ+n
dnu, (1)

An,μ = 2μ�
(

μ+n
2

)
πn/2|�(−μ/2)| , (2)

where x is an n dimensional vector and 0 < μ < 2 is so-called
Lévy index. In our case, the Lévy index will play the role of a
descriptor of a degree of disorder, see below. Also, here �(x)
is �-function [32]. The operator (1) is spatially nonlocal with
a slowly decaying power-law kernel (dictated by Lévy index
as well as spatial dimensionality) typical for memory effects
in complex disordered systems.

In the present paper, we focus on the influence of Coulomb
interaction screening on the excitons properties in highly
disordered (see above) insulators. To accomplish this task,
we solve a hydrogenic problem which is defined by a
Schrödinger equation with screened Coulomb potential and
fractional Laplacian. Latter substitution mimics the disor-
der phenomenologically and constitutes the simplest possible
exciton description which captures the main physics of the
problem. Our main point here is that charge carriers (electrons
or holes) in highly disordered substances are located not in
a periodic crystalline potential, but rather in some distorted
(by the disorder) one. This implies that in this case, the
famous Bloch’s theorem is no longer valid. Therefore, elec-
tronic states are not expected to be periodic Bloch functions.
This means, in turn, that in amorphous substances, the band
theory of solids, based on the perfect translational symmetry,
is inapplicable, see, e.g., [11]. In other words, strong disorder
destroys any symmetry of the initial (before, say, doping)
crystalline structure. Hence, amorphous semiconductors of
any original symmetry behave similarly to each other, resem-
bling, say, isotropic ceramics. That is why, for our purposes, it
is sufficient to consider the above simplest possible effective
mass model of an exciton.

II. GENERAL FORMALISM

To model the problem of a “screened exciton” in a
disordered semiconductor (dielectric), here we consider a
fractional (mimicking disorder) hydrogenic problem in the
screened Coulomb potential. It is wellknown (see, e.g., [33]),
that the ordinary quantum mechanical hydrogenic problem is
related to the excitons (bound states between electrons and
holes, see Ref. [33,34] for details) description in semiconduc-
tors.

With definition (1) at hand, the fractional Schrödinger
equation for the above screened hydrogenic problem reads

−|�|μ/2�nlmμ(r) − 2e− r
r0

r
�nlmμ(r) = Enlmμ�nlmμ(r). (3)

Here n, l � n, and m stand for the principal, orbital, and mag-
netic (z projection of orbital momentum) quantum numbers
and r is a radiusvector. Note that quantum numbers n, l, and
m are different for different μ′s. We will see below that for
μ < 2 the orbital degeneracy is lifted, which is the reason
why the eigenenergy E acquires the dependence on the or-
bital quantum number. At the same time, as the time-reversal

symmetry in our case (without external magnetic field) is con-
served, we still have degeneracy with respect to sign and value
of the quantum number m. We explicitly include the index m
in the wave functions in Eq. (3) just to demonstrate that they
differ for different −l < m < l , even though the energy E is
the same for all m, which correspond to the given l .

Here we use modified (for the fractional case μ < 2) Ryd-
berg units [31], i.e., we measure the energy E and coordinates
r in the units

E0μ =
(

β

2h̄

) μ

μ−1

D
− 1

μ−1
μ , r0μ =

(
2h̄μDμ

β

) 1
μ−1

, (4)

respectively. Here β is a coefficient in front of (dimensional)
screened Coulomb potential:

U (r) = −β

r
e− r

r0 , (5)

Dμ is a mass term [31]. At μ = 2 D2 ≡ 1
2m (m is a real

physical mass), and we have the standard Rydberg units from
(4). Note that at μ = 1 both quantities E0,μ=1 and r0,μ=1 in (4)
are divergent. Below we will see that this reflects the actual
situation with our problem, i.e., that discrete spectrum exists
for μ > 1 only [31,35].

It is well-known that integral (1) exists only in the sense of
its Cauchy principal value [22,23]. This already complicates
the solutions of spectral problems like (3) for pseudodif-
ferential operators [23]. Our analysis shows that it is much
more profitable to pass to the momentum space (i.e., perform
Fourier transformation) as the operator (1) becomes simply
−|k|μ. Although in this case the potential term (5) converts
to an integral, it is much easier to deal with than the ini-
tial one (1). Moreover, in passing to momentum space, the
angular integration can be done exactly without expansion
over spherical harmonics (which is customary in quantum
hydrogenic problems for μ = 2 [36,37]) giving close form
representation of the Eq. (3) in momentum space. Latter
representation permits to solve the corresponding fractional
Schrödinger equation both numerically and variationally. To
find the eigenfunctions in the coordinate space, we perform
inverse Fourier transformation.

To transit to momentum space, we apply a Fourier transfor-
mation to both parts of Eq. (3). This generates the following
equation in momentum representation:

(
kμ + kμ

0

)
�(k) − 1

π2

∫
d3k′ �(k′)

|k − k′|2 + 1/r2
0

= 0, (6)

where the indices nlmμ are suppressed for clarity. Here, sim-
ilar to the case of an ordinary hydrogen atom, we denote

E = −kμ
0 . (7)

It is easy to see that at μ = 2 and r0 → ∞, the Eq. (6) yields
well-known k-space representation of ordinary unscreened
hydrogen atom [36].

As the potential (5) is central, the wave functions are in-
variant under the rotation about the origin [38]. This implies
the usual separation of radial and angular variables. Latter fact
permits to represent the solution in the form

�nlmμ(k) = ψnlμ(k)Ylm(θ, ϕ), (8)

054141-2



SCREENED COULOMB INTERACTION IN INSULATORS … PHYSICAL REVIEW E 107, 054141 (2023)

where Ylm(θ, ϕ) are spherical functions [32,39]. Their normal-
ization conditions reads [39]∫ 2π

0
dϕ

∫ π

0
Y ∗

lm(θ, ϕ)Ylm(θ, ϕ) sin θdθ = 1. (9)

The normalization condition (9) permits to reduce that for 3D
wave functions (8) ∫

ψ∗(k)ψ (k)d3k = 1 (10)

to the effective 1D form∫ ∞

0
ψ2(k)k2dk = 1, (11)

where we suppress lower indices for a moment.
Integration over angular variables θ ′ and ϕ′ in (6) yields

(
kμ + kμ

0

)
ψnlμ(k) − 2

πk

∫ ∞

0
Ql (z)ψnlμ(k′)k′dk′ = 0,

z = k2 + k′2 + 1/r2
0

2kk′ , (12)

where we restore index μ, and Ql (z) are Legendre polynomi-
als of the second kind [32].

As our problem is symmetric with respect to time inversion
t → −t (see [36,39]), the wave functions in Eq. (12) do not
depend on quantum number m. Former symmetry exists at
zero magnetic fields and makes the radial wave functions
ψnlμ(k) real [39]. The Schrödinger equation (12) for each l de-
fines the spectrum of fractional screened hydrogenic problem
for that particular l and the principal quantum number n > l .
The representation (12) reduces the 3D spectral problem (6)
for each specific l to an effective 1D integral equation.

III. VARIATIONAL SOLUTION

It is common knowledge that the variational principle of
quantum mechanics [39] permits to find the approximate ana-
lytical expressions for the wave functions and eigenenergies
of corresponding Schrödinger equations. This is especially
true for the states of discrete spectrum, which are spatially
localized. In our case, the above variational approach permits
to get the approximate (which will be checked below by direct
numerical simulations) spectrum of the fractional screened
hydrogen atom for all admissible μ. To accomplish this, we
rewrite Eq. (12) in the form

kμψnlμ(k) − 2

πk

∫ ∞

0
Ql (z)ψnlμ(k′)k′dk′ = Eψnlμ(k), (13)

where E is defined in (7). Multiplying both parts of (13) by
ψnlμ(k) (no need for complex conjugation as radial functions
are real) and integrating over k2dk, we obtain the following
variational functional (here kv is the variational parameter):

Wvar (kv ) = Wkin(kv ) − W1(kv ), Wkin(kv )

=
∫ ∞

0
kμ+2ψnlμ(k, kv )dk, W1(kv )

(14)

= 2

π

∫ ∞

0
k′dk′

∫ ∞

0
kdk Ql (z)ψnlμ

× (k′, kv )ψnlμ(k, kv ),

where z is defined in (12). Now, to obtain the variational
solution of our problem, we should substitute a properly or-
thonormalized function ψnlμ into Wvar (kv ) (14) and minimize
the obtained function over kv ≡ kvnl , which depends on quan-
tum numbers n and l . To do so, we need to construct the
orthonormal set of trial wave functions. For that, we use the
corresponding basis for the initial, unscreened problem (see,
e.g., [36,40]) and modify it to our fractional case μ < 2.

The radial functions for μ = 2 in momentum space can
be derived by the Fourier transformation of corresponding
functions in coordinate space, see, e.g., [36]. Note that for μ <

2, the famous orbital degeneracy (due to Runge-Lenz vector
conservation [39]) of unscreened hydrogen atom eigenstates is
lifted so that excited state energies begin to depend on orbital
index l . The consequence of Runge-Lenz vector conservation
at μ = 2 is the fact that the above set of radial functions is
n2 fold degenerate [36,39]. The above suggests to choose the
ground state function in the following normalized form

ψ10μ(k) = A10μ k
μ+ 1

2
v10(

k2
v10 + k2

) μ+2
2

, (15)

where kv10 is a variational parameter and

A2
10μ = 4�(μ + 2)√

π�
(
μ + 1

2

) . (16)

We have four distinct functions ψ20μ(k), ψ21μ(k) cos θ ,
ψ21μ(k) sin θe±iϕ for the first excited state (n = 2, l = 0, 1).
This is because at μ = 2 this state is fourfold degenerate. We
will observe below that the energies for ψ20μ(k) and ψ21μ(k)
differ, indicating that the introduction of the fractional Lapla-
cian removes the angular degeneracy of the initial problem at
μ = 2. The functions ψ20μ(k) and ψ21μ(k) can be chosen in
the following form

ψ20μ(k) = A20μ k
μ+ 1

2
v20

(
k2
v20 + Ck2

)
(
k2
v20 + k2

) μ+4
2

, (17)

ψ21μ(k) = A21μ k k
μ+ 3

2
v21(

k2
v21 + k2

) μ+4
2

, (18)

where

A2
20μ = 16�(μ + 4)√

πg(C, μ)�
(
μ + 1

2

) , (19)

g(C, μ) = 15C2 + 6C(2μ + 1) + 4μ(μ + 2) + 3,

A2
21μ = 8�(μ + 4)

3
√

π�
(
μ + 3

2

) . (20)

The value of the coefficient C in Eq. (17) is selected
based on the orthogonality requirement 〈ψ10μ(k)ψ20μ(k)〉 =
0, where 〈...〉 denotes the integral of the function over a spec-
ified range. It should be noted that functions with different
values of l are already orthogonal due to the relationship
described by Eq. (9) for spherical functions. This indicates
that we only need to perform orthogonalization on functions
with different values of n.

The construction shown here demonstrates our orthogonal-
ization algorithm. Specifically, based on functions for μ = 2
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[40], we choose the functions for μ < 2 (and given n and l)
in the form of a quotient of two polynomials. The polynomial
in the numerator has unknown coefficients, which are deter-
mined from the corresponding orthogonality conditions. Such
a procedure can be readily continued for arbitrary n, although
the expressions for trial functions become progressively more
cumbersome. The procedure of minimization of the functional
(14) shows that the solution to our variational problem exists
at μ > 1 only [31,35]. As we shall see below, our numerical
solution of the integral equations (12) confirms this conclu-
sion.

IV. NUMERICAL TREATMENT

Our next step is to solve Eq. (12) numerically. Performing
substitutions k/k0 = x, k′/k0 = y in it, we arrive at the follow-
ing form of the Schrödinger equation, which is suitable for the
numerical solution

λρnlμ(x) =
∫ ∞

0
Klμ(x, y)ρnlμ(y)dy,

ρnlμ(x) = xψnlμ(x)
√

xμ + 1, λ = kμ−1
0 ,

Klμ(x, y) = Klμ(y, x) = 2

π

Ql

(
ξ 2(x2+y2 )+1

2ξ 2xy

)
√

(xμ + 1)(yμ + 1)
,

ξ = k0r0. (21)

Expression (21) is a linear Fredholm integral equation [41],
which can be easily discretized with the subsequent solu-
tion of the spectral problem for the obtained matrix. The
eigenenergy of our problem E is related to the eigenval-
ues κ of the above matrix by the expression E = −λ

μ

μ−1 .
To obtain a satisfactory accuracy of the numerical solution
of the eigenproblem (21), we should typically diagonalize a
10 000 × 10 000 matrix, which makes the task quite computer
intensive.

We further derive the variational energies for the states
ψnlμ as functions of Lévy index μ using (14) and compare
them to numerical ones, obtained from (21). Note that the
forms of variational wave functions are dictated by expres-
sions (15) (ground state), (17), and (18) (first excited state)
for parameters kvnl min(μ) as for μ > 1, the energy extremum
corresponds to a minimum. It is instructive to consider the
well-known case of an “ordinary” hydrogen atom with an
unscreened Coulomb interaction, corresponding to μ = 2. In
this case the solution of the problem is well studied (see
[39] for coordinate space and [36] for momentum space) and
its energy spectrum in our Rydberg units reads E = −1/n2,
n = 1, 2, 3, .... It is well-known that the ground state energy
of a hydrogenic problem is proportional to exciton binding
energy. This energy is reported in Fig. 1. Panel (a) displays
the comparison of numerical (symbols) and variational (solid
lines) dependencies of the ground state energy upon Lévy
index μ at several fixed values of dimensionless screening
radius ξ , shown as figures near curves. We intentionally put
the numerical curve in the form of (not very much) symbols
to better see the differences between variational and numerical
dependencies. Namely, while for the unscreened case ξ → ∞
the numerical and variational curves are almost (with the error
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FIG. 1. (a) Reports the comparison of numerical (symbols) and
variational (solid lines) ground state energies for different ξ (fig-
ures near curves) as functions of the Lévy index μ. For better
visualization of the difference between numerical and variational
curves, we present the former as symbols for several selected points.
For the unscreened case (ξ → ∞, black curve), the variational and
numerical curves are identical in the scale of the plot. (b) Displays
the numerical dependencies of ground state energy on reciprocal
dimensionless screening radius 1/ξ for different μ (figures near
curves).

less than 0.1%, which is invisible in the scale of the plot)
the same; for ξ = 2.5 the coincidence is not that good with
the average error around 10% at μ ∼ 2. This error increases
even more as μ approaches one, i.e., the exciton existence
boundary. The error grows also at ξ < 2.5. Our estimations
show that maximal error can reach even 50%. At the same
time, at ξ > 2.5, the accuracy of the variational approximation
is around 1% and grows only at μ � 1.4. The point here is
that our trial functions (15)–(18) have been constructed for
the wave function asymptotics (obtained from the integral
Eq. (12), see [35] for details), which does not include the
screening radius ξ . Another fact is that our trial functions
contain only one variational parameter kv [of course with
other indices, distinguishing between corresponding states,
see (15)–(18)], which comprises the simplest possible case.
The consideration of more exact asymptotics, as well as
adding more variational parameters, would improve the ac-
curacy of the variational method but at the same time will
make the calculations prohibitively complex. The latter can be
seen from the expressions (19) and (20), where (already quite
cumbersome) the parameters of trial functions (15)–(18) are
listed. Note also that while for μ � 1.5, the variational energy
lies higher than (say, exact) numerical, at μ � 1.5 the situation
is opposite. The former fact reflects the well-known situation
with the variational method in quantum mechanics (see, e.g.,
[39]), where the exact energy (corresponding to numerical in
our case) is the lowest value of the variational one. Moreover,
it is achieved at an infinite number of variational parame-
ters. In other words, the variational energy is always higher
than the exact one [36,39]. We see from Fig. 1(a) that the
variational energy is lower than “exact” (i.e., numerical) one,
which shows that at this range of Lévy indices, the variational
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FIG. 2. Same as in Fig. 1 but for the first excited state. In both
panels, only the numerical curves are reported. The unscreened case
ξ → ∞ is not shown in (a) in order not to clutter the figure. It
is qualitatively similar to that for ξ = 10. The orbital degeneracy,
which takes place at μ = 2 (E21(μ = 2) = E20(μ = 2) in (a), is
lifted at μ < 2. (b) Portrays the screening radius dependence of E20

(main panel) and E21 (inset). Values of ξ (a) and μ (b) are coded by
colors as shown in the legends.

approach fails. For this reason, in the present problem, we
consider the variational method only as an auxiliary one (at
1.5 � μ < 2 and ξ > 2.5) for the more accurate numerical
treatment.

Because of this, in Fig. 1(b), we report only the numerical
dependencies of the ground state energy on the reciprocal (so
that the known case of unscreened “ordinary” hydrogen atom
corresponds to 1/ξ = 0) screening radius. This is done for
three values of the Lévy index, shown near the corresponding
curves. It is seen that in the above “ordinary” case 1/ξ = 0,
μ = 2, the ground state energy equals to −1, which coincides
with well-known analytical results E = −1/n2. At lower μ,

the curves of ground state energy also decrease monotonically.
They run lower than that at μ = 2. This situation is in contrast
to the 2D screened case [42], when energy level crossing
occurs for the curves with different μ′s. As the level crossing
may indicate on the quantum chaos (see [43] and references
therein) or other extreme disorder manifestations, we specu-
late that for the 3D case, these effects are absent or highly
suppressed. As these chaotic features can disrupt the exci-
tonic device (like solar cell or nanolaser [12,13]) functionality,
the latter fact should be taken into account in the designing
of devices [based on 2D (heterostructures) and/or 3D (bulk
semiconductors)], where exciton properties are essential.

Now we pass to the first excited state. Figure 2 reports the
energies of the first excited state, corresponding to the prin-
cipal quantum number n = 2. This case corresponds to l = 0
(energy E20) and l = 1 (energy E21), see also above, where
variational wave functions have been introduced. Similar to
the cases of unscreened 3D fractional hydrogenic problems
[35] as well as 2D (both screened and unscreened) ones
[42,44], the famous orbital degeneracy of a hydrogen atom
is lifted at μ < 2. The latter degeneracy is due to the con-
servation of the Runge-Lenz vector in ordinary 2D and 3D

hydrogenic problems [36,38,39]. Our analysis shows that in
the fractional problem, Runge-Lenz vector nonconservation
comes from a synergy of disorder and finite screening effects.
It should be noted that the degeneracy concerning magnetic
quantum number m ↔ −m is due to the time-inversion sym-
metry [39] of our problem. It remains in our fractional case.
To lift it, an external magnetic field is needed. Our preliminary
analysis shows that in this case many interesting effects can
be realized. In this case, the magnetic field plays a role of
additional (to the disorder, which we consider phenomeno-
logically by the introduction of the fractional Laplacian in our
hydrogenic model) external stimulus, which permits to control
the properties of our “disordered exciton.” For instance, at
some magnetic field values, the energy levels crossing and
even overlay may occur in a system. This is a direct manifes-
tation of quantum chaotic behavior [43], which may destroy
the exciton and cause the problems in device functionality. To
check this, it is necessary to consider the classical counterpart
of our quantum problem, where possible chaotic trajectories
will be immediately revealed [45]. We postpone the studies of
these interesting effects to future publications. Figure 2(a)
portrays the behavior of E20 and E21 as functions of Lévy
index μ at three fixed values of screening radius ξ . We did not
show the unscreened case ξ → ∞ as it is qualitatively similar
to that for ξ = 10 (weak screening) but will clutter the panel.
We note that at μ = 2 (ordinary, i.e., “nonfractional” case) the
energies E20 = E21 signifying the above orbital degeneracy.
It is seen that both at strong (small ξ ) and weak (large ξ )
screenings E21 grows going to plus infinity at μ → 1. At
the same time, the energy E20 behaves differently at strong
(ξ � 5) and weak (ξ � 10) screenings. Namely, in the latter
case of weak screening, E20 is a monotonous function of μ,
going to minus infinity at μ → 1. On the other hand, at ξ � 5
this function has a minimum, going to plus infinity at μ → 1.
It is seen that at smaller ξ , the minimum becomes shallower
and shifts toward μ = 2 so that at ξ → 0 (complete screening)
the energy E20 starts to behave similarly to E21. The latter
effect is absent in “ordinary” (i.e., without fractional deriva-
tives) screened hydrogenic problems, which signifies that in
highly disordered semiconductors, the screening effects play
a very important role in the excitons’ properties. It is also very
important for the devices, using transitions between levels
with different l ′s.

The qualitative features of E20 and E21 behavior as func-
tions of screening radius ξ are already seen from Fig. 2(a).
However, the more detailed ξ dependencies are shown in
Fig. 2(b). First, it is seen that for the unscreened case 1/ξ = 0
both curves E20 and E21, corresponding to μ = 2 (ordinary,
i.e., “nonfractional” case), go to −0.25, which is dictated
by “unscreened expression” E = −1/n2 for n = 2. Another
important feature, which is revealed in Fig. 2(b), is the com-
parison of ξ dependencies of E20 (main panel) and E21 (inset)
at different Lévy indices μ. Namely, if E20 at lower μ goes be-
low that at higher μ in the entire domain of 1/ξ values, for E21

the situation is different. As curves E21(ξ ) at 1.5 < μ < 2 are
almost indistinguishable at 1 < 1/ξ < 2 [inset in Fig. 2(b)],
our more detailed calculations show that in this range of 1/ξ ,
the regularity for E21 is similar to that for E20, i.e., E21(μ =
1.5) < E21(μ = 1.8) < E21(μ = 2). At the same time, it is
seen that at 1/ξ < 1 the situation is opposite, i.e., the lowest
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curve is E21(μ = 2), while the highest one is that for μ = 1.5.
Our calculations also reveal that the level crossing occurs
at ξ ≈ 1. This means that the joint action of screening and
disorder (mimicked here by fractional Laplacian) may cause
chaotic behavior for the excited states of “fractional excitons.”
The detailed studies of this question, both for first and higher
excited states, will be published elsewhere.

If considered higher excited states, their main difference
from the first one is that there are much (for high n and l)
more states, which are no more degenerate at μ < 2. Really,
if for n = 2 (first excited state), we have four states with
radial parts defined by Eqs. (17) and (18), for n = 3 (second
excited state) we have already nine states with three distinct
radial functions. For arbitrary n we have n2 states with n
different radial functions, which makes their detailed studies
progressively more cumbersome and time consuming.

Our calculations of the exciton wave functions (not shown)
reveals that they are qualitatively similar to those for the
unscreened case [35]. The only difference is that while for
strong screening (small ξ or large 1/ξ ) as μ goes from two
to one, the wave functions become gradually less localized
in momentum space, for weak screening the situation is op-
posite. Specifically, for strong screening, the wave functions
amplitudes diminish as μ → 1 so that they become almost
delocalized with zero amplitude. This situation corresponds
to extra strong localization in coordinate space, where ψ de-
generates into (almost) Dirac δ function, reflecting the exciton
collapse. At the same time, for weak screening in momentum
space, the wave function resembles Dirac δ function shape
as μ → 1. In coordinate space this generates an almost de-
localized wave function, corresponding to exciton ionization.
This shows that the interplay between screening and strong
disorder (like substance amorphization) may cause excitons
to be destroyed (either ionized or collapsed, depending on the
relation between screening radius ξ , Lévy index μ, and quan-
tum number l , see above) the excitons, which may prevent
the operation of the devices such as solar cells and/or light
emitting diodes.

V. DISCUSSION AND CONCLUSIONS

In the spirit of the above picture of exciton wave func-
tion localization in coordinate and momentum spaces, it is
reasonable to calculate the exciton localization radius, which
is an important physical characteristic, which can be readily
observed in the experiments. The exciton localization radius
is the mean value of radiusvector r in its ground state

r̄ =
∫

r�2
10(r)d3r, (22)

where �10(r) is the ground state wave function in coordinate
space, i.e., the Fourier image of that in momentum space. Fig-
ure 3 reports the results of numerical calculation of r̄. While
at ξ > 2.5 the exciton localization radius decays monotoni-
cally as μ (imitating the degree of disorder in our problem)
approaches one, it is seen that at ξ = 2.5 it starts to grow
indicating the exciton ionization (i.e., falling apart) at μ = 1.
This is a reflection of the fact that the exciton (i.e., bound state
of an electron and hole) is destroyed by the synergy of strong
screening and disorder, which causes its ionization at μ = 1.
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FIG. 3. Exciton localization radius r̄, calculated numerically.
(a) Reports the dependence on Lévy index μ for three fixed ξ ′s,
coded by colors (legend). (b) Portrays the dependence on 1/ξ at fixed
μ, also coded by colors and shown in the legend.

This effect has already been shown in Fig. 3, where ground
state energy at ξ = 2.5 and μ = 1 was zero. Note that at weak
screening, the disorder enhances the bound state, which may
be viewed as a type of Anderson localization [46], leading to
exciton collapse (zero localization radius) at μ = 1.

Panel (b) of Fig. 3 portrays the dependence r̄(ξ ) at three
fixed values of Lévy index μ: μ = 2 (ordered case), μ = 1.8
(weakly disordered case), and μ = 1.5 (disordered case). It
is seen that the exciton localization radius grows with ξ in
accord with Figs. 1 and 2, where it has been demonstrated
that screening breaks the bound state between electron and
hole in an exciton. Also, in the disordered case, the exciton
localization radius is smaller than that for μ = 2 for the same
ξ . This shows that disorder, characterized by the Lévy in-
dex, stabilizes the exciton, preventing its ionization. Thus, to
some extent, the disorder and screening are playing opposite
roles in the exciton formation: the disorder tends to make
it “more localized” (similar to Anderson localization [46]),
while screening directs toward the exciton ionization. On the
other hand, a very strong disorder, occurring in our system
at μ → 1 makes the exciton collapse. This balance is very
important and should be taken into account in the design of
corresponding electronic devices. Our estimations show that
for moderate (i.e., exciton is not prone to collapse) strength
of disorder μ = 1.5, the screening radius r0, corresponding
to dimensionless ξ = 5.0 is 50 Å, which is in qualitative
agreement with known value for CdS r0 = 58 Å[47,48].

Discussed physical properties of a “screened exciton” re-
lated to the interplay between screening and disorder can alter
the exciton-exciton interaction in a substance. Namely, the
exciton radii (r̄ ∼ 5 nm, which is of the order of 10 lattice
constants) presented in Fig. 3 are characterized by dipole
moments er̄ (e is the electronic charge), giving rise to mul-
tiexciton configurations. On the other hand, these fields will
be screened so that many disorder constituents (like defects
and impurities) will fall in the span of the above exciton
radius. As we have mentioned above, in the semiconduc-
tors with different degrees of disorder (different μ′s) such a

054141-6



SCREENED COULOMB INTERACTION IN INSULATORS … PHYSICAL REVIEW E 107, 054141 (2023)

random screened exciton-exciton interaction may lead either
to exciton ionization (high screenings) or to the collapse (low
screening) at μ = 1. The described effects can also play an
important role in the energy relaxation of electrons and holes,
bound in an exciton. In a disordered substance, instead of a
process with well-defined time dependence, the energy relax-
ation from a highly excited to the ground state may become
chaotic. Both these processes will have a detrimental effect
on the optoelectronic and/or spintronic device functionalities
since the disorder may reduce its controllability.

Note that just as the ordinary hydrogenic model of an
exciton is limited by the real band structure of a semiconduc-
tor sample, our fractional model is also limited by a strong
disorder found in (amorphous) substances without transla-
tional symmetry. This results in the above distinctly different
behavior at extremely strong disorder, corresponding in our
model to the case μ → 1. Namely, while for ground state the
exciton collapses, i.e., its ground state energy Eg.s. → −∞
at μ → 1, for the excited states (depending on orbital quan-
tum number l) it rather ionizes, i.e., decays. To elucidate
this feature further, we need to consider weak disorder in
our model, corresponding to μ → 2. In this case, the de-
struction of the energy bands in a sample can be considered
perturbatively. Such calculations would permit to fathom at
which degree of disorder (i.e., Lévy index μ) the translational
symmetry of the initial (undoped) sample becomes irrelevant.
The effects of transition from weak (where band effects can
be approximately taken into account) to strong disorder in
our approach are currently studied and will be published
elsewhere.

Perhaps the main message of the present paper is that the
synergy between the screening of Coulomb interaction and
disorder in dielectrics (actually semiconductors) generates a
corps of properties, which do not occur in ordered substances.
Our main supposition here is that Laskin’s construction of
path integrals with Lévy measure [31] is equivalent to extrac-
tion of probability density function from fractional Langevin
equation and, in turn, to the assumptions made in the seminal
Anderson paper [46]. This (along with the fact that as the
width of initial distribution grows, the exciton wave function
becomes progressively more localized) permits us to assert
that fractional Schrödinger equation accounts for disorder
phenomenologically with Lévy index μ being the indicator
of its degree. The fact that “free” (i.e., in the systems with-
out external potential) Lévy distributions do not have higher
moments [22–26,28] demonstrates that such a construction
describes the systems with broad (wider than Gaussian) dis-
tribution of their Brownian paths in a generalized Lévy sense.
It is almost sure that the physical origin of such broad distribu-
tion in solids is disorder. The presence of potential (screened

Coulomb interaction in our case) in the system tames the
initial Lévy distribution, making it decay faster than that in
a corresponding free problem. In other words, here once more
we have an interplay between the breadth of disorder distri-
bution [46] and system potential, which makes the probability
distribution (square of the related wave function’s modulus)
decay faster in space. This makes our problem of a fractional
Schrödinger equation resemble an Anderson localization in
disordered systems.

As we have shown above, our fractional hydrogenic prob-
lem is important for the description of Rydberg excitons
in disordered semiconductors. The disorder, influencing the
charge carrier (electron or hole in semiconductors) diffusion
lengths, may generate the spectrum of excitons, which can-
not be described by the Schrödinger equation with ordinary
Laplacian. In this case, fractional derivatives should be in-
troduced to describe the situation adequately. The typical
example here is semiconducting perovskites like CsPbBr3,
which have very long diffusion lengths [49]. The influence
of disorder on their excitonic properties plays an impor-
tant role in their photovoltaic, optoelectronic, and spintronic
(especially with Rashba spin-orbit coupling (SOC) [50])
applications. The primary reason is that the above semicon-
ductors have strong SOC, which alters their excitonic spectra,
especially in a disordered case [49,51,52]. This is closely
related to the chaotic features in the spectra of excitons due
to Rashba SOC [43,45]. This suggests one more general-
ization of our hydrogenic problem. Namely, the spin-orbit
interaction term can be added to the corresponding fractional
Schrödinger equation. In this case, the solution will be more
sophisticated as the wave function will be spinor now [43,53],
although the problem can become doable in the momentum
space similar to our present case. This problem turns out to be
vastly important for many kinds of semiconductors (including
CsPbBr3) [49,51,54], where SOC has a profound influence
on the optoelectronic, spintronic, and/or photovoltaic devices
functionality.
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