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Chromosomes are crumpled polymer chains further folded into a sequence of stochastic loops via loop extru-
sion. While extrusion has been verified experimentally, the particular means by which the extruding complexes
bind DNA polymer remains controversial. Here we analyze the behavior of the contact probability function for
a crumpled polymer with loops for the two possible modes of cohesin binding, topological and nontopological
mechanisms. As we show, in the nontopological model the chain with loops resembles a comb-like polymer that
can be solved analytically using the quenched disorder approach. In contrast, in the topological binding case
the loop constraints are statistically coupled due to long-range correlations present in a nonideal chain, which
can be described by the perturbation theory in the limit of small loop densities. As we show, the quantitative
effect of loops on a crumpled chain in the case of topological binding should be stronger, which is translated
into a larger amplitude of the log-derivative of the contact probability. Our results highlight a physically different
organization of a crumpled chain with loops by the two mechanisms of loop formation.
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I. INTRODUCTION

Chromosomal DNA polymers are organized into loops
which serve both structural and gene regulatory roles inside
the cell nucleus [1,2]. Folding into chromatin loops provides
an effective means of compaction of 10-cm-long human chro-
mosomes inside a micron-sized nucleus. In particular, it was
proposed that upon the entry to mitosis a fluffy interphase
chromosome is arranged into a dense array of loops via the
mechanism of lengthwise compaction [3], which results in the
bottlebrush structure long observed in mitosis [4,5].

Interphase chromosomes are also organized into loops,
however, of significantly lower linear density compared to
the mitotic chains [1,6,7]. The loops are formed by SMC
proteins (structural maintenance of chromosomes, e.g., co-
hesin or condensin motors), and their extruding ability has
been independently demonstrated in single-molecule imaging
by two groups [8,9]. In human cells cohesin provides the
main source of short-scale loops on chromosomes. However,
the mechanism of cohesin binding to chromosomes is not
known. It has been proposed that cohesin can topologically
embrace two strands of DNA, forming a loop of progressively
increasing size in time [2,10]. In this topological binding
model cohesin complex resembles a physical ring that can
entrap two DNA strands without chemically binding them.
Alternatively, in the nontopological model, cohesin operates
as a cross-linker: in the base of the loop it creates a bond
between two sites of the chain, which is moving in the course
of extrusion [2,10]. Which of the models is realized in the cell
is still under debate. As we show here, such a subtle difference
in the microscopic structure of cohesin complex can affect
chromosome organization at all scales.

A crucial difficulty towards the analytical description of
a chromosome as a chain with loops is nonideal statistics of

chromosomal polymer. The physical state of a chromosome
can be characterized by the scaling of of the average contact
probability function P(s) with the contour distance s = |i − j|
(an analog of the return probability of a random walk to
the origin). For chromosomes this function can be extracted
from Hi-C experiments [11]. As various data suggest, at large
scales, in the range of s = 1–5 Mb, the scaling of P(s) ∼ s−1

is different from ∼s−3/2, as expected for a three-dimensional
random walk, indicating that chromosomes are folded into
nonideal states [11–15]. This ∼ − 1 exponent of the con-
tact probability corresponds to the fractal dimension d f ≈ 3,
which is an asymptotic property of topologically crumpled
chains. At shorter scales s < 1 Mb the scaling of P(s) has
a characteristic shoulder, which can be recapitulated by the
simplest model of a fractal chain with cohesin-mediated loops
breaking the scale invariance [7]. Importantly, upon elimina-
tion of cohesin loops in experiments [16,17], the ∼s−1 scaling
stretches to shorter distances up to s ≈ 40 kb, suggesting that
short-scale cohesin loops are formed on top of a crumpled
polymer with strong (power-law) correlations along the ge-
nomic contour [7].

Here we demonstrate that due to the intrinsic long-range
correlations in folding of crumpled chromosomes, the two
models of cohesin binding produce drastically different relax-
ation behavior of the chain with loops. In the nontopological
model a chromosome resembles a comb-like polymer with a
backbone and loopy side chains. Conformation properties of
the chain at large scales are controlled by the backbone (the
shortest path) in this model. In contrast, in the topological
binding model the backbone is not formed and the polymer
remains linear, while folded into loops. Importantly, in this
case the chain length is not shortened by the addition of the
loops. Furthermore, all the loops are statistically coupled with
each other in the topological model, being the segments of a
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single crumpled polymer. Note that this physical difference
between the models vanishes in the case of ideal chain statis-
tics, d f = 2, due to absence of long-range correlations in the
chain.

We investigate the effect of the specific binding mechanism
on the resulting contact probability function P(s) for the two
models. We treat the loops as frozen disorder on the fractal
polymer [7] and assume formation of a well-defined sequence
of loops and gaps on the chain with exponential distribution
of their lengths (no nested or overlapping loops are allowed)
fixed on each conformation. In order to take into account in-
trinsic correlations in the crumpled chains, we make use of the
Gaussian measure of fractional Brownian paths (fBm) as re-
cently proposed [18]. We show that while the nontopological
model under these assumptions can be computed analytically
[7], the topological model is not fully analytically tractable.
For the latter case it is possible to construct a perturbation by
a single loop (the one-loop approximation), and analytically
compute the first-order correction to the power-law scaling
of P(s). Despite the lack of a full analytical solution for
the topological model, our results show how the two models
generate different statistics of contacts across scales.

II. A FRACTAL POLYMER FOLDED
INTO RANDOM LOOPS

We exploit a conventional bead-spring model of a flexible
polymer chain, generalized for the arbitrary fractal dimension
d f , i.e., the average square of the segment size of length s is

r2
0 (s) = b2s2/d f , (1)

where b is a scale of a single bead. In the case of absence
of any interactions between the beads other than harmonic
polymer bonds, the statistics of chain is ideal with d f = 2
[19]. A swollen chain in a good solvent in three dimensions
(3D) has fractal dimension d f ≈ 1.7 [20], however, excluded
volume interactions are likely screened at the relevant scales
for chromatin [13]. Topological constraints (in 3D) in the frac-
tal globule model force the chain to fold with the asymptotic
fractal dimension d f = 3 [14,21]. Without excluded volume
d f can be larger than the dimension of the space: e.g., a
phantom randomly branching polymer has d f = 4 [22]. In
general, in order to describe a polymer with any fractal dimen-
sion d f � 2, an effective quadratic Hamiltonian was proposed
in Ref. [18]. It generates Gaussian polymer conformations,
which map onto trajectories of a fBm.

Next, we consider an ensemble of fractal chains folded into
sequences of loops and gaps, see Fig. 1(b). The loops on each
chain in the ensemble are randomly positioned, have a random
contour length drawn from exponential distribution with the
average λ, and are separated by exponentially distributed gaps
(spacers) with the average length g. The loops are fixed for
each chain. Similarly to our earlier work [7], we follow the
frozen disorder approach, i.e., each chain in the ensemble
is thermally equilibrated together with its set of the loops.
Importantly, the fractal statistics [Eq. (1)] is considered as the
inherent property of the chain, due to specific interactions in
the polymer (e.g., large-scale topological constraints) which
are not perturbed by the addition of loops.

(a) (b)

FIG. 1. Two possible binding mechanisms of cohesin to DNA:
(a) nontopological model and (b) topological model.

In this paper we focus on the difference between the two
models of the loop formation, depicted in Fig. 1. In the non-
topological binding model cohesin complex forms a covalent
bond in the loop base. Therefore, a chain with loops can be
partitioned into a fBm backbone (main chain) and a set of
fBm bridges (loops). Notably, the main chain and the loops
are fractal (generally nonideal) chains both having fractal
dimension d f and statistically independent from each other.
Relaxation of the polymer at large scales takes place along
the shortest path, i.e., along the backbone [seff , see Fig. 1(a)].
In contrast, in the case when the ring-shaped binding protein
can embrace two strands of chromatin [topological model of
binding, Fig. 1(b)], the chromosome backbone is not formed
and stress in the chain propagates along the whole polymer
contour. A spacer and its neighboring loop belong to the same
fBm polymer, which implies strong (power-law in the contour
distance) tangent correlations between them for d f > 2. Thus,
these correlations are not destroyed by addition of the loops,
which physically determines the difference in the contact
statistics of a chain with loops at small and large scales.

A. Nontopological model

Decoupling of correlations between the backbone and the
loops in the nontopological model allows for the analytical
expression for the P(s), which was derived recently by us in
Ref. [7]. The same model was exploited in Ref. [23] to quan-
tify the influence of random loops on the intrachain distances
in the ideal chain. We briefly describe the main steps and
results below.

First, one needs to compute the equilibrium contributions
of different diagrams, which classify relative positions of the
points i, j (s = |i − j|) with respect to the loop bases: (a)
spacer-to-spacer, (b) loop-to-spacer, (c) loop-loop (same), (d)
loop-loop (different). For each diagram one computes the
variance of the spatial distance σ 2(i, j) = 〈r2(i, j)〉 between
the points i, j of interest and makes use of the Gaussian re-
lation P(i, j) ∼ σ−3/2(i, j) for the corresponding equilibrium
contact probability. For that the vector �r is decomposed into
the sum of independent vectors (see Fig. 2) �r1 (loop), �r2 (back-
bone) for diagram (b); and �r1 (loop), �r2 (backbone), �r3 (loop)
for diagram (d). In diagrams (b)–(d) a loop resembles a fBm
bridge of the same dimension d f . The analytical tractability of
this model is due to the statistical independence of the vectors
�ri, i = 1, 2, 3, as they correspond to separate branches (side
loops and the backbone) in the comb-like polymer. Second,
one averages the resulting contact probabilities P(i, j) over
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FIG. 2. Nontopological model. Diagrams contributing to the
contact probability P(s): (a) spacer-spacer, (b) loop-spacer, and
(c) loop-loop (same), (d) loop-loop (other).

all possible pairs of monomers i, j belonging to different
diagrams, such that |i − j| = s, using the appropriate weights
of the diagrams. The exponential distribution of loops and
gap sizes allows to make use of the well-known result for
the propagators of the two-state Markov process and properly
weigh contributions of different diagrams [24]. Finally, the
remaining averaging over the distribution of random loops
and gaps is performed, which results in the sum of multiple
integrals involving Bessel functions [7].

Let us see what P(s) for different diagrams look like in this
model. As noted above, the variance of the vector connecting
any two points at distance s in the chain can be expressed
through the variances for a segment free of loops, σ 2

free(s) (the
backbone), and for a fBm bridge of size L, σ 2

bridge(s, L). For a
free segment along the backbone the result is given by Eq. (1),
i.e.,

σ 2
free(s) = b2s2/d f , (2)

as the backbone constitutes a fBm trajectory, which is statis-
tically independent of the intervening of loops. The bridge of
size L with the fractal dimension d f can be described as a fBm
polymer with the same dimension conditionally constrained
by the loop. Making use of the Gaussian measure of the fBm
paths, one can derive the following result for the fBm bridge
(see Ref. [7] and derivation of the conditional propagators for
the topological model below):

σ 2
bridge(s, L)

= σ 2
free(s)

(
1 −

[
σ 2

free(L) + σ 2
free(s) − σ 2

free(L − s)
]2

4σ 2
free(s)σ 2

free(L)

)
.

(3)

Note that for the ideal chain d f = 2, one obtains the well-
known expression for the ideal bridge

σ 2
bridge(s, L) = σ 2

free(s)
L − s

L
= b2s(L − s)

L
. (4)

Now let us consider diagram (a). In the presence of an
arbitrary number of nontopological loops between two points
of interest the contact probability reads

P(a)(s, x) = 1(
2πσ 2

free[(1 − x)s]
)3/2 , (5)

where x (0 � x < 1) denotes the fraction of the subchain
length occupied by the loops. In other words, the intervening
loops lead to a reduction of the effective contour distance
between points of interest.

Next, let us consider a subchain of length s with one end
belonging to the gap region and another end belonging to the
loop. The loop containing one of the two sites of interest is
parametrized by the lengths l1 and l2 as shown in Fig. 2(b).
Clearly, the separation vector �r between two sites can be
represented as a sum of mutually independent zero mean
Gaussian random vectors �r1 and �r2. Thus, we have

P(b)(s, l1, l2, x)

= 1(
2π

(
σ 2

bridge[l2, l1 + l2] + σ 2
free[(1 − x)(s − l2)]

))3/2 ,

(6)

where 0 � x < 1, l1 � 0, and 0 � l2 � s. As before, x is the
fraction of contour length along the backbone occupied by the
loops.

Now let us consider a subchain located inside the loop,
see Fig. 2(c). This situation corresponds to a pure bridge,
therefore

P(c)(s, l1, l2) = 1(
2πσ 2

bridge[s, l1 + l2]
)3/2 , (7)

with the parameters belonging to the range l1 � 0 and l2 � s.
Finally, for diagram (d) the vector �r is decomposed into

the sum of independent Gaussian vectors �r1 in the first bridge,
�r2 along the backbone, and �r3 in the second bridge. Thus, the
contact probability for this diagram reads [see Fig. 2(d)]

P(d )(s, l1, l2, h, l̃1, l̃2, x) = 1(
2πσ 2

d

)3/2 , (8)

with the following variance:

σ 2
d = σ 2

bridge[l2, l1 + l2] + σ 2
free[(1 − x)h] (9)

+ σ 2
bridge[l̃2, l̃1 + l̃2]. (10)

Expressions (5)–(8) determine the contact probabilities for
all four classes of diagrams for any loop density λ/g and any
fractal dimension d f of the chain. The final result for the
contact probability in the nontopological model is given by
the weighted sum

Pnontopo(s) =
∑

i=a,b,c,d

〈p(i)(s | {A}i )〉, (11)

where 〈p(i)(s | {A}i )〉 are the particular contributions to the
contact probability from each diagram i, integrated over the
possible values of diagram-specific parameters {A}i and prop-
erly weighted. In particular, the exponential distribution of
loops and gap sizes allows to use the probabilities for the
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FIG. 3. One-loop approximation for the topological model. Dia-
grams (a) spacer-spacer, (b) loop-spacer and (c) loop-loop (same).

two-state Markov process for calculation of the weights (see
Refs. [7,23] for details).

B. Topological model

In contrast, in this case all loops and spacers between them
are statistically coupled for d f �= 2, which does not allow to
derive the full analytical expression accounting for all four
diagrams. Indeed, in a chain with long-range correlations the
conditional probability of contact between any points i, j de-
pends on all the constraints in the chain. In the language of
random walks, due to the intrinsic long-range memory in a
fBm walk with the Hurst parameter H > 1/2 (H = 1/d f ), the
conditional return probability at time t = T depends on all the
intermediate returns (loops) at previous times t < T .

However, treating the loops as a perturbation to the fractal
chain scaling, one can obtain a self-consistent linear order cor-
rection for Ptopo(s) using the Gibbs measure of fBm polymer
conformations [18,25]. For that the non-Markovian propa-
gators of the single loop diagrams (see Fig. 3) should be
computed. Let us consider the looping probability P(i, j |
k, n) of a fBm random walk at time points i, j > i conditioned
on the loop at time points k, n, such as k < n. There are three
one-loop diagrams corresponding to this situation that we aim
to process (Fig. 3):

(a) spacer-spacer:
(a0) k < n < i < j points i, j both locate in the gap right

next to the loop;
(a1) i < k < n < j points i, j belong to the consecutive

gaps and there is one loop in between them;

(b) loop-spacer: k < i < n < j one point belongs to a loop
while the other belongs to the gap next to it;

(c) loop-loop: k < i < j < n both points are inside the
loop.

Introducing dimensionless variables x = 1 − l/s and y =
(k − i)/s, where s = j − i and l = n − k, one can express the
constrained propagators P(i, j | k, n) for each of the diagrams
as follows (see Supplemental Material [26]):

P(i, j | k, n) = P(s, x, y) = 1

s3H
× I (x, y), (12)

where the loops-induced correction function I (x, y) is

I (x, y) ∝ 1[
1 − 1

4 (1 − x)−2H g2(x, y)
]3/2 , (13)

and the function g(x, y) has the following universal form:

g(x, y) = (1 − y)2H + |y + 1 − x|2H − |x − y|2H − |y|2H .

(14)
The absolute values in Eq. (14) are to be expanded depend-
ing on relative positions of the monomers in each particular
diagram. Clearly, the function g(x, y) reflects the additional
damping factor to the unconstrained contact probability s−3H

in Eq. (12), which is due to the loop formation. Importantly, it
contains information on the non-Markovian properties of the
fractal polymer, specific to the topological binding model.

In the one-loop approximation, the contact probability
P topo(s) for the topological model is determined by the sum
of contributions coming from diagrams (a), (b), and (c), i.e.,

P topo(s) = Pa1 (s) + Pa0 (s) + Pb(s) + Pc(s). (15)

The weight of each diagram for exponentially distributed loop
and gap lengths can be expanded in a limit λ/g 	 1, s/g 	 1
(see Supplemental Material [26]). The resulting expression for
the averaged contact probability in the one-loop approxima-
tion can be written as follows:

P topo(s) ∝
[

1 + λ

g
f (s)

]
1

s3H
, (16)

where the first term reflects the contribution of the free prop-
agator and the function f (s) in the brackets responds for the
perturbative contribution of the one-loop diagrams

f (s) = − 1 + s

λ

{
−1 + 2

∫ 0

−∞
sdx ρ[s(1 − x)]

∫ x−1

−∞
dy[I (x, y) − 1] +

∫ 1

0
sdx ρ[s(1 − x)]

[∫ x

0
dy I (x, y) + 2

∫ 0

x−1
dy I (x, y)

]

+
∫ 0

−∞
sdx ρ[s(1 − x)]

[∫ 0

x
dy I (x, y) + 2

∫ x

x−1
dy I (x, y)

]}
. (17)

Taking a log-derivative of Eq. (16) and keeping only linear
in λ/g terms, we arrive at the following perturbative expan-
sion:

∂ logP topo(s)

∂ log s
= −3H + λ

g
�(s), (18)

where �(s) = s ∂ f (s)
∂s . It is straightforward to show that

lims→0 f (s) = 0 so that the loop-free result gets recovered
at small scales (short polymer subchains do not feel the loop
constraints). In the opposite limit one obtains lims→∞ f (s) =
3H . A similar expression for the ideal chain case H = 1/2 has
been previously obtained in Ref. [27].
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(a) (b) (c)

FIG. 4. Difference between the contact statistics of the two models for different diagrams and df = 3. On all panels t is the distance
between the left point and the loop base. (a) For diagram (a1) with one loop in between the points the topological model yields a smaller
contact probability than the nontopological. (b) For diagram (a0) without loops in between the topological model has a slightly larger Ptopo

than Pnontopo for the points located close to the loop base. (c) For diagram (b) the topological model yields a larger contact probability, especially
when the loop size is larger than the contour distance between the points, s < l .

C. Difference in the shape of P(s) for the two models

Having the results for the two models, it is important to
see how the residual correlations in the topological binding
mechanism change the contact probability across scales. To
understand it, in what follows we will analyze their impact for
the main diagrams (a) and (b). Diagram (c) is not relevant for
us here, since it provides equivalent results for both models.
Diagram (d) is not included in the one-loop approximation,
which is used to compute the topological model. However,
at large contour distances s it can be approximated by the
behavior of diagram (a). Indeed, contribution of the backbone
segment in Eq. (10) becomes dominant at s � λ.

Diagram (a) consists of two diagrams: (a0) and (a1).
Figure 4(a) shows that for the two points located on the back-
bone and one loop in between them [diagram (a1)] the contact
probability is always larger for the nontopological binding
of cohesin, Pnontopo

a1 > Ptopo
a1 . Importantly, the difference gets

stronger with an increase of the loop size l in between. The
effect is the most pronounced when the two points are located
close to the loop base, l/s ≈ 1, i.e., when most of the contour
distance is occupied by the loop. The source of this difference
is clear. From the viewpoint of a random walk, the time
elapsed between the points is smaller for the nontopological
model as it effectively goes along the backbone (seff ). In other
words, the effective contour distance between the points in
diagram (a1) is shortened by formation of the loops in be-
tween. In the case of topological binding such shortening is
absent for H < 1/2 and the shortest contour distance equals to
the original distance s > seff . Therefore, the equilibrium dis-
tance between the points is larger in the topological model and
the contact probability is smaller.

However, for H = 1/2, the difference in P(s) for diagram
(a1) between the models vanishes, despite the fact that the
shortest path along the polymer in the topological model is
larger than in the nontopological. One can demonstrate this as
follows. As in the previous section, let us denote by i, j the
two points of interest and by k, n the base of the loop. The
vector �ri j = �ri − �r j can be decomposed as

�ri j = �rik + �rkn + �rn j, (19)

where �rkn = 0 due to the loop. Since in the case of an ideal
chain all the vectors in Eq. (19) are independent, the distance
between the points i, j is controlled by the distances along the
backbone

(�ri j )
2 = (�rik )2 + (�rn j )

2 = (k − i) + ( j − n), (20)

i.e., the loop is effectively eaten up. Thus, the shortest distance
in the nontopological model becomes the effective contour
distance in the topological for H = 1/2 for diagram (a1).

Interestingly, for diagrams (b) and (a0) the situation is the
opposite [see Figs. 4(b) and 4(c): in the topological model the
contact probability is larger, Ptopo

a0,b > Pnontopo
a0,b , in the case of

the nonideal chain. Similarly to diagram (a1), upon increase of
the loop size l the effect gets stronger. However, the physics
of the difference between the models in this case is not re-
lated with the chain shortening, but with residual correlations
that are not destroyed by the formation of a loop via the
topological mechanism. Indeed, for example, for diagram (b)
residual correlations between a point in the loop and a point
in the spacer persist in the topological mode of loop forma-
tion. Since these correlations are negative (for H < 1/2), the
equilibrium distance between the points is shorter than in the
nontopological case, where the points fluctuate independently.
Accordingly, for the ideal chain statistics (H = 1/2) the two
points in either model fluctuate independently, and the contact
probability is the same. Interestingly, for sufficiently large
loops, l � s, the maximal fold difference between the models
corresponds to the symmetric positions of the points relative
to the loop base, t/s = 1/2 [see Fig. 4(c)]. However, upon
decrease of the loop size l the optimal relative distance to
the base drops down to t/s = 1/4 at l = s, meaning that the
point in the spacer should be three times further from the
loop base than the one in the loop. Such an asymmetry in the
configuration is related with different statistical properties of
spacer and loop regions, which becomes noticeable when their
contour sizes get similar.

Despite the fact that the topological model can be solved
only in the one-loop approximation (i.e., for λ/g 	 1), one
can understand the qualitative difference between the models
for all λ/g. Indeed, the conformational statistics of a loopy
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(a) (b) (c)

FIG. 5. The normalized contact probability and its log-derivative for the binding model Pnontopo(s) (red, dashed), for the nontopological
in the one-loop approximation Pnontopo(s) (black, dashed), and for the topological in the one-loop approximation P topo(s) (black, solid). Loop
density is λ/g = 1. Different fractal dimensions of the chain: (a) df = 3, (b) df = 2.5, (c) df = 2. The difference between the topological
and nontopological models vanishes as the chain is becoming more ideal. Conversion between the monomers and base pairs can be done
by assuming that one monomer contains 1 kb of chromatin length. Accordingly, λ = g = 100 kb here. The particular choice of the coarse
graining, however, is marginally important, since the amplitudes of the peak and dip, as well as the normalized P(s), do not depend on the
absolute values of λ and g (only on their ratio, λ/g and s/λ) in both models.

chain at s � λ is determined by the distance between the
points located on the main chain, i.e., by diagram (a), see
Fig. 2(a). This distance is effectively shortened in the case
of the nontopological binding model, thus leading to a higher
contact probability, similarly to the one-loop diagram (a1), see
Fig. 4(a). With an increase of the separation s between the
points the fraction of the chain within the backbone (along
the shortest path) increases to the bulk value g

λ+g . For the
reference loop density λ/g = 1, this corresponds to half of
the contour distance effectively shortened. For the case of a
single-loop diagram (a1), this yields ∼15% for the difference
in the absolute values of P(s) at large scales [Fig. 4(a)]. There-
fore, with an increase of loop density λ/g the drop of Ptopo

compared to Pnontopo at large scales increases, in particular,
resulting in a deeper dip of the log-derivative.

On the other hand, at short scales s ≈ λ all diagrams de-
picted in Fig. 4 contribute similarly to P(s). While diagram
(a1) with one loop in between yields a larger value of P(s)
in the case of nontopological binding, this is not the case for
diagrams (b) and (a0). Thus, we expect the difference between
the models at short scales to be less pronounced.

This analysis is confirmed by Fig. 5, where for the sake
of accuracy we compare the two models in the one-loop ap-
proximation P topo(s) and Pnontopo(s), as well as the full theory
for the nontopological model, Pnontopo(s). For that we use
expressions (5)–(7) for the single-loop diagrams in the non-
topological case and insert them as the particular contributions
for calculation of Pnontopo(s). The averaging of the single-loop
diagrams, as for the topological model, is conducted using the
linearized weights [Eqs. (S17)–(S20)]. First we note that at
intermediate loop densities (λ/g = 1) the one-loop approxi-
mation produces larger amplitudes of the peak and the dip on
the log-derivative, for all fractal dimensions d f . Interestingly,

the effect of the topological binding at the loop base is qual-
itatively similar. Indeed, in full agreement with our analysis
above, if one compares P topo(s) and Pnontopo(s) (black lines in
Fig. 5), it is evident that the topological model yields a smaller
contact probability at larger scales and, thus, larger amplitude
of the dip. The corresponding difference at short scales s � λ

is much less pronounced than at large scales. Still, one sees
that the topological model at short scales produces somewhat
larger and slower decaying P topo, especially for larger values
of the fractal dimension. Upon decrease of the fractal dimen-
sion from d f = 3 to d f = 2 the two models in the one-loop
approximation give more similar results, consistent with our
analysis.

All together, our analysis shows that the main difference
between the binding models concerns large scales. With an
increase of the loop density, the topological model produces
smaller Ptopo(s) than the nontopological Pnontopo(s) at s � λ,
resulting in a deeper dip of the log-derivative. Physically, this
difference arises from the effective chain shortening that is
established by the loops in the nontopological binding model.
We note that the predicted deepening of the dip (located at
s ≈ 0.5–1 Mb) in the topological model should be potentially
detectable in Hi-C and Micro-C experiments, where the res-
olution is limited mostly by the respective capture radius
(∼50–150 nm for Hi-C [28]; <20 nm for Micro-C [29]).

III. DISCUSSION

Chromosomes are polymers organized into loops by SMC
complexes (e.g., condensins, cohesins) [1]. These loops are
transient, as they are produced in a process of loop extrusion
of a SMC complex that stochastically binds and unbinds DNA
[6]. Therefore, these random loops are not directly visible
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in the data (Hi-C or microscopy). Here and in our previous
paper [7] we have suggested an analytically tractable polymer
model, in which the presence of random loops, as well as their
statistical characteristics, are encoded in the specific shape of
the average contact probability curve. At the same time, this
P(s) function can also be computed from the experimental
Hi-C contact maps [11], providing a robust framework to
characterize the loopy state of a chromosome.

Despite the fact that the loop extrusion by cohesin (and,
generally, by SMC complexes) has been confirmed in in vitro
experiments [8,9,30–32], the microscopic mechanism of bind-
ing and reeling on DNA remains contradictory. Like other
SMC complexes, cohesin has a ring-shaped structure, but
whether this ring is actually needed to topologically embrace
two strands of DNA in the course of extrusion is a subject
of ongoing experimental and computational research [2,10].
Three possible binding mechanisms have been proposed [10]:
(i) topological, i.e., the cohesin is bound to one string chemi-
cally, while the ring opens and closes when cohesin needs to
encircle the second strand of DNA; (ii) pseudo-topological,
when both strands are embraced by the ring without chemical
binding in the loop base, so that cohesin can be easily pulled
away from the chromosome; and (iii) nontopological, when
the two DNA strands are chemically bound to the ring, which
implies the cohesin ring does not play an important role in
binding the DNA. In particular, in mechanisms (i) and (ii)
the chromatin strand is reeled into the cohesin ring in the
course of extrusion together with the proteins residing on the
chain. Clearly, translocation of obstacles larger than the ring
size (∼35 nm) into the loop would not be possible. However,
a recent single-molecule study has shown that nanoparticles
as large as ∼200 nm, as well as big protein machines (e.g.,
RNA polymerase), can be easily translocated into the loop by
cohesin [10]. This experimentally observed ability of cohesin
to avoid large obstacles on DNA points to the nontopological
binding mechanism. However, other authors have previously
noted that the topological binding could explain atypically
long residence times of cohesin on chromatin (∼10 min), as
compared to other molecules without the ring structure [2].
Furthermore, cohesin was previously shown to topologically
entrap two sister chromatids [33]. Thus, the role of the cohesin
ring structure in DNA binding and extrusion of loops is not yet
fully established.

In this paper we underscore the importance of a particular
microscopic structure of the cohesin loop base on the three-
dimensional organization of a chromosome across scales.
Standing on the experimental observation that without cohesin
loops chromosomes follow the statistics of a crumpled chain
with fractal dimension d f = 3, and not of an ideal chain with
d f = 2 [7,16,17], we demonstrate that the conformational
properties of a crumpled chain with loops would be different
for the topological and nontopological structure of the loop
base. While for the nontopological binding the backbone of

a loopy polymer forms with the loops emanating out of it (as
in a comb-like polymer), in the topological case the polymer
folds into loops, but its organization remains linear. This leads
to the two main peculiarities of the two models: (i) effective
shortening of the chromosome at large scales in the nontopo-
logical model, and (ii) negatively correlated fluctuations of
adjacent loops and spacers in the topological model. Notably,
for the ideal chain statistics (d f = 2) the correlations along
the chain are absent, resulting in equivalent organization of
the loopy chain in either binding model. However, for any
d f > 2, due to strong (power-law) negative correlations, the
mode of cohesin binding has a quantitative effect on the three-
dimensional organization of the chains into loops.

In order to quantify this effect we used an analytically
tractable polymer model [7] and compared the behavior of the
contact probability P(s) for topological and nontopological
binding models. We based our theoretical argument on the
quenched disorder approach and made several assumptions
that allowed us to solve the nontopological model analyti-
cally for any fractal dimension d f and any density of loops
λ/g (see Ref. [7]). Under the same set of assumptions, the
topological model is not analytically solvable, so here we em-
ployed the one-loop approximation which treats the loops as a
perturbation to the fractal scaling of the chain. We obtained
the perturbative form of P(s) in the loop density λ/g and
analytically computed the linear order correction using the
Gaussian measure of fBm trajectories as suggested recently.
This result allowed us to quantitatively compare the contact
probability between the two models for the single-loop di-
agrams [(a)–(c)]. We found that the binding mechanism in
the loop base has indeed an impact on the P(s), which is
qualitatively similar to the difference between the one-loop
approximation and the full theory within the single binding
mechanism.

The revealed quantitative difference for the two binding
models allows to rationalize the organization of chromosomes
beyond the minimal analytically tractable models. We note the
central role of the nonideal (crumpled) statistics of the chain
in the observed difference. Thus, for rare species where the
emergent statistics of the chromosomes is closer to the ideal
chain (e.g., yeast [34]), our analysis implies universal contact
probability behavior independent of the microscopic details
imposed by the SMC machinery.
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