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We study multipartite entanglement and genuine tripartite entanglement based on general symmetric informa-
tionally complete positive operator valued measurements (GSIC-POVMs). By representing the bipartite density
matrices in terms of GSIC-POVMs, we obtain the lower bound of the sum of squares of the corresponding
probability. We then construct a special matrix with the correlation probability of GSIC-POVMs to derive useful
and operational criteria to detect genuine tripartite entanglement. We also generalize the results to obtain a
sufficient criterion to detect entanglement for multipartite quantum states in arbitrary dimensions. Detailed
examples show that the new method can detect more entangled and genuine entangled states than previous

criteria.
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I. INTRODUCTION

Quantum entanglement is one of the most fundamental
resources in quantum information processing such as quantum
cryptography [1,2], teleportation [3], and dense coding [4].
In particular, the genuine multipartite entanglement (GME)
stands out with significant applications in quantum infor-
mation processing [5,6]. The detection of entanglement and
genuine multipartite entanglement are essential for multipar-
tite quantum communication and quantum computing tasks.

There have been many results in detecting entangle-
ment and GME. T. Gao et al. [7] proposed a criterion for
k-nonseparability of multipartite quantum systems based on
quantum Fisher information. The quantum Fisher information
has been also used in the detection of entanglement [8]. In
Ref. [9] the authors formulated a necessary and sufficient
criteria to detect the entanglement of bipartite states by using
positive linear map. GME criteria based on Heisenberg-Weyl
representation [10], multiple sequential observers [11], and
multisetting Bell-type inequalities [12] have been presented.
The authors of Ref. [13] derived the criteria to detect en-
tanglement and GME of three-qubit states. B. Chen ef al.
[14] provided a quantum entanglement criterion by using
mutually unbiased measurements that can be experimentally
implemented for arbitrary d-dimensional bipartite systems.
The applications of mutually unbiased measurements in en-
tanglement detection are examined in Ref. [15]. In Ref. [16]
the entanglement criteria for continuous variable quantum
states were derived based on mutually unbiased bases.

In addition to mutually unbiased measurements, the study
on symmetric informationally complete positive operator
valued measurements (SIC-POVMs) in quantum informa-
tion tasks has received much attention. Most researches
on SIC-POVMs are focused on rank-1 SIC-POVMs. By
using SIC-POVMs the authors of Ref. [17] provided a
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stronger entanglement detection criterion than the com-
putable cross-norm or realignment criterion based on local
orthogonal observables. The existence of SIC-POVMs in
arbitrary dimensions is still an open problem [18]. Ana-
lytical solutions have been only found in dimensions d =
2 — 151,168, 172, 195, 199, 228, 259, 323, and 844 [19].
Unlike the SIC-POVMs, the generalized SIC-POVMs
(GSIC-POVMs) do exist for arbitrary dimensional sys-
tems. Gour and Kalev [20] constructed the set of GSIC-
POVMs from generalized Gell-Mann matrices. The authors of
Ref. [21] presented entanglement criteria for bipartite systems
and multipartite systems of multilevel subsystems by using
GSIC-POVMs. In [22] entanglement criteria based on GSIC-
POVMs have been obtained and the validity and the power of
entanglement detection have been formulated. The authors of
Ref. [23] studied the quantum entanglement criteria by using
GSIC-POVMs for both bipartite and multipartite systems. The
authors of Ref. [24] presented an entanglement criterion for
arbitrary high-dimensional bipartite systems based on GSIC-
POVMs. In Ref. [25] the authors proposed entanglement crite-
ria for tripartite systems via SIC-POVMs and GSIC-POVMs
and extended the criteria to multipartite systems. The GME
criterion has not been studied based on GSIC-POVMs yet. A
fact is that the GSIC-POVMs approach would depend on some
local measurements and can be relatively easy to be imple-
mented experimentally. Moreover, many entanglement crite-
ria become more complex when the dimension of the quantum
system increases. In view of this, using GSIC-POVMs to
study quantum entanglement will likely simplify the criteria,
as the measurement operators satisfy the completeness and
trace relations. We study not only arbitrary dimensional mul-
tipartite entanglement but also arbitrary dimensional tripartite
GME by using GSIC-POVMs in this paper.

The paper is organized as follows. In Sec. II, we construct
special matrices given by the probabilities from the local
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measurements of GSIC-POVMs and present the criterion for
detecting genuine tripartite entanglement. By detailed exam-
ples, we show that our criterion is more efficient than the
existing ones. In Sec. III, we present an approach to detect the
entanglement of multipartite states in arbitrary dimensions,
which can detect more entangled states than previous methods
by a detailed example. Conclusions are given in Sec. IV.

II. GME FOR TRIPARTITE QUANTUM STATES
BASED ON GSIC-POVM

We first review some basic knowledge of general sym-
metric informationally complete (GSIC) measurements. Let

H;’ (f =1,2,3) be dy-dimensional Hilbert spaces. A set

" ., . .
of d} positive operators {Fy,},_; in C? is said to be GSIC
measurements if ’

d
> Py =1 Tr(Pu)]=ay, (1
Otf:l
l—dfaf
Tr(Po, Pp,) = —— )
T dp(dy - 1)

where Iy is the identity operator, oy, By € {1,2,... }
ay # By, the parameter ay satisfies d% <ay < dlz, af = lz

7 i 5
if and only if all P,, are rank one, which gives rise to a

SIC-POVMs. It can be shown that Tr(Fy,) = dlf for all ay.

d2
}a’ _1 the GSIC
measurements with parameter ay satlsfylng Tr[(Py )2] =ay.

We have the probability p,, = (Py,;) = Tr(p - PJ ) with re-
spect to the measurement outcome . The quantum state p
can be expressed in terms of these probabilities [20],

Let p be a quantum state in H, 4 and {P,

D) d7
_ de(d} —1) Xf:pa pr Gl —agdp), I
ardi —1 Im e ad3—1
f ap=1

The summation of the squared probabilities satisfies

d?
Xf: 7= (afd; - 1)Tr(,022) +ds(1 — apdy)
th:l ! df(df - 1)
d2+1
< u, 3)
dedy+1) |
bl 1) 1) $ 5
(aldl3 - 1)(a2d§ - 1 a1 1 ap=1 o

3 didy(1 — aydy)(d3 —
(@d; = 1)(wd; —1) =7

01221

P ™ 1) (i — 1)

a2
1) : 12 pl2

where the upper bound is saturated if and only if p is a pure
state [24].

For bipartite states in H{" ® Hs* we define P}2, = P! ®
P(fz, where o =1,2,...,d12, a=1,2,.. d27 { al}al 1

. a2 .
with parameter a; and {Poi}of2=1 with parameter a, are asso-
ciated with the two subsystems, respectively. We first show
that the operators Pé?az are linearly independent. Assume that

& .
Y Zaz | aa,o{zPal1 ® P = 0 for some coefficients dq,a,
which results in that

& &
Tr Z Z o, (Pl ® PL) (Py, ® P2)
a=1 ar=1

d?
= Z Z aoqo(ZTlf(Poil 'P;i)Tr(P(fz -POZ) =0,

C(]:l C{z:l

where o] = 1,2,...,d}, oy = 1,2,...,d;. From (1) and (2)
we obtain d12d22 equations of ajy, aiz, ..., ag - The coeffi-
cient matrix of the equations is M = N; ® N,, where

ar by b -+ b
by a b - b

Nl = bl bl aj e bl ,
R A P
[ay by by -+ D]
by a by -+ b

No=|b2 b a -+ b
I B O3

with b = dl z d‘ﬁ‘“‘l) and b, = di(_d?_”ﬁ). By a series of matrix

transformatlons M can be transformed into an identity matrix,
namely, a; = ajp = --- = a2 = 0 and hence P, Q@ P; are
linear independent. Thus, a bipartite density matrix can be
linearly expressed in terms of PO}] ® P(fz.

With respect to the operators Py =P Q1 Py;

00{2
I, ® P and P;za , we have the probability pa 0= <P0}120)

Tr(pPl,o) Poa, = (Pogy) = Tr(pPyg,) and p, = (P),) =
Tr(,oP(ilza ) associated with a bipartite state p. p can be ex-
pressed as

d1d2(1 — azdg)(df — 1)

d}
E : 12 pl2
pa]OPa]O

o=1

didx(1 —aydi )(1 — ards)
(a1d13 — 1)(a2d23 — 1)

HIZ’

where I, = I} ® I, is identity matrix. We have the following relation:

‘)

(@ -)@E-1 s
Tr(p)—( ldg_l a2d3—1 ZZ 0410!2 d?—l)(azd;_l

a]—l ar=1

azdz)(dlz —

Zpuqo

0(11

054134-2



DETECTING GENUINE TRIPARTITE ENTANGLEMENT ...

PHYSICAL REVIEW E 107, 054134 (2023)

_dil—ad)(d3 - 1)
(aldf - 1)(a2d23 - 1)

Clz:l

d12d22(1 — aldl)(l — agdz) _

Do T @ 1) (@l — 1)

Lemma 1. For any bipartite quantum state p, the following inequality holds,

&2
dj
2
ZESMM

o= 1042 1

Proof. For any bipartite pure state p, we have

dids(df — 1)(d3
(Cl]d? -1

Tr(p?) =

didy(1 — and)(d3 — 1) 4

(ald% — 1) azd3 — 1

d1d2 + )(a2d2 )

d d
2
ot 1 25 2 ) -

“4)

S didy(d + D)2+ D)

d1d2(1 azdz)(df - 1)
Cl]d3 - l)(612d23 - 1)

d
2
Z (P;%o)

C{]=1

Z 2 didr(1 — aydy)(1 — axdy) 1
00{2 -

(aldl3 — 1)(a2d23 — 1)

By using Tr(p,z) = Tr(pzz), where p; and p, be the reduced density operators with respect to the subsystem Hld1 and szz,

respectively, then we obtain

ald )(a2d3 — 1)

d2 (Clldl3 —1

(USRI Sy

&2
ZE:%WZ

o= 1012 1

didy(d> — 1)(d2 — 1)

di (@ 1)(ad; — 1)

Dady —1) &

o -
d

[\S)

(@ — D) (ard; — 1)

di  (a2d3 —1)(ardy — 1)

Dt2=1

((lldl3 — 1)((1261’2 — 1)2

y2_ @
Z (Paro)” — dr (@2 — 1)(d3 — 1)(a2d5 — 1)

0t1=1

(a1dy — D(axdy, — 1)

& @ )@ - D ards 1)

< (aldlz + 1)(a2d22 + 1)
Sdidy(di + Dy + 1)

By employmg the convex1ty property of the mixed state, we

(a|d2+l)(a2d2+1)
have Zal IZO,Z {(Pare,) S G-

A tripartite state p € H = H;ff ®Hif” associated with
subsystems f, g, and & is separable under bipartition f|gh if

p= 2121,0‘[ ®pfh, f#eg#+he{l,23]}, where the prob-
dy(d}—1)

abilities z; >0, >,z =1, ,olfz ad Za, P P({f—

d(1—apdy) gh _ dedn(d;=D)(dp—1) ~d; d?

a4y di—1 Iy, and p" = (aed— D (andi— 1) Zagzl 2= lp%ah
peh dgdh(]—ahdh)(dgz—l)z ppE dydy(1-a,d, )(d 1)
oy (agdi—D(apdi—1) L=ay=1 Pa,of, ag (agdi—1)(apd3—1)

@ o dedy(1-a.d)(1-aidy)
D1 pOm,POa;,"' (@di—D(ardi—T) I

associated with the subsystems f and gh, respectively. A
quantum state is said to be genuine multipartite entangled if
it cannot be written as a convex combination of biseparable
states.

Denote efq, = Tr(,oPO{f ® L),

¢h are the density matrices

egO o = Tl'(p]If ® 0)
and egy o0, = Tr(ply ®P§hah) for oy =1,2,.. .,df; o =
1,2,...,d ., d}. We define G/18" to be the

, g,andah_l 2,.

(@ =13 - 1)

(

correlation matrix constructed from e o, €¢0,a, and €gh, 0,01, -

G = m|B) (yal + Fy ® E, (5)
where
(Venl = (egnr -+ eg220), |1B) = (eraep- "ef,d;)T,
(6)
T
Ff: C'ef’d}—i‘b C'ef,d}—l'kb C'ef,]‘i_b ’
b b b
(7
Eg = (eg.1€0.2+ ,420). ®)

T stands for the transpose; b, ¢ and m are real numbers;
(Ven| and E, are (1) x (2d§dﬁ) and (1) x (d;d,%) row vectors,
respectively. Let || - || stand for the trace norm defined by
lAlle = >°; & = Trv/AAT with respect to a matrix A € R"™*",
where &; (i = 1,2, ..., min{m, n}) are the singular values of
the matrix A.
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Theorem 1. If a state p € Hld1 ® ng ® H3d3 is biseparable under the bipartition f|gh, then

1) (o +

ard? +1 a,d? +
||Gfg’1||n<|m|\/ ki \/(“

de(dy + 1)

dedy(dg + 1)(dy + 1)

ard? +1 a,d? + 1
c| ff—+\/_|b|df B T
drd; +1) dod + 1)

Proof. If a tripartite pure state p is separable under the bipartition f|gh, it can be expressed as p = p/ ® p*". From (5)—(8)

we obtain
IG" e < ImINIB) (Yenl e + 1Ff @ Egll
= [m[[I1BYINYerd I + I1Fpllee | Egllee
G
< ImllBYyen) I + [ lel | D €3, +V2Ibld;
Otf:l
a2 2
= Im| Z Gy |2 G+
ap= 1 Otg—lct/,— a/:l
ard?+1 |(a,d?+ 1)(apd? + 1 ard? + 1 ad? +1
< o 1 D el s+ Vb | | ©)
f(df-l— 1) dgdh(dg-l- D(d,+1) df(df+]) dg(dg+ 1)
where we have used [|A + Bl < ||Alle + ||Blli in the first inequality and second inequality, |||a)(b||l« = |[la)|||||)|| for vectors

la) and |b) and |A ® Blle = [|All« -

||B||[r for matrices A and B in the first equality and (3), (4) in the last inequality.

For tripartite mixed state p = ), z ,0, ® ,of , from (9) and the convexity property we get

2
167 < st L [l + Dy + )
d(d; + D\ dedi(dg + D(dy + 1)

Now we consider genuine tripartite entanglement. Let

IGlle = %[”G”B”lr + 1G*B + 1G¥"? ] and Q = max
(ard?+1)(a3d?+1) ajd?+1 ayd?+1
{lm] \/dzd32<dz+1><d§+1) aarn T Uely g + V21bld))

(ard?}+1)(azd3+1) wdi+1
dlds(d1+1)(d3+l)+(|c| dz(dz-H)_i_«/5
(a1d?+1)(ad2+1)
addnan Tel

adi+1 \/azd22+l
\/dz(dz-‘rl)’ Iml\/ &&=+
a1d2+1 . a3d2+1
|b|d2)\/d1(dl.+1>’ |m|\/d3<d§+1>
2
V2|b|d3) %}, where b, ¢, and m are real numbers. We
have the following theorem.

Theorem 2. A quantum state p € H" ® Hy* ® H is
genuine tripartite entangled if |G|l > O.

Proof. Suppose p is a biseparable quantum  state,
p=20pl @p7+ 2 rip; ®pP + X kol ® pi° with
0<o,rj,si <1 and Zio,-—f—zjrj +Y,s«=1. By
Theorem 1, we have that

a;d +1
d;(d;+1)+

1
1Glle =3 | D 0illG" et ) rill G ) st G2
i j k

1
< §(Q+Q+Q)=Q-

Consequently, if |Gl > O, then p is genuinely tripartite
entangled. The above proof also applies to other bipartions. ll

To illustrate our results let us consider three-qubit systems.
For d =2 we give the following four matrices [24] for any

afd]% +1 agd? +1
cly| ——L—— + V20bld; | [ . m
'@@+n 1blds do(dy + 1)

(

nonzerot € [— 6[ 6[]

Py = 31 +1(Fy — 6F,),
Py = }11 + 3tFy,

a=1,2,3,

where
1o 1 Lo i
A=t o} A=l5 o)

I ]1 0 1 1 1+
regl O] meglt W

By calculation it is easy to show that Z;‘(:] P, =
I, Tt[(P)*) = § +27¢% and Tr(PuPg) = § — 9% a # B €
{1 2,3,4}. And for any nonzero t € [_#3’ #3]’ we have

L = Tr[(P,)?] < 4 Thus {P, }4 _; is a GSIC measurement.
Example 1. Consider the 2 x 2 x 2 quantum state py,

1—

Cls +xW) (W, 0 <x < 1,

pw =
where |W) = [[|100) +1010) + |001)]. When b=m =0

and ¢ = 1, by Theorem 2 we have |G|y > 4“‘6+1 MZT’L].

The GME of p is shown in Table I for different values
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FIG. 1. fi(x) from our result (dotted blue line), f>(x) in Ref. [26] (solid red line).

of r. Moreover, when ¢t = 0.001, we get fi(x) = |G|« —

J 2t et S0, e, 0.5584 < x < 1. In Ref. [26] p is

shown to genuinely tripartite entangled if f>(x) = 9(6335fl) -
10 > 0,i.e.,x > 0.647236. Obviously our conclusion is better
than the result in Ref. [26], see Fig. 1. Theorem 2 detects more
GME states.

Example 2. Consider the quantum state pguz,

PGHZ = YGHZ|, 0<x<1,

—Xx
PE

where |GHZ) = f Z —0 |zu Whend =2, b=c=0 and
m =1, from Theorem 2 we obtain p is genuine tripar-
tite entanglement if [|Glly > §,/*:H /(@a; + D(daz + D).
Table II shows the genuine tripartite entanglement of

pcuz detected for different choices of ¢ by using The-
orem 2. Taking ¢ =0.068, we obtain f(x)= |G|y —

1/t fEa, ¥ T)(@as + 1) > 0,ie.,0.5169 < x < 1. The

result is better than the range of GME 0.733333 <x < 1
given in Ref. [27]. By the corollary 1 in Ref. [26], p is gen-

uinely entangled if g(2, x) = % —10 > 0,1.e.,0.728714 <

x < 1. Our conclusion outperforms these existing results in
detecting the genuine tripartite entanglement, see Fig. 2.

III. MULTIPARTITE ENTANGLEMENT CRITERION
BASED ON GSIC-POVM

Now we study the entanglement for multipartite sys-
tems. For an n-partite state p in H = Hl‘ll ® szz Q& H,f’",

TABLE I. The GME of p with respect to the coefficient 7.

we consider GSIC-POVMs {P’ I a? _, Wwith parameter a;, i =

1,2, ..., n for the subsystems. Any separable state is of the
form,
p=> up ®p}® - ®pf.
1
Denote e, =Tr(p-[;® - QL1 ®F, @11 ®--- ®

I,), whereo; = 1,2, ...,

G = (1B |+ F) @ (1B2)(rsl + F) @ - --

® (But) ¥y i + Fut) ® (1y,) (Bl + ED),
(10)

d?andi=1,2,...,n Weset

where m;, b; andc; i = 1,2, ...,

1Bi) =

n) are real numbers,

ly/) = (m;0)", (einein - ep) (1D

rr

Theorem 3. For any n-partite separable
Y up! @ pf ® -+ ® py', the inequality holds,

“ a;d?
<H<W+WMM1 +fwd

13)

and

e +bi ci
b;

€21 +bi

E bi

ci-ei+b !
b; '
(12)

state p =

112
[Keamdl

TABLE II. The genuine entanglement ranges for pgyz with dif-
ferent ¢.

Range of GME
t =0.068 0.5609 <x < 1
t =0.041 0.5594 <x <1
t =0.001 0.5584 <x <1

Range of GME
t =0.055 0.5648 <x < 1
t = 0.060 0.5448 <x < 1
t =0.068 0.5169 <x < 1
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FIG. 2. f(x) from our result (dotted blue line), g(2, x) from the Corollary 1 in Ref. [26] (solid red line).

Proof. For an n-partite separable state, from (10)—(12) we obtain

112]---
G, =

[

<Y a ] [Wmil +leb
1 i

n—1
a8 i + Edllell(v,) (Bal + F)lle
! i

n—1
< [TAB I+ IEND U B+ 1 Falle)

a2
> el +V2Ibild)

Ot,‘=1

Zzll"[((|m,|+|c,|),/d(d +f|b di)
| aid? +1
—1"[((|m,|+|c,|> d(d+1)+f|b|d>

where we have used ||A Q@ Bl|¢« = ||All« - ||B]l¢ for matrices
A and B in the first equality, |||a)(b||lx = |lla)]l - ||b)]| for
vectors |a) and |b) in the first inequality and ||A + Bl <
lAll¢ + ||Bll¢ in the first and second inequality, and (3) in the
third inequality. |

Violation of the inequality (13) implies that the multipartite
state is entangled.

Example 3. Consider the quantum state,

p= %1{ + (1 — x)|GHZ)(GHZ|, 0 < x < 1,
where |GHZ) = f(|000) + [111)). When b;=¢;=0
and m; =1, i =1,2,3, from Theorem 3, we have that

TABLE III. The entanglement ranges for p with different 7.

Range of entanglement

t =0.050 0<x<04130
t = 0.058 0<x<0.4474
t =0.068 0 <x<0.4831

(

o is entangled (not fully separable) when |G'?P3|, >
\/ 4“‘6“\/ 4“26“\/ 2+l The range of entanglement of p is
shown in Table III for different values of . Taking ¢ = 0.068,

we get f(.x) — ”G”tr _ \/4016+1 \/4a26+1\/4a36+1 - 0’ i.e.,
0 <x <0.4831. Therefore, results are better than

0 < x < 0.2 given in [28].

IV. CONCLUSION

We have studied multipartite entanglement and genuine
tripartite entanglement by using GSIC-POVMs. Based on
GSIC-POVMs we have obtained the criterion for detecting
genuine tripartite entanglement. The criteria has been shown
to be more efficient in detecting GME of some quantum states
than some existing criteria. We have also studied the entangle-
ment in multipartite quantum systems via GSIC-POVMs. Our
separability criteria are also shown to be stronger than the ex-
isting one. Our approach may highlight further investigations
on detection of other quantum correlations.
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