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Notwithstanding various attempts to construct a partial information decomposition (PID) for multiple vari-
ables by defining synergistic, redundant, and unique information, there is no consensus on how one ought to
precisely define either of these quantities. One aim here is to illustrate how that ambiguity—or, more positively,
freedom of choice—may arise. Using the basic idea that information equals the average reduction in uncertainty
when going from an initial to a final probability distribution, synergistic information will likewise be defined
as a difference between two entropies. One term is uncontroversial and characterizes “the whole” information
that source variables carry jointly about a target variable T . The other term then is meant to characterize the
information carried by the “sum of its parts.” Here we interpret that concept as needing a suitable probability
distribution aggregated (“pooled”) from multiple marginal distributions (the parts). Ambiguity arises in the
definition of the optimum way to pool two (or more) probability distributions. Independent of the exact definition
of optimum pooling, the concept of pooling leads to a lattice that differs from the often-used redundancy-based
lattice. One can associate not just a number (an average entropy) with each node of the lattice, but (pooled)
probability distributions. As an example, one simple and reasonable approach to pooling is presented, which
naturally gives rise to the overlap between different probability distributions as being a crucial quantity that
characterizes both synergistic and unique information.
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I. INTRODUCTION

Since the seminal work by Williams and Beer [1] on the
partial information decomposition (PID) and their proposed
definitions for synergistic, redundant, and unique information,
a lot of progress has been made to further clarify these notions.
While the intuitive notions seem fairly clear at first sight,
upon closer study there is some ambiguity left that has been
surprisingly difficult to eliminate, as witnessed by the many
valuable but different proposals for defining an explicit PID
[2–10]. One point of the current work is to locate where that
ambiguity may arise. The other is to question whether all
terms in the decomposition correspond to information.

There are various reasons for desiring a PID. Reference
[11] gives a nice example of two probability distributions
over three variables that, although produced by clearly distinct
mechanisms, cannot be distinguished by just using the stan-
dard mutual information between the different combinations
of the three variables. But since those two distributions can be
distinguished by using a PID, this demonstrates an immediate
use of that decomposition as revealing different underlying
mechanisms. In that role, a PID may help our understanding
of complex networks [12,13], such as neural networks, either
involving actual neurons or artificial ones [14–16].

Moreover, synergistic information may explain emergence
[17,18] as implementing the adage that “the whole is more
than the sum of its parts.” Perhaps a similar idea may even
explain or define consciousness [19]. For a perspective on the
uses and prospects of PID, see Ref. [20], and for discussions
of important ideas that are made use of in the following, see
Refs. [3,5,21]. For earlier definitions of synergy and redun-
dancy in the context of neural encoding outside the framework
of PID, see Refs. [22,23].

Here we propose a new perspective. Just like Ref. [24] went
back to basics about part-whole relationships in order to get a
fundamental idea of synergistic information, here we return
to basics about information. Within Shannon’s theory [25,26],
information is defined as the average reduction in uncertainty
upon changing from an initial probability distribution to a final
distribution. Information is then always of the generic form

Information = Hinit − Hfinal (1)

as a difference between two (averaged) entropies. Moreover,
information is always about something, and in our case the
something will be represented by a target variable T . The
uncertainty about T taking on a particular value t is quantified
as log(1/P(t )), with the logarithm taken in base 2, and with
P(t ) the probability of finding the value t . This uncertainty is
averaged over all possible values T can take and over other
initial and final variables, respectively, thus yielding expres-
sions for the entropies Hinit and Hfinal in Eq. (1). Typically, the
relation between final and initial probability distributions is
such that information is nonnegative.

Using this basic idea, in order to define synergistic in-
formation, we will need, besides the joint distribution, a
single distribution aggregated from multiple marginal dis-
tributions. To define such a distribution it seems easiest to
use the language and techniques of “pooling distributions”
for combining different expert opinions into one opinion (by
compromise if not by consensus) [27–30]. This language,
although not necessary, is convenient for setting up notation,
as explained in Secs. II A and II B. In Sec. II C we define
synergistic information in terms of a generic pooled probabil-
ity distribution. We provide a side-by-side comparison of our
PID with one concrete measure, taken from Ref. [3], as both
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the analogies and the differences are clear and illuminating.
Another comparison can be made by setting up an alterna-
tive PID by defining redundant information (as a difference
between two averaged entropies) first.

The idea of pooling will help us define (in Sec. II D) a
lattice [31] underlying the structure of the PID for multiple
variables, which differs from the redundancy-based lattice
used in the original Williams-Beer work [1].

Concrete ways of pooling probability distributions are dis-
cussed in Sec. III. For one convenient and popular way of
pooling, synergistic information and unique information ac-
quire natural interpretations, as shown in Sec. III B. Examples
illustrating the consequences for a PID based on pooling are
given in Sec. IV.

II. SETUP AND NOTATION

A. Experts and their opinions

We may use the following scenario to set terminology and
notation. Capital letters indicate variables, lower-case letters
indicate their possible values. Entropies and information are
expressed in units of bits.

Suppose we are interested in a variable T . We hire several
experts (or agents), Alice, Bob, Charlie, ...to help us predict
which of possible (discrete) values t1, t2, . . . T may take on
under specific conditions. More precisely, each expert X is
expected to report to us a probability distribution PX (T ).

Each expert has their own laboratory and each performs
their own measurements of a single variable, which is indi-
cated by the agent’s initial A, B,C, . . .. Each expert measures
how their variable correlates with T . That is, each expert
estimates a probability distribution PX (T ) := P(T |X ) for
X = A, B,C, . . . . [32]. Expert X ’s uncertainty regarding T
is quantified by the Shannon entropy [25] of the conditional
distribution

H{X } = H (T |X ) =
∑

x

∑

t

P(x, t ) log(1/P(t |x)). (2)

The subscript uses set notation, this being convenient for the
general definition of the PID. In this case, we have one set
containing one expert, X . We may make this definition of
uncertainty operational by imagining that we impose a fine
on expert X equal to

FineX (t ) = log(1/PX (t )) (3)

if the value t actually occurs. (The concept behind this op-
erational definition goes by the name of “scoring rules” and
one important feature of this specific rule is that the expert is
forced to report their best (or “true”) probability distribution
if they want to minimize their fine [33].)

We assume here consistency among all experts, in that the
unconditioned distribution for T is identical for all agents. In
other words, we assume here that there is a joint distribution
P(T , A, B,C . . .) from which all other distributions can be
obtained by marginalizing over some or all of the variables
A, B,C . . . [34]. In particular, we may define

P∅(t ) =
∑

a

PA(t |a) =
∑

b

PB(t |b) = . . . (4)

with the empty set in the subscript indicating we need no
expert opinions for this probability distribution. The uncer-
tainty we have before learning from any expert is likewise
denoted by

H∅ = H (T ). (5)

To quantify how much information each expert provides to us
individually we use the standard measure for mutual informa-
tion

I{X } = H∅ − H{X }, (6)

in line with the basic definitional form (1) for information.
Operationally, this equals the amount of money the expert
saves by reducing their fine, by reporting their probability
distribution PX rather than P∅.

Our experts may collaborate, as follows. Each expert,
say, Alice, Bob, and Charlie, still just measures their own
variable, but by communicating with each other and synchro-
nizing their measurements, they may find the joint distribution
P(T , A, B,C). They can thereby jointly report P(T |ABC).
The mutual information between the joint variables and T is
then denoted by I{A,B,C}:

I{A,B,C} = H∅ − H{A,B,C}. (7)

Operationally, this equals the amount of money the three
experts save themselves by collaborating. The second term
involves a single probability distribution for each set of given
values a, b, c of the variables A, B,C.

B. Pooling experts’ opinions

There is another way of producing a single distribution for
T by pooling the individual experts’ “opinions” P(T |x) for
x = a, b, c. One very simple (albeit inadequate) way to do
this, would be to use the average distribution

P{A},{B},{C}(T ) = 1
3 [PA(T ) + PB(T ) + PC (T )], (8)

but, clearly, there are many more. The operational idea is that
we ask the three experts to report to us a single distribution,
even if they never collaborated. The rule of combining dif-
ferent distributions P(T |X ) should be symmetric between all
experts, in order to conform to standard axioms required for
a PID. Note that the subscript now contains three sets, con-
taining one expert each, reflecting that the pooled distribution
makes use only of single-expert opinions PX (T ). Once the
idea of pooling is in place we can easily extend it to differ-
ent types of combinations of experts. For example, P{A,B},{C}
would be constructed out of the joint distribution produced
by Alice and Bob collaborating and Charlie’s single-expert
distribution PC .

To make a distinction between the different types of combi-
nations of experts it may be useful to talk about collections of
sets of experts. For example, {A, B}, {C} denotes a collection
of two sets, one set containing two experts, the other contain-
ing one expert.
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C. Synergistic, unique, and redundant information

1. Definitions

Now let us first focus on just a pair of experts, Alice and
Bob, and in what way their pooled distribution P{A},{B}(T )
determines the PID. We first display the usual PID (sticking
with standard notation for the moment) for how two variables
carry information in different ways about T :

I{A,B} = Iunq A\B + Iunq B\A + Ired A&B + Isyn A&B,

I{A} = Iunq A\B + Ired A&B,

I{B} = Iunq B\A + Ired A&B. (9)

In this notation, Iunq A\B indicates information unique to Alice
w.r.t. Bob, and Ired A&B stands for the information redundantly
encoded in (i.e., shared by) both Alice’s and Bob’s probability
distributions PA(T ) and PB(T ), respectively.

We define synergistic information as the difference be-
tween two entropies:

Isyn A&B = H{A},{B} − H{A,B}, (10)

as it captures how the whole (Alice and Bob collaborating and
producing a joint distribution) is more than the sum of its parts
(Alice and Bob pooling their individual distributions). But this
then determines unique information as

Iunq A\B = H{B} − H{A},{B},

Iunq B\A = H{A} − H{A},{B}. (11)

This is again a difference between two entropies, and it gives
the unique information that one expert possesses but the other
does not. The operational definition is that it equals the money
one expert can save for the other by pooling.

Finally, given a pooled distribution P{A},{B} the redundant
information is then given by

�Ired A&B = H{A}{B} + H∅ − H{A} − H{B}. (12)

This is not a difference between two entropies and it involves
four (rather than two) different sorts of probability distribu-
tions over T . It can, of course, be written as a difference
between two information quantities. This is reflected in the
use of the symbol �Ired A&B. This notational device has been
used before, for example in Refs. [22,23], to carefully dis-
tinguish different types of informational quantities and define
synergy and redundancy in neural coding (see remark after the
next equation).

We may also note that the above definition of redundant in-
formation is very similar to that of coinformation [35] {(with
notation changed here by including the � symbol)

�Ico A&B = H{A,B} + H∅ − H{A} − H{B}, (13)

which features the joint distribution rather than the pooled
distribution. It is well known that this quantity can take on
both negative and positive values. This quantity, in fact, has
been identified with synergy and it was denoted then as �Isyn

in [23].
In order to see more completely which quantities are al-

ways differences between two entropies and which one may
not, let us now also consider an alternative way (indicated by
using primed symbols) of defining the PID by first defining
redundant information as a difference between two (average)

entropies. We use H∅ as the higher entropy and then need an
entropy Hred A&B, symmetric between A and B, that derives
from some distribution that contains only information that is
common to both A and B, such that

I ′
red A&B = H∅ − Hred A&B. (14)

We do not need to specify anything further in order to see that
the unique information would then be given by

I ′
unq A\B = Hred A&B − H{B},

I ′
unq B\A = Hred A&B − H{A}. (15)

Just as before, unique information is then a difference between
two entropies. On the other hand, the synergystic information
would contain four terms and we would write

�Isyn A&B = −H{A,B} − Hred A&B + H{A} + H{B}. (16)

In this case, then, synergy would be the odd one out, as being
the only quantity in the PID that is not a difference between
two entropies. Unique information is special, in that it is truly
information in either of these two cases.

2. Relation to the BROJA measure

There are some similarities and contrasts between pooling
and the way the BROJA measure—named for the authors of
[3]—is defined. For the BROJA measure, one first considers
all joint distributions Pposs(T , A, B) that are consistent with
the two marginal distributions P(T , A) and P(T , B). One then
maximizes over all possible joint distributions the entropy of
Pposs(T |A, B). Denote that maximum by H̃{A},{B}. The sub-
script here reminds us the maximum is determined by the
two marginal distributions. Synergistic, unique, and redundant
information are then given by

Ĩsyn A&B = H̃{A},{B} − H{A,B},

Ĩunq A\B = H{B} − H̃{A},{B},

Ĩunq B\A = H{A} − H̃{A},{B},

�Ĩred A&B = H̃{A}{B} + H∅ − H{A} − H{B}. (17)

Both the analogy and the difference between IBROJA and Ipool

are obvious. The definitions have exactly the same form as
Eqs. (10)–(12), but the pooling distribution is replaced by
the “worst” [highest-entropy] possible joint distribution in
all these definitions. One consequence is that the redundant
information here too is defined in terms of four different types
of probability distributions, not just two.

We may also note that various inequalities derived in [3]
(see Lemma 3, in particular) do not apply to our measures,
because the assumption underlying that Lemma is that such
measures are derived from joint distributions consistent with
the marginals. The pooling distribution is not necessarily con-
sistent with the marginals, as it forms a compromise instead.
For example, for the simple “geometric average” pooling rule
mentioned below, in Eq. (21), averaging over variable B would
give us the square root of the probability distribution over A,
renormalized.
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3. Nonnegativity of information

The original idea of the PID was to decompose mutual
information into nonnegative quantities, all interpretable as
information. Taking information as a reduction in uncertainty
(entropy) that accompanies going from initial to final prob-
ability distributions for the target variable T , we saw that
quite generically one of the four quantities introduced in
(9) is not information. We also saw that unique information
generically is indeed a difference between two entropies. As
such, a requirement on unique information is that it be non-
negative. (In our case, synergistic information is automatically
non-negative).

For our definition of unique information (11) the question
of nonnegativity boils down to the question whether Alice and
Bob can pool in such a way as to ensure that their fine is not
more than either Alice’s or Bob’s individual fine. And indeed,
they can, rather trivially: they could choose to report either al-
ways Alice’s distribution or always Bob’s, whichever one has
the lowest uncertainty. Thus, one (easily met) requirement on
the pooled distribution P{A},{B} is that its expected uncertainty
always be less than or at worst equal to the minimum of H{A}
and H{B}. That is, we require

H{A},{B} � min(H{A}, H{B}). (18)

Referring back to the very simple way of pooling by taking
the average distribution, that simple method does not fulfill
this criterion, as is easily checked.

In this context, given that our definition of redundant in-
formation is not, strictly speaking, information, we do not
require it to be nonnegative. In fact, as we will see below in
the examples section, it can be negative for certain choices of
pooling, and then it could be made positive only by increasing
the uncertainty in the pooled distribution, since the other three
entropies and probability distributions featuring in (12) are
fixed. That ad-hoc fix, though, is counter to the meaning
of synergy: the whole would be more than the sum of its
parts, but only because we do not do our best to get as much
information as we can from the parts.

For two source variables A and B it may well be that the in-
tuitions behind unique, redundant, and synergistic information
(as defined within PID) are incompatible. That is, whenever
one defines one of the three quantities, the remaining two
are fixed, but that particular way of fixing their magnitudes
may not be in agreement with what the remaining two terms
are supposed to mean. The idea that not all quantities are
expressible as a difference between two entropies may be
taken as an indication in that direction as well.

D. Pooling-based lattice

The original work on PID [1] argued for a particular lattice
underlying the PID structure. That is, the concept of redundant
information naturally leads to a partial order, as well as that
of a unique least upper bound and a unique greatest lower
bound that can be assigned to every pair of elements. One idea
behind the construction of a lattice, formulated in terms of our
experts from Sec. II, is as follows: if we have a collection of
sets of experts, and within that collection, one set is a subset
of another, the redundant information is already present in

the subset, and so we can delete the superset. The lattice of
collections that thus remains is the redundancy-based lattice.

Here we use pooling instead of redundancy as our fun-
damental notion, and this leads to the opposite approach: if
within a collection of sets of experts, one set is a subset of
another, then we should use the superset when we pool, not
the subset. So we delete the subset from our collection. The
collections remaining form a pooling-based lattice.

For example, for three variables (or experts) neither lattice
contains the collection {A, B}, {A,C}, {B}. In the redundancy-
based lattice, the set {A, B} is removed; in the pooling-based
lattice, the set {B} is removed.

For two elements in the pooling-based lattice, for example,
{A} and {B,C}, one defines the least upper bound and the
greatest lower bound as follows. The least upper bound is
the collection {A}, {B,C}, which corresponds to pooling the
probability distributions from Alice with that of Bob and
Charlie jointly. The information thus obtained is larger or
equal to that of the maximum obtainable from either Alice,
or by Bob and Charlie jointly. The greatest lower bound is the
empty collection ∅. The information obtainable from Alice,
and from Bob and Charlie jointly, are both equal to or more
than that obtainable from not consulting any expert. There is
no larger collection of experts with that property.

With every node of the lattice we associate probability
distributions (over T , one distribution for each of the values
the other variables in the collection may take) and a num-
ber, namely their average entropy. The empty set is the least
element in the pooling-based lattice, and we associate the
distribution P∅(T ) and its entropy H∅ with it. References
[10,36] derive the same lattice from different considerations.

III. POOLING PROBABILITY DISTRIBUTIONS

For two variables the PID depends on the probability
distributions P{a,b}(T ) two experts, Alice and Bob, agree to
use if all they know are the marginal distributions and the
corresponding conditional distributions PA(T ) = P(T |A) and
PB(T ) = P(T |B).

There are several options, some involving optimizations,
others simpler. In most examples a simple geometric averag-
ing procedure is used to define the pooled distribution. When
that procedure fails a more general one-parameter family
of pooled distributions is used and optimized over that one
parameter.

A. Minimum goal

We consider here a simple example where some previous
measures of synergy disagree. But let us first see what the
essence is of an even simpler example where there is con-
sensus on synergistic information. If A and B are random
bits and T = A ⊕ B, then everyone agrees there is only one
bit of synergistic information present. The reason is simple,
neither PA(T ) nor PB(T ), which are identical, contains any
information, and only the joint distribution yields the full one
bit of information through P(T |A, B).

In contrast, consider the example from Table I. The two
variables A, B are binary, the target variable is ternary, and
there are only three possible combinations of values with
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TABLE I. Simple example (5A from [5]) in which the marginal
distributions P(T , A) and P(T , B) together contain as much informa-
tion about the target variable as does the joint distribution P(T , A, B).
In this case, the BROJA measure agrees exactly (but via a different
mechanism, see Sec. II C 2) with the pooling measure. In particular,
there is no synergistic information.

A, B,T Probability

0,0,0 1/3
0,1,1 1/3
1,0,2 1/3

I∂ IBROJA Iccs Imin Ipool

syn A&B 0 0.138 0.333 0
unq A\B 0.667 0.528 0.333 0.667
unq B\A 0.667 0.528 0.333 0.667
red A&B 0.252 0.390 0.585 0.252

nonzero probability. The interesting (debatable) situation oc-
curs when both A and B have the value zero. We are certain
in this case of the value of T , even without knowing the
joint distribution. This is because each variable eliminates one
possibility, leaving just one value of T to occur with 100%
probability. There is no synergistic information here since the
joint distribution P(A, B, T ) cannot give us more information
than we can obtain from the marginals P(A, T ) and P(B, T ).

Some measures (in particular, from those measures that we
compare to later on in Sec. IV, we find that Imin from [1] and
Iccs from [5]) ascribe a nonzero amount of synergistic infor-
mation to this case. On the other hand, the BROJA measure
(mentioned above) does yield zero synergistic information.

What the simple example means for our pooling rules is
twofold:

(1) If for some combination of the values of the vari-
ables all marginal distributions are identical, then the pooled
distribution for that combination will have to equal that distri-
bution.

(2) If for a particular combination of variables one of the
marginal distributions indicates a certain value of T appears
with 0% probability, then this should be true for the pooled
distribution as well.

These are taken as two necessary (although by no means
sufficient) requirements on pooling, in addition to the require-
ment (18) we found above.

B. Simple pooling rules

There are a few different rules that have been proposed for
pooling expert opinions, with different circumstances leading
to different conclusions about which way is appropriate. (See
Refs. [27–30] for background information about this topic).

Here are two ways of pooling that seem inapplicable
to our specific case, where each expert opinion P(T |X )
for X = A, B,C, . . . is derivable from a joint distribution
P(T , A, B,C, . . .). First, there is the (weighted) average

P(T |A, B,C, . . .) =
∑

X

wX P(T |X ), (19)

with wX > 0 and
∑

X wX = 1. This may be correct when ex-
perts may contradict each other and a compromise is needed.
But in our case it fails the second rule.

Another rule would be to take the product,

P(T |A, B,C, . . .) = �X P(T |X ). (20)

This would apply to a case where we try to estimate the
average value of T and we have independent data that,
nonetheless, do estimate the same average. Then it is true
that the more data we have the better our average should be
determined. The variance in the distribution of possible values
for the average should decrease with more data. But this rule
violates our first requirement on pooling.

1. Geometric average

The third rule does fit both our pooling requirements and,
moreover, has other advantages, which, however, do not con-
cern us here [27–30]. Although the following definition used
here can easily be extended to more than two probability dis-
tributions (or agents) we focus here on the case of two agents,
Alice and Bob, first. (See the Appendix about the extension to
more than two experts). We define for each pair of values a, b
for A, B the geometric average:

P{A}{B}(T |a, b) =
√

P(T |a)P(T |b)/Zab, (21)

where the normalization factor

Zab =
∑

t

√
P(t |a)P(t |b) (22)

is needed to define a proper probability distribution. Zab is
an overlap between two distribution functions, and is in fact
the Bhattacharyya measure [37]. It lies between zero (for
orthogonal distributions, which have no common support) and
one, for identical distributions.

The expected value of Alice’s and Bob’s fine is

H{A}{B} = 1
2 H{A} + 1

2 H{B} − B, (23)

with the nonnegative quantity B given by

B =
∑

a

∑

b

P(a, b) log(1/Zab), (24)

where

P(a, b) =
∑

t

P(t, a, b) (25)

is the joint distribution for a, b. Note that an average fine equal
to the sum of the first two terms can be obtained by the agents
simply by reporting either PA or PB with 50% probability. That
is why we may consider B as a “bonus,” extra money saved by
Alice and Bob when they pool their probability distributions
instead of randomly choosing PA or PB.

Note that Alice and Bob cannot determine the value of
the bonus B as long as they do not know the joint distribu-
tion P(a, b). They could still determine the minimum bonus
by minimizing over all possible joint distributions Pposs(a, b)
consistent with P(a) and P(b). That is one way for them to see
if the bonus is large enough to satisfy the inequality (18), i.e.,
whether

B � 1
2 |H{A} − H{B}|. (26)
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If one needs to define a PID for a system for which one actu-
ally knows all probability distributions, one could be satisfied
with requiring (26) to hold for the actual distribution P(a, b).

Now that we have an expression for H{A}{B} we can write the
following relation between unique information and the bonus,

Iunq A\B + Iunq B\A = 2B, (27)

which neatly quantifies the intuition that unique information is
determined by the extent to which the probability distributions
P{A} and P{B} differ.

The individual unique information quantities are given by

Iunq A\B = B + 1
2 (H{B} − H{A}),

Iunq B\A = B + 1
2 (H{A} − H{B}), (28)

which are nonnegative thanks to the requirement (26).

2. One-parameter family

This method of pooling is called “logarithmic” and gener-
alizes easily to using pooling distributions of the form

P(w)
{A}{B}(T |a, b) = P(T |a)wP(T |b)1−w/Zw,ab, (29)

for 0 � w � 1, with normalization

Zw,ab =
∑

t

P(t |a)wP(t |b)1−w. (30)

The expected fine can be written as

H{A}{B} = wH{A} + (1 − w)H{B} − Bw (31)

with

Bw =
∑

a

∑

b

P(a, b) log(1/Zw,ab), (32)

which is nonnegative, as can be shown using the Rogers-
Hölder’s inequality [38]. (For the simpler case of w = 1/2
adopted above, this inequality reduces to the more straightfor-
ward Cauchy-Schwarz inequality),

In general, we recommend using the one-parameter family
(29) of pooling distributions if the simple geometric aver-
age (w = 1/2) violates condition (18). One way to choose
the weight w would be to make it dependent on the en-
tropies H{A} and H{B}. For example, one might choose w =
2−H{A}/(2−H{A} + 2−H{B} ), thus giving more weight to the lower-
entropy distribution. Another way is discussed next. It is
important to note that there is always a value of w such that all
our requirements on the pooling distribution are met, namely
those listed at the end of Sec. III A and (18).

C. Optimized pooling

Denote the set of possible joint distributions Pposs(T , A, B)
consistent with PA and PB as �P. Denote the set of all joint
probability distributions by �. That is, �P ⊂ �. If Alice and
Bob choose a distribution ω(T , A, B) from �, then, relative
to a possible distribution Pposs(T , A, B) their expected fine is
given by

F (ω, Pposs) := −
∑

a

∑

b

∑

t

Pposs(t, a, b) log
ω(t, a, b)

ω(a, b)

TABLE II. Comparison of a few PIDs for the AND example. Ipool

is close to Idep, and to a lesser degree to Iccs, but clearly disagrees with
the BROJA measure. See Table 5 from Ref. [9].

A, B,T Probability

0,0,0 1/4
0,1,0 1/4
1,0,0 1/4
1,1,1 1/4

I∂ IBROJA Iccs Idep Ipool

syn A&B 0.500 0.292 0.270 0.250
unq A\B 0 0.208 0.230 0.250
unq B\A 0 0.208 0.230 0.250
red A&B 0.311 0.104 0.082 0.061

with ω(a, b) = ∑
t ω(t, a, b). They would like to minimize

their fine, although they do not know which possible distri-
bution Pposs ∈ �P they have. They could find the worst-case
distribution Pposs for each choice of ω, and then minimize over
all possible choices of ω. Their “best” fine would then be

Fbest = min
ω∈�

max
Pposs∈�P

F (ω, Pposs). (33)

A simpler version of this idea would make use of a smaller
subset of all distributions ω. For example, they may restrict to
the type of logarithmic pooling distributions discussed above,
but with arbitrary weights:

ω(t, a, b)

ω(a, b)
= P(t |a)wP(t |b)1−w (34)

for all 0 � w � 1, and then perform the minimization just
over the parameter w. In the next ection with examples, we
will display one case where w = 1/2 violates the requirement
(26). That is, the pooling distribution

√
P(T |a)P(T |b)/Zab is

inferior to the better one of P{A} and P{B}. But minimization
over w leads to a pooling distribution of the form (29) superior
to both P{A} and P{B}, which does satisfy all our requirements.

IV. EXAMPLES

In the following, Ipool is based on logarithmic pooling with
weight w = 1/2, unless stated otherwise.

A. Standard examples

Many examples of distributions have been tested on many
different PIDs. Here we just use a small selection of three
examples, on a small selection of PIDs to compare the PID
that results from the simplest pooling strategy. The results
for other measures used here are all conveniently found in
Table 5 from Ref. [9]. One point of that table was to show how
various measures clearly disagree with the original measure
Imin from [1], and it turns out the same is true for Ipool. For the
TWO BIT example, Ipool agrees with all three measures, and
so is not displayed here. The comparisons for the NOT TWO
example are similar to those for AND, and are for that reason
not displayed here either.
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TABLE III. Comparison of a few PIDs for the DIFF example.
Ipool agrees exactly with Idep and IBROJA, but disagrees with Iccs. See
Table 5 from Ref. [9].

A, B,T Probability

0,0,0 1/4
0,0,1 1/4
0,1,0 1/4
1,0,1 1/4

I∂ IBROJA Iccs Idep Ipool

syn A&B 0 0.085 0 0
unq A\B 0.189 0.104 0.189 0.189
unq B\A 0.189 0.104 0.189 0.189
red A&B 0.123 0.208 0.123 0.123

The three examples we do consider are in Tables II, III, and
IV. One point here is to show that there is always an example
where Ipool disagrees with a given measure. On the other hand,
for those same examples there also are other measures Ipool

agrees with, either exactly or approximately.

B. When the geometric average fails

For the example of Table V (found numerically, then
simplified to make all percentages integers) the pooling dis-
tribution obtained by taking the geometric average of Alice’s
and Bob’s individual distributions fails to meet requirement
(26) or, equivalently, (18).

That is, Alice and Bob would be better off (i.e., incur a
smaller fine on average) simply always reporting the more
informative individual distribution, in this case Bob’s [with
an average fine (entropy) of 0.321 bits vs 0.472 bits for
Alice’s]. They would be aware of the flaw in the simple
pooling method, and so could indeed report Bob’s distribution
P{B}(T ). In that case, the unique information from Alice would
be identically zero (as she does not contribute anything to the
pooling distribution).

However, by considering the logarithmic pooling rule with
arbitrary unequal weights, they would find that by using a
weight w ≈ 0.12 for Alice and hence a weight 1 − w ≈ 0.88
for Bob, they would do even better, as displayed in the

TABLE IV. Comparison of a few PIDs for the PNT. UNQ. exam-
ple. Ipool agrees with Iccs. See Table 5 from Ref. [9].

A, B,T Probability

0,1,1 1/4
1,0,1 1/4
0,2,2 1/4
2,0,2 1/4

I∂ IBROJA Iccs Idep Ipool

syn A&B 0.500 0 0.250 0
unq A\B 0 0.500 0.250 0.500
unq B\A 0 0.500 0.250 0.500
red A&B 0.500 0 0.250 0

TABLE V. Comparison of two different logarithmic pooling dis-
tributions.

A, B,T Probability

0,0,0 0.50
1,0,0 0.39
1,1,0 0.01
0,0,1 0.04
0,1,1 0.04
1,0,1 0.01
1,1,1 0.01

I∂ Ipool, w = 1/2 Ipool, w = 0.12

syn A&B 0.051 0.026
unq A\B −0.023 0.002
unq B\A 0.108 0.133
red A&B 0.040 0.015

Table V. Alice would thus contribute a very small but nonzero
amount of unique information.

C. Negative �Ired A&B

Table VI presents an example where the simple pooling
method leads to negative redundant information, while still
meeting requirement (26) or, equivalently, (18). As mentioned
before, this can be seen as a consequence of that quantity
depending on four different probability distributions, which
means its interpretation as “information” is not straightfor-
ward. The example is called ReducedOr in [5] where it is
attributed to Joseph Lizier. The point of that example was
to locate a defect in the BROJA measure. That is, the exam-
ple clearly contains unique information from both variables,
even though the BROJA measure (as well as the original Imin

measure from Ref. [1]) assigns zero unique information. In
fact, when either variable takes on the value one, it provides
the unique information that the target variable must have the
value one.

Our pooling measure agrees with that verdict, but the main
reason for displaying this example here, is that the shared (or
redundant) information is negative. Recalling the expression
for redundant information, we could make it equal to zero

TABLE VI. Comparison of a few PIDs for the ReducedOr exam-
ple discussed in [5]. Ipool agrees with Iccs against IBROJA that there is
nonzero unique information in this case.

A, B,T Probability

0,0,0 1/2
1,0,1 1/4
0,1,1 1/4

I∂ IBROJA Iccs Ipool

syn A&B 0.69 0.38 0.29
unq A\B 0 0.31 0.40
unq B\A 0 0.31 0.40
red A&B 0.31 0 −0.09
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only in an ad-hoc manner, by increasing the entropy of the
pooled distribution by 0.09 units (and then all four quantities
would numerically agree with Iccs, as is easily checked). Since
increasing that uncertainty would correspond to Alice and
Bob increasing their fine, this would go against the spirit of
pooling. In any case, as noted several times, the fact that
�Ired A&B is not simply a difference between two entropies,
and is thus not information, also (arguably) eliminates the
requirement for it to be nonnegative. We thus accept here the
result displayed in Table VI.

V. CONCLUSIONS

Within the context of the partial information decomposi-
tion (PID, [1]), synergistic information is meant to quantify
how much “the whole” is more than “the sum of its parts.”
In the case of two source variables A and B that provide
information about a target variable T , we identified here “the
parts” with marginal probability distributions P(A, T ) and
P(B, T ) and “the whole” with the joint probability distribution
P(A, B, T ). Synergistic information is then the average reduc-
tion in uncertainty (as measured by entropy) upon using the
joint distribution rather than a specific distribution aggregated
(or pooled) from the two marginal distributions for making
predictions about T .

This idea of pooling [27] was shown to lead to a lat-
tice underlying the PID, which differs from the original
redundancy-based lattice used by Williams and Beer in their
original work proposing the PID [1]. Each element of the
lattice is a collection of sets of the variables, with no set in
the collection being a subset of another. With each element
of the lattice we can associate pooled probability distribu-
tions, their average entropy, and synergistic information. For
example, given the collection consisting of {A, B} and {C}, we
combine P(T |A, B) and P(T |C) into pooled distributions, and
calculate their average entropy (averaged over all variables
A, B,C, T ). The difference between the average entropy of
the pooled distributions and the entropy of the full distribution
P(T |A, B,C) is defined to equal the synergistic information
associated with that element of the lattice.

We considered logarithmic pooling as a simple and con-
venient pooling method which can be optimized to provide
the “best” logarithmic way to pool information. It provides us
with sensible definitions of synergistic information as well as
of unique information, both satisfying the basic definition of
information as a reduction in uncertainty when switching from
one type of probability distribution to a better one. Inevitably,
“redundant information” then involves four different types of
probability distributions and thus is not of that basic form. The

possible pooling distributions (29) are parametrized by just a
single parameter w, and the only requirement on w is that
the condition (18) be fulfilled. That condition is equivalent
to requiring unique information to be nonnegative. There is
always such a value for w.

Other (more complicated) ways of pooling distributions
are possible, and depending on one’s definition of the “best”
way to do this, one finds different measures of synergistic
information and hence, of unique information. This free-
dom of choice illustrates the ambiguity in the definition of
a PID.

APPENDIX: MORE THAN TWO SOURCES

The idea of logarithmic pooling is easily extended to more
than two experts, as follows. For experts A, B,C, . . . we may
define

P{A},{B},{C},...(T ) = PA(T )wA PB(T )wB PC (T )wC . . . , (A1)

where the positive weights wA,wB,wC, . . . add up to unity.
For three experts one may wonder whether to choose the
weights equal, as we did for two experts by default. There is
a good reason not to always do this: once we have calculated
the redundant information shared amongst pairs of experts,
we may then penalize such redundancy by lowering the sum
of the weights for such pairs. Thus, if Alice and Bob’s infor-
mation is purely shared, and Charlie’s information is unique
relative to Alice and Bob, then it makes sense to set wC = 1/2
and wA = wB = 1/4, for example. That is, Alice and Bob
together are assigned the same weight as Charlie. Since this
case provides one extreme, we may set the general rule for
three experts:

1
4 � wk � 1

2 , (A2)

where within this range there is freedom depending on how
one takes into account the pairwise redundant and unique
information.

For more than three experts (say, Ne of them) it be-
comes more complicated to design general rules for assigning
weights. The upper bound of 1/2 still holds (and would be
correct only if all experts but one provide only shared infor-
mation: that one expert gets the weight 1/2; the other Ne-1
experts share equally the remaining weight) and we may thus
generalize (A2) as

1

2(Ne − 1)
� wk � 1

2
. (A3)

The idea of pooling for more than two experts still leads to
a lattice, as explained before in Sec. II D.
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