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We consider the totally asymmetric simple exclusion processes on quenched random energy landscapes. We
show that the current and the diffusion coefficient differ from those for homogeneous environments. Using
the mean-field approximation, we analytically obtain the site density when the particle density is low or high.
As a result, the current and the diffusion coefficient are described by the dilute limit of particles or holes,
respectively. However, in the intermediate regime, due to the many-body effect, the current and the diffusion
coefficient differ from those for single-particle dynamics. The current is almost constant and becomes the
maximal value in the intermediate regime. Moreover, the diffusion coefficient decreases with the particle density
in the intermediate regime. We obtain analytical expressions for the maximal current and the diffusion coefficient
based on the renewal theory. The deepest energy depth plays a central role in determining the maximal current
and the diffusion coefficient. As a result, the maximal current and the diffusion coefficient depend crucially on
the disorder, i.e., non-self-averaging. Based on the extreme value theory, we find that sample-to-sample fluctu-
ations of the maximal current and diffusion coefficient are characterized by the Weibull distribution. We show
that the disorder averages of the maximal current and the diffusion coefficient converge to zero as the system size
is increased and quantify the degree of the non-self-averaging effect for the maximal current and the diffusion
coefficient.
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I. INTRODUCTION

The one-dimensional asymmetric simple exclusion process
(ASEP) is a pedagogical model for nonequilibrium systems
[1]. In particular, it describes various nonequilibrium phe-
nomena such as traffic flow [2] and protein synthesis by
ribosomes [3–5]. The ASEP is a stochastic process where par-
ticles with hard-core interactions diffuse on a one-dimensional
lattice. The ASEP can be mapped to a model of interface
growth in the Kardar-Parisi-Zhang (KPZ) universality class
[6]. Hopping to the right site in the ASEP corresponds to an
increase in the interface. The distribution of interface height
was solved [7–9]. Using the weak asymmetric limit of the
ASEP, the KPZ equation was rigorously solved analytically
[10,11]. Moreover, the large deviation function of the time-
averaged current was obtained [12,13]. The ASEP has been
extended in various ways such as Brownian ASEP [14], non-
Poissonian hopping rates [15], and disordered hopping rates
[16–24]. When particles only hop to unidirection, it is called
the totally ASEP (TASEP). For TASEPs, it is well known that
the current-density relation is given by [1]

J = 1

τ
ρ(1 − ρ), (1)

where J is the particle current, ρ is particle density, and τ

is the inverse of the jump rate, i.e., the mean waiting time.
Moreover, in Refs. [25], the variance of the tagged particle
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displacement, δxt , in time t is derived as a function of ρ:〈
δx2

t

〉 − 〈δxt 〉2

t
∼

√
π

2τ

(1 − ρ)3/2

(Lρ)1/2
(2)

for L → ∞ and t → ∞, where 〈·〉 is the ensemble average
and L is the system size.

Effects of disorder in the ASEP have been investigated for
decades [16–24]. Due to the disorder in the ASEP under the
periodic boundary condition, a current-density relation devi-
ates from that in the ASEP with a homogeneous jump rate,
i.e., Eq. (1). More precisely, it becomes flat and the current
is maximized on the flat regime [16,18–23]. Moreover, in the
flat regime, the low- and high-density phases coexist. In the
ASEP on networks, the flat regime also exists [26–28]. When
the particle density is near 1/2, the TASEP with short-ranged
quenched disordered hopping rates does not belong to the
KPZ universality class but leads to a new universality class
[24]. Under the open boundary condition, the first-order phase
transition point between the low- and high-density phases
depends on the disorder [17].

Random walks in heterogeneous environments show
anomalous diffusion. The heterogeneous environment is char-
acterized by a random energy landscape. There are two
types of random energy landscapes. One is an annealed en-
ergy landscape, where the landscape randomly changes with
time. The continuous-time random walk is a diffusion model
on the annealed energy landscape, and its mean-squared
displacement shows anomalous diffusion when the mean
waiting time diverges [29]. The other is a quenched energy
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landscape, where the landscape is configured randomly and
does not change with time. The quenched trap model (QTM)
is a diffusion model on the quenched energy landscape [30].
The mean-squared displacement of the QTM on an infinite
system shows anomalous diffusion when the mean waiting
time diverges [30]. In the QTM on a finite system, the
diffusion coefficient exhibits sample-to-sample fluctuations
[31–33]. The diffusivity of interacting many-body systems on
the annealed energy landscape has been investigated [34,35].
However, the diffusivity of interacting many-body systems on
the quenched energy landscape has never been investigated.
Such a heterogeneous environment is realized experimentally.
In protein synthesis by ribosomes, the codon decoding times
become heterogeneous due to the heterogeneity of transfer
RNA concentration [5]. In other words, the distribution of the
waiting time depends on the site, i.e., ribosomes diffuse on
the quenched random environment. There are other diffusion
phenomena in such heterogeneous environments, such as train
delays, proteins on DNA [36,37], and water transportation in
aquaporin [38].

In this paper, we investigate sample-to-sample fluctuations
of the diffusivity for the TASEP on a quenched random energy
landscape. In our previous study, we show sample-to-sample
fluctuations of the current [39]. When an observable does not
depend on the disorder realization, it is called self-averaging
[30]. In the QTM, it is known that the diffusion coefficient
[31–33], the mobility [33], and the mean first passage time
[40] are non-self-averaging. Is such a non-self-averaging be-
havior still observed when the N-body effect is introduced
in the quenched random energy landscape? This is a non-
trivial question in diffusion in a heterogeneous environment.
In particular, it is nontrivial that the TASEP with disordered
waiting-time distributions exhibits sample-to-sample fluctua-
tions for the current and the diffusion coefficient. Therefore,
it is important to provide an exact result for the current and
the diffusion coefficient in heterogeneous quenched environ-
ments.

Our paper is organized as follows. In Sec. II, we formulate
the TASEP on a quenched random energy landscape and de-
fine averaging procedures. In Sec. III, we show the numerical
results of the current-density relation and the density profile.
In Sec. IV, we present derivations of the density profile. In
Sec. V, we present derivations of the current and the diffusion
coefficient. In Sec. VI, we discuss the self-averaging proper-
ties of the current and the diffusion coefficient. In Sec. VII,
we conclude this paper. In Appendix A, we derive the pas-
sage time distribution. In Appendix B, we derive the Fréchet
distribution.

II. MODEL

We consider the TASEP on a quenched random en-
ergy landscape on a one-dimensional lattice. It comprises
N particles on the lattice of L sites with periodic boundary
conditions. Each site can hold at most one particle. Quenched
disorder means that when realizing the random energy land-
scape, it does not change with time. At each lattice point,
the depth E > 0 of the energy trap is randomly assigned.
The depths are independent and identically distributed (IID)
random variables with an exponential distribution, φ(E ) =

T −1
g exp (−E/Tg), where Tg is called the glass temperature. A

particle can escape from a trap. Escape times from a trap are
IID random variables following an exponential distribution
and follow the Arrhenius law, i.e., the mean escape time of the
kth site is given by τk = τc exp (Ek/T ), where Ek is the depth
of the energy at site k, T the temperature, and τc a typical
time. The probability of the escape time τ that is smaller than
x is given by Pr(τ � x) ∼= Pr[E � T ln(x/τc)]. It follows that
the probability density function (PDF) ψα (τ ) of waiting times
follows a power-law distribution:∫ ∞

τ

dτ ′ψα (τ ′) ∼=
(

τ

τc

)−α

(τ � τc) (3)

with α ≡ T/Tg [31].
The dynamics of the particle are described by the Marko-

vian one in the sense that the waiting time is memoryless. In
particular, the waiting times at site k are assigned IID ran-
dom variables following an exponential distribution, ψk (ti ) =
τ−1

k exp (−ti/τk ). After the waiting time elapses, the particle
attempts to hop the neighboring site on its right. The hop
is accepted only if the site is empty. When the attempt is a
success or failure, the particle is assigned a new waiting time
from ψk+1(ti ) or ψk (ti), respectively.

Here, we consider three averaging procedures, i.e., ensem-
ble average, disorder average, and time average. The ensemble
average of observable O(t ) is an average with respect to a
stationary ensemble for a single disorder realization denoted
by 〈O(t )〉. The disorder average of observable O(t ) is an
average with respect to different disorder realizations denoted
by 〈O(t )〉dis. The time average of observable O(t ) is defined
by

Ō(T ) = 1

T

∫ T

0
O(t )dt . (4)

Furthermore, we consider a stationary initial condition. For
the ASEP on a finite system, the variance of the displacement
of the tagged particle depends on whether the initial condi-
tions are identical or not, especially for a short time [41].
However, the asymptotic behavior does not depend on the
initial condition. In this paper, we are interested in the asymp-
totic behavior of the current and the diffusivity. Therefore,
the initial conditions in this paper are not fixed. In numeri-
cal simulations, particles start from the stationary ensemble
of configurations. The stationary ensemble is given by the
configuration after particles arrange randomly and diffuse for
a long time.

III. NUMERICAL RESULTS OF CURRENT-DENSITY
RELATION AND DENSITY PROFILE

We numerically show that the current-density relation for
a disordered TASEP (DTASEP) deviates from that for a
TASEP with a homogeneous jump rate, i.e., the homogeneous
TASEP. Figure 1 shows the steady-state current J against
particle density ρ = N/L, i.e., the current-density relation, for
a DTASEP. For low and high densities, the current-density
relation is the same as that of the homogeneous TASEP (see
Fig. 1). However, there is a distinct difference between them
in the intermediate regime. In particular, the current for the
DTASEP becomes almost flat and smaller than that for the
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FIG. 1. Current-density relations for homogeneous and disor-
dered TASEPs. The circles are obtained by the numerical simulation
of dynamics of the DTASEP (L = 5000, α = 2.5, and τc = 1). The
solid line represents the current-density relation, Eq. (1), for the
homogeneous TASEP with τ being set to equal to the sample average
of the waiting times of the DTASEP. ρ∗ is given by Eq. (19).

homogeneous TASEP in the intermediate regime. On the other
hand, there is no flat regime for the homogeneous TASEP.
The flat regime in the DTASEP is observed in other disor-
dered systems [16,18–20,23]. Thus, it is a manifestation of the

existence of a disorder. In this regime, the current is indepen-
dent of the particle density and maximized. In the following,
we classify the density into three regimes: the low-density
(LD) (0 < ρ � ρ∗), the maximal current (MC) (ρ∗ < ρ <

1 − ρ∗), and the high-density (HD) (1 − ρ∗ � ρ < 1) regimes
(Fig. 1). We explicitly derive the transition density ρ∗ later
[see Eq. (19)].

Here, we numerically show the density profiles. For the
LD and HD regimes, the system is homogeneous on a macro-
scopic scale [Figs. 2(a) and 2(b)]. For the MC regime, there
is a macroscopic density segregation [Figs. 2(c) and 2(d)].
The segregation is classified into high- and low-density phases
by the deepest trap. Comparing Figs. 2(c) and 2(d), we ob-
serve that the high-density phase becomes large when the
particle density is increased. This result is qualitatively sim-
ilar to that in a system with one defect bond, studied in
Ref. [42].

We discuss the properties of the current-density relation in
the DTASEP; in particular, why the maximal current does not
depend on the particle density ρ. The phase separation in the
density profile occurs because of a traffic jam caused by the
site of the maximum mean waiting time. The local particle
densities in the LD and HD phases become constant (see
Sec. IV). As a result, the maximum current becomes constant,
i.e., it does not depend on the particle density ρ. Furthermore,
since the phase separation in the density profile does not occur
suddenly, the transition from the LD regime to the MC regime
must be continuous.

FIG. 2. Density profiles: (a) ρ = 0.01, (b) ρ = 0.99, (c) ρ = 0.5, and (d) ρ = 0.8 (L = 5000, α = 2.5, and τc = 1). The squares are the
results of the numerical simulation of the dynamics of the DTASEP. Triangles are Eqs. (9) and (10) for (a) and (b), respectively.
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IV. DERIVATION OF THE DENSITY PROFILE

Here, we derive the density profile by the mean-field
approximation. This derivation is almost the same as our pre-
vious study [39]. Let Jk be the mean current across the bond
between site k and k + 1. In the DTASEP, a hop occurs with
a rate 1/τk whenever site k is occupied, and site k + 1 is not.
Thus, the mean current is represented by

Jk =
〈

1

τk
nk (1 − nk+1)

〉
, (5)

where nk denotes the number of a particle, which is 1 if the site
k is occupied and 0 otherwise. If the system is in a steady state,
the ensemble average is equal to the time average in the long-
time limit, i.e., the system is ergodic. The ensemble average in
Eq. (5) coincides with the long-time average if the system is
ergodic. The periodic boundary condition implies nL+1 = n1

and τL+1 = τ1. The probability of finding a particle at site k is
given by ρk = 〈nk〉. In the mean-field approximation, one can
ignore correlations between nk and nk+1, which means

〈nknk+1〉 = 〈nk〉 〈nk+1〉 . (6)

In the steady state, the site densities are time independent.
Moreover, from the continuity of the current, the current is
independent of k, i.e., Jk = J for all k. Therefore, we have the
current-density relation:

J = 1

τk
ρk (1 − ρk+1). (7)

We note that the right-hand side of Eq. (7) is independent
of k.

We derive a simpler form of the site density by approximat-
ing Eq. (7) for the LD and HD regimes. For the LD regime, we
can assume ρkρk+1 � 1 because the particle density is small.
Ignoring ρkρk+1 in Eq. (7), we obtain

J ∼= 1

τk
ρk . (8)

Using the conservation of particles,
∑

i ρi = N , the site den-
sity has the form

ρk
∼= τk

μ
ρ, (9)

for the LD regime, where μ is the sample average of the
waiting times, μ = ∑

i τi/L. This result is the same as the
steady-state density for the QTM [31]. For the HD regime, the
particle density is high. Using the hole density, σk = 1 − ρk ,
instead of ρk , we can derive the site density in the same way
as in the LD regime. The result becomes

ρk = 1 − σk
∼= 1 − τk−1

μ
(1 − ρ). (10)

Figures 2(a) and 2(b) show the density profiles for LD and
HD regimes, respectively. The densities are well described by
the set of site densities {ρk}. Therefore, Eqs. (9) and (10) are
good approximated forms of the site densities. The results for
the LD and HD regimes reproduce the current-density relation
for a homogeneous TASEP. In other words, the system is
homogeneous on a macroscopic scale.

Next, we approximately obtain a density ρ∗ which is the
boundary density between LD and MC regimes in the current-
density relation (see Fig. 1). The current in the MC regime
does not depend on the density ρ, and let Jmax be the maximal
current. We define the boundary density ρ∗ by the point at
which Jmax is equal to μ−1ρ(1 − ρ),

Jmax = 1

μ
ρ∗(1 − ρ∗). (11)

Solving this equation for ρ∗, we have

ρ∗ = 1 − √
1 − 4μJmax

2
. (12)

For the large-L limit, Jmax is much smaller than the maximal
current for the homogeneous TASEP, i.e., Jmax � 1/(4μ).
Hence, we can approximate the boundary density by

ρ∗ ∼ 1
2 − 1

2 (1 − 2μJmax) = μJmax. (13)

We derive the site density in the MC regime. The current
in the MC regime does not depend on the site, i.e., Eq. (7) is
valid,

Jmax = 1

τk
ρk (1 − ρk+1). (14)

Using Eq. (9), the site density in the LD phase is given by
ρk

∼= τkρLD/μ, where ρLD is the particle density in the LD
phase. When both site k and site k + 1 exist in the LD phase,
we can ignore ρkρk+1 due to the low-density limit. Therefore,
the maximal current is given by Jmax ∼ ρLD/μ. Furthermore,
the particle density in the LD phase becomes ρLD ∼ ρ∗. Thus,
the site density in the LD phase is represented by

ρk ∼ τk

μ
ρ∗. (15)

We can also derive the site density in the HD phase in the same
way as in the LD phase. The site density in the HD phase is
represented by

ρk ∼ 1 − τk−1

μ
ρ∗. (16)

We derive the maximal current based on the phase sepa-
ration of the density profile in the MC regime [Figs. 2(c) and
2(d)]. We numerically find that the site with the maximal mean
waiting time is always the boundary between the HD and the
LD phases. When the mean waiting time is maximized at site
m, sites m and m + 1 exist in high- and low-density phases, re-
spectively. The site densities at sites m and m + 1 are given by
Eqs. (16) and (15), respectively, i.e., ρm ∼ 1 − τm−1ρ

∗/μ and
ρm+1 ∼ τm+1ρ

∗/μ. Using these values and Eq. (13), Eq. (14)
is represented by

Jmax = 1

τm
ρm(1 − ρm+1)

∼ 1

τm
(1 − τm−1Jmax)(1 − τm+1Jmax). (17)

Ignoring the quadratic term of Jmax and solving this equation,
we obtain the maximal current

Jmax ∼ 1

τm−1 + τm + τm+1
. (18)
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In the following, we assume that the mean waiting time is
maximized at site m. For L → ∞, τm is much longer than τm−1

and τm+1, i.e., Jmax ∼ τ−1
m . Therefore, we obtain the boundary

density

ρ∗ ∼ μ

τm
. (19)

By the extreme value theory [43], the scaling of τm follows

τm = O(L1/α ) (20)

for L → ∞. For α > 1, the first moment of the waiting times
exists; i.e., μ → 〈τ 〉 ≡ ∫ ∞

0 τψα (τ )dτ (L → ∞). Hence, the
scaling of ρ∗ becomes

ρ∗ ∝ L−1/α. (21)

For α � 1, the first moment of the waiting times diverges. The
scaling of the sum of τi follows

L∑
i=1

τi = O(L1/α ) (22)

for L → ∞. It follows that the scaling of ρ∗ becomes

ρ∗ ∼ L−1

∑
i τi

τm
∝ L−1. (23)

Therefore, ρ∗ → 0 for L → ∞.
We derive the location of the shock. Since the HD phase

occurs due to the site with the maximum mean-waiting time,
we consider the distance from the site with the maximum
mean-waiting time to the shock, i.e., the length of the HD
phase lh. The local particle densities in the LD and HD phases
are given by ρ∗ and 1 − ρ∗, respectively. Based on the conser-
vation of particles, the number of particles is represented by

Lρ = lh(1 − ρ∗) + (L − lh)ρ∗. (24)

Solving this equation for lh, we have

lh = L(ρ − ρ∗)

1 − 2ρ∗ . (25)

Therefore, the length of the HD phase increases with the
density, and that is consistent with the numerical results
[Figs. 2(c) and 2(d)].

V. DERIVATION OF CURRENT AND DIFFUSIVITY

A. LD and HD regimes

Here, we derive the current in the LD and HD regimes.
For single-particle dynamics on the quenched random energy
landscape, i.e., the QTM, the mean number of events that a
particle passes a site until time t is given by [33]

〈Qt 〉
t

∼ 1

Lμ
(t → ∞), (26)

where Qt is the number of events that a particle passes a site
until time t . For the DTASEP in the LD and HD regimes, the
current depends on the particle density, which is identical for
the homogeneous TASEP [Eq. (1)]. Hence, the current in the
LD and HD regimes is given by

J ∼ aρ(1 − ρ) (27)

for L → ∞. When ρ = 1/L, the current is equal to Eq. (26)
for L → ∞, i.e., the constant a is given by a = 1/μ. There-
fore, we have the current in the LD and HD regimes:

J ∼ 1

μ
ρ(1 − ρ) (28)

for L → ∞.
Next, we derive the diffusion coefficient in the LD and HD

regimes. δxt denotes the displacement of the tagged particle
until time t . For the QTM, the variance of the displacement is
given by [33]

lim
t→∞

〈
δx2

t

〉 − 〈δxt 〉2

t
∼ σ 2

μ3
(29)

for L → ∞, where σ 2 is the sample mean of the squared
waiting times, σ 2 = ∑

i τ
2
i /L. For the DTASEP in the LD

and HD regimes, the variance of the displacement depends
on the particle density, which is identical for the homoge-
neous TASEP [Eq. (2)]. Hence, the diffusion coefficient, D ≡
limt→∞(〈δx2

t 〉 − 〈δxt 〉2)/t , is given by

D ∼ b

√
π

2

(1 − ρ)3/2

ρ1/2
L−1/2 (30)

for L → ∞. When ρ = 1/L, the diffusion coefficient is equal
to Eq. (29) for L → ∞, i.e., the constant b is given by
b = 2σ 2/μ3√π . The diffusion coefficient in the LD and HD
regimes is given by

D ∼ σ 2

μ3

(1 − ρ)3/2

ρ1/2
L−1/2 (31)

for L → ∞.

B. MC regime

Here, we derive the maximal current and the diffusion
coefficient in the MC regime by the renewal theory. We define
the passage time as a time interval between consecutive events
that particles pass a site. We note that the passage time differs
from the first passage time because the particles which pass a
site are different. When the target site is m, the mean and the
variance of the passage time Tm are obtained in Ref. [39] (see
also Appendix A):

〈Tm〉 = τm + τm−1

ρm−1
+

ρm−1

τm−1

ρm−1

τm−1
+ 1−ρm+2

τm+1

τm+1

1 − ρm+2
, (32)

〈
T 2

m

〉 − 〈Tm〉2 = τ 2
m +

(
τm−1

ρm−1

)2

+
(

τm+1

1 − ρm+2

)2

− 3(
ρm−1

τm−1
+ 1−ρm+2

τm+1

)2 . (33)

We consider the number of events Qt that particles pass site
m until time t to obtain the maximal current and the diffusion
coefficient. For the LD and HD regimes, the density profile is
homogeneous on a macroscopic scale. However, local densi-
ties around the target site are fluctuating, i.e., dense or dilute,
which affects the passage time. Therefore, the passage times
are not IID random variables for the LD and HD regimes.
For the MC regime, macroscopic density segregation exists.
When the target locates site m, particles are constantly dense
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FIG. 3. Current-density relation for different α, i.e., (a) α = 0.5, (b) α = 1.5, and (c) α = 2.5, where the disorder realizations are fixed.
The circles are obtained by the numerical simulation of the dynamics of the DTASEP [L = 1000 for (a) and 5000 for other cases]. The dashed
and the solid lines represent Eqs. (28) and (34), respectively.

on the left of the target and dilute on the right. This segregation
does not vary with time. Therefore, the passage times are
considered to be IID random variables for MC regime and
the process of Qt can be described by a renewal process [44].
By renewal theory [44], the mean number of renewals be-
comes 〈Qt 〉 ∼ t/ 〈Tm〉 for t → ∞. The current is represented
through the mean number of the passing events until time t :
J = limt→∞ 〈Qt 〉 /t . Thus, we have

Jmax ∼ 1

〈Tm〉 (34)

for L → ∞. The current depends on the disorder realization.
Figure 3 shows good agreement between numerical simula-
tions and the theory.

Using the number of passing events, we can derive the
mean displacement and the variance of the displacement of
a tagged particle. While the tagged particle starting from site
m + 1 returns to site m + 1, all particles pass between site m
and site m + 1. Therefore, in the large-t limit, the displace-
ment, δxt , is represented by

δxt ∼ LQt

N
= Qt

ρ
. (35)

By renewal theory [44], the mean displacement and the vari-
ance of the displacement are represented by

〈δxt 〉 ∼ 〈Qt 〉
ρ

∼ t

ρ〈Tm〉 , (36)

〈
δx2

t

〉 − 〈δxt 〉2 ∼ 1

ρ2

(〈
Q2

t

〉 − 〈Qt 〉2
)

∼ 1

ρ2

〈
T 2

m

〉 − 〈Tm〉2

〈Tm〉3
t (37)

for t → ∞. Therefore, the diffusion coefficient for the MC
regimes is given by

D ∼ 1

ρ2

〈
T 2

m

〉 − 〈Tm〉2

〈Tm〉3
(38)

for L → ∞. Figure 4 shows good agreement between numer-
ical simulations and the theory.

We consider that there is a maximum energy trap in the
energy landscape. However, there could be two sites with the

same energy, and this energy is the maximum. We consider
this disorder realization. In Ref. [21], the TASEP with two
slow sites was studied, and the maximal current depends on
the distance between the two slow sites. In this model, all sites
except the two slow sites have the same rate. Therefore, the
maximal current in our model could depend on the distance
between the two sites with the same energy. However, this
disorder realization is a very rare event, so it does not affect
our discussions.

VI. SAMPLE-TO-SAMPLE FLUCTUATIONS OF CURRENT
AND DIFFUSIVITY

A. Current

Here, we consider sample-to-sample fluctuations of the
current. To quantify the self-averaging (SA) property of the
current, we consider the SA parameter defined as [31]

SA(L; J ) ≡ 〈J (L)2〉dis − 〈J (L)〉2
dis

〈J (L)〉2
dis

, (39)

where J (L) is the current. If the SA parameter becomes 0,
there is no sample-to-sample fluctuation, which means SA.

1. LD and HD regimes

Using Eq. (28), the SA parameter becomes

SA(L; J ) = 〈1/μ2〉dis − 〈1/μ〉2
dis

〈1/μ〉2
dis

, (40)

which is the same as the SA parameter for the diffusion
coefficient in the QTM [31]. When the mean waiting time
〈τ 〉 ≡ ∫ ∞

0 τψα (τ )dτ is finite (α > 1), we have μ → 〈τ 〉
(L → ∞) by the law of large numbers. Therefore, in the
large-L limit, the current does not depend on the disorder
realization [Fig. 5(a)]. Hence, the current is SA for α > 1.
However, because the scaling of ρ∗ follows Eq. (21), the
disorder average of the current in the LD and HD regimes
becomes 0 for L → ∞. When the mean waiting time diverges
(α � 1), the law of the large numbers breaks down. However,
the generalized central limit theorem is still valid. The PDF of
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FIG. 4. Diffusion coefficient-density relation for different α, i.e., (a) α = 0.5, (b) α = 1.5, and (c) α = 2.5, where the disorder realizations
are fixed. The circles are obtained by the numerical simulation of the dynamics of the DTASEP [L = 100 for (a), 500 for (b), and 1000 for
(c)]. The dashed and the solid lines represent Eqs. (31) and (38), respectively.

the normalized sum of the waiting times follows the one-sided
Lévy distribution [45],

∑L
i=1 τi

L1/α
⇒ Xα (L → ∞), (41)

where Xα is a random variable following the one-sided Lévy
distribution of index α. The PDF of Xα denoted by lα (x) with
x > 0 is given by [45]

lα (x) = − 1

πx

∞∑
k=1


(kα + 1)

k!
(−cx−α )k sin (kπα), (42)

where c = 
(1 − α)τα
c is the scale parameter. The first and

the second moment of X −1
α are given by [31]

〈
X −1

α

〉 = 
(1/α)

αc1/α
,

〈
X −2

α

〉 = 
(2/α)

αc2/α
. (43)

The current can be represented by

J (L) ∼ ρ(1 − ρ)
L

L1/α

L1/α∑L
k=1 τk

∼ ρ(1 − ρ)L1−1/αX −1
α (44)

for L → ∞. Thus, the PDF of J is described by the inverse
Lévy distribution. Using the first moment of the inverse Lévy
distribution [31], we obtain the exact asymptotic behavior of
the disorder average of the current,

〈J (L)〉dis ∼ ρ(1 − ρ)
(α−1)

ατc
(1 − α)1/α
L1−1/α. (45)

Hence, the current becomes 0 [see Fig. 6(a)]. We note that
since the scaling of ρ∗ follows Eq. (23), we do not simulate at
the same density.

FIG. 5. Mean displacement for different density ρ: (a) ρ = 0.004 and (b) ρ = 0.5 (α = 2.5 and L = 500). Symbols are the results of
mean displacements for five disorder realizations. The disorder realizations are the same in both (a) and (b). Solid lines represent the disorder
averages of the mean displacement, i.e., 〈δxt 〉 ∼ 〈J〉dis t/ρ, where 〈J〉dis was calculated by ρ(1 − ρ )/ 〈μ〉dis for (a), which is calculated by
Eq. (3), and by Eq. (54) for (b).
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FIG. 6. Disorder average of the current as a function of L for several α: (a) LD and HD regimes and (b) MC regimes. Solid lines show
the asymptotic results, i.e., Eqs. (45) and (54). Squares are the results of numerical simulations, where we calculated the maximal currents
[Eq. (34)] for different disorder realizations by Monte Carlo simulations. We used 104 disorder realizations. Triangles are the results of the
numerical simulation of dynamics of the DTASEP [N = 1 for (a) and ρ = 0.5 for (b)]. We used 103 for L = 104 in the MC regime and 104

disorder realizations for others.

Using the first and the second moments of 1/μ, we have
the SA parameter

lim
L→∞

SA(L; J ) =
⎧⎨
⎩

0 (α > 1)

α
(2/α)

(1/α)2 − 1 (α � 1).

(46)

For α � 1, the SA parameter is a nonzero constant, and thus
J becomes non-SA. Therefore, there is a transition of SA
property in the LD and HD regimes.

2. MC regime

When the system size is increased, we find a deeper and
deeper energy trap, that is, τm gets longer and longer. Hence,
Eq. (32) can be approximated as 〈Tm〉 ∼ τm, i.e., we can ap-
proximate the maximal current:

Jmax ∼ 1

τm
. (47)

Therefore, the maximal current depends on the disorder real-
ization [Fig. 5(b)]. Since the PDF of the waiting times follow
a power-law distribution, Eq. (3), the PDF of the normalized
τm follows the Fréchet distribution [43]:

τm

τcL1/α
⇒ Yα (L → ∞), (48)

where Yα is a random variable following the Fréchet distribu-
tion of index α. As derived in Appendix B, the PDF of Yα ,
denoted fα (y) with y > 0, can be expressed as

fα (y) = αy−α−1 exp (−y−α ). (49)

Using Eq. (48), the maximal current can be represented by

Jmax(L) ∼ 1

τcL1/α

τcL1/α

τm
∼ 1

τcL1/α
Y −1

α (50)

for L → ∞. Thus, the PDF of Jmax is described by the inverse
Fréchet distribution.

The PDF of Y −1
α can be explicitly represented by the

Fréchet distribution:

Pr
(
Y −1

α � z
) = Pr(Yα � z−1) =

∫ ∞

z−1
fα (y)dy. (51)

The distribution is the Weibull distribution. We obtain the PDF
of Y −1

α , denoted by wα (z):

wα (z) = αzα−1 exp (−zα ). (52)

The first and second moments of the Weibull distribution are
given by

〈
Y −1

α

〉 = 


(
1 + 1

α

)
,

〈
Y −2

α

〉 = 


(
1 + 2

α

)
. (53)

From Eq. (53), we obtain the exact asymptotic behavior of the
disorder average of the maximal current,

〈Jmax(L)〉dis ∼ 1

τcL1/α



(
1 + 1

α

)
. (54)

Therefore, the maximal current decreases with the system size
L [see Fig. 6(b)]. Let us consider the SA property for the
maximal current. The SA parameter is defined as

SA(L; Jmax) ≡ 〈Jmax(L)2〉dis − 〈Jmax(L)〉2
dis

〈Jmax(L)〉2
dis

. (55)

Using Eq. (50), we have

lim
L→∞

SA(L; Jmax) =
〈
Y −2

α

〉 − 〈
Y −1

α

〉2
〈
Y −1

α

〉2
= 
(1 + 2/α)


(1 + 1/α)2 − 1. (56)

The SA parameter becomes a nonzero constant, i.e., the max-
imal current becomes non-SA [see Fig. 7(a)]. This result
differs from LD and HD, and there is no transition from SA to
non-SA behavior for all α [see Fig. 7(b)]. As shown in Fig. 5,
the currents for different disorder realizations exhibit non-SA
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FIG. 7. (a) Self-averaging parameter as a function of α. The squares and circles are the results of numerical simulations, where we
calculated the maximal currents [Eq. (34)] and the diffusion coefficient [Eq. (38)] for different disorder realizations by Monte Carlo simulations
(L = 105), respectively. The triangles show the self-averaging parameter of the maximal current obtained by the numerical simulation of the
dynamics of the DTASEP (L = 1000 and N = 500). We used 104 disorder realizations. The solid line represents Eq. (56). (b) Phase diagram
based on current in the LD, MC, and HD regimes. (c) Phase diagram based on diffusivity in the LD, MC, and HD regimes.

in the MC regime, whereas they are SA in the LD regime even
when the disorder realizations are the same in both regimes.
Therefore, this is clear evidence of the many-body effect in
the DTASEP.

B. Diffusivity

Here, we consider sample-to-sample fluctuations of the dif-
fusion coefficient. In the homogeneous TASEP, the diffusion
coefficient becomes 0 for L → ∞ [Eq. (2)] because of the
many-body effect. D = 0 in the homogeneous TASEP on a
finite system implies the subdiffusion in that on an infinite
system [46].

1. LD and HD regimes

For the LD regime, ρ = N/L and 1 − ρ ∼ 1 for L → ∞
and N � L. We define the number of holes as M ≡ L − N ,
i.e., 1 − ρ = M/L. Therefore, for the HD regime, ρ = (L −
M )/L ∼ 1 for L → ∞ and M � L. Using Eq. (31), the disor-

der average of the diffusion coefficient is given by

〈D(L)〉dis ∼

⎧⎪⎨
⎪⎩

N−1/2
〈
σ 2

μ3

〉
dis (LD regime)

M3/2L−2
〈
σ 2

μ3

〉
dis (HD regime)

(57)

for L → ∞. When the second moment of the waiting time
〈τ 2〉 ≡ ∫ ∞

0 τ 2φα (τ )dτ is finite (α > 2), we have σ 2 → 〈τ 2〉
(L → ∞) by the law of large numbers. It follows that the
disorder average of D(L) is finite and given by

〈D(L)〉dis ∼
⎧⎨
⎩

N−1/2 〈τ 2〉
〈τ 〉3 (LD regime)

M3/2L−2 〈τ 2〉
〈τ 〉3 (HD regime)

(58)

for L → ∞ and α > 2. Hence, the diffusion coefficient
becomes nonzero constant for the LD regime, whereas it be-
comes 0 for the HD regime.

For α < 2, the second moment of the waiting time di-
verges. The disorder average of σ 2/μ3, which was derived in
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FIG. 8. Disorder average of the diffusion coefficient as a function of L for several α: (a) LD and HD regimes and (b) MC regimes. Squares
are the results of numerical simulations, where we calculated the diffusion coefficient [Eqs. (31) and (38)] for different disorder realizations by
Monte Carlo simulations [N = 1 for (a) and ρ = 0.5 for (b)]. We used 104 disorder realizations. Solid lines show the asymptotic results, i.e.,
Eqs. (60) and (68).

Ref. [33], is obtained as〈
σ 2

μ3

〉
dis

∝
{

L2−α (1 < α < 2)

L2−1/α (α < 1).
(59)

Therefore, the disorder average of the diffusion coefficient is
given by

〈D(L)〉dis ∝
{

L2−α (1 < α < 2)

L2−1/α (α < 1)
(60)

for the LD regime and

〈D(L)〉dis ∝
{

L−α (1 < α < 2)

L−1/α (α < 1)
(61)

for the HD regime, respectively. Hence, the diffusion coeffi-
cient for the LD regime diverges for 1 < α < 2 and 1/2 <

α < 1, whereas it becomes 0 for α < 1/2 [see Fig. 8(a)]. The
diffusion coefficient for the HD regime becomes 0 for all α.
The zero diffusion coefficient is a signature of many-body
effect.

Let us consider the SA property for the diffusion coefficient
in LD and HD regimes. The SA parameter is defined as

SA(L; D) ≡ 〈D(L)2〉dis − 〈D(L)〉2
dis

〈D(L)〉2
dis

. (62)

The SA parameter goes to 0 in the large-L limit when the
diffusion coefficient is SA.

For α > 2, the second moment of waiting times exists; i.e.,
〈τ 2〉 = ∫ ∞

0 τ 2ψα (τ )dτ . Thus, σ 2/μ3 converges to 〈τ 2〉 / 〈τ 〉3

for L → ∞. Therefore, 〈D(L)2〉dis − 〈D(L)〉2
dis converges to 0

for L → ∞, so that the diffusion coefficient is SA for α > 2.
For 1 < α < 2, the second moment of σ 2/μ3 was calcu-

lated in Ref. [33]. The SA parameter diverges as

SA(L; D) ∝ 〈D(L)2〉dis

〈D(L)〉2
dis

∝ Lα−1 (63)

for L → ∞. Therefore, the diffusion coefficient is non-SA for
1 < α < 2.

For α < 1, both the first and the second moments of the
waiting times diverge. σ 2/μ3 can be represented as

σ 2

μ3
= L2−1/αC(L), (64)

where C(L) = L1/α
∑L

i=1 τ 2
i /(

∑L
i=1 τi )3 is a random variable

depending on the disorder realization. Hence, the SA parame-
ter becomes

SA(L; D) = 〈D(L)2〉dis

〈D(L)〉2
dis

− 1 = 〈C(L)2〉dis

〈C(L)〉2
dis

− 1. (65)

Because
∑L

i=1 τ 2
i < (

∑L
i=1 τ )3, 1/(

∑L
i=1 τi )3 < C(L) < 1,

i.e., 0 < 〈C(L)〉dis < 1, and 0 < 〈C(L)2〉dis < 1, the SA pa-
rameter is a finite value, i.e., the diffusion coefficient is
non-SA for α < 1. These results are the same as those for the
QTM.

2. MC regime

When the system size is increased, we find a deeper and
deeper energy trap, that is, τm gets longer and longer. Hence,
Eq. (33) can be approximated as 〈T 2

m 〉 − 〈Tm〉2 ∼ τ 2
m, i.e., we

can approximate the diffusion coefficient:

D ∼ ρ−2

τm
. (66)

By Eq. (48), the diffusion coefficient can be represented by

D(L) ∼ ρ−2

τcL1/α

τcL1/α

τm
∼ ρ−2

τcL1/α
Y −1

α (67)

for L → ∞. Therefore, the PDF of the diffusion coefficient
is also described by the Weibull distribution. Using the first
moment of the Weibull distribution, we obtain the exact
asymptotic behavior of the disorder average of the diffusion
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coefficient,

〈D(L)〉dis ∼ ρ−2

τcL1/α

(1 + 1/α). (68)

Therefore, the diffusion coefficient also decreases with the
system size L [see Fig. 8(b)].

Next, we consider the SA parameter of the diffusion coef-
ficient in the MC regime. Using Eq. (67), we have

lim
L→∞

SA(L; D) =
〈
Y −2

α

〉 − 〈
Y −1

α

〉2
〈
Y −1

α

〉2
= 
(1 + 2/α)


(1 + 1/α)2 − 1, (69)

which is the same as the SA parameter for the maximal cur-
rent [see Fig. 7(a)]. The transition point from SA to non-SA,
which exists for the LD and HD regimes, disappears, and the
diffusion coefficient is non-SA for all α [see Fig. 7(c)].

VII. CONCLUSION

In this paper, we have studied the TASEP on a quenched
random energy landscape. In the LD and HD regimes, i.e.,
the dilute limit, the dynamics of the disordered TASEP can
be approximately described by the single-particle dynamics.
On the other hand, the dynamics in the MC regime become
completely different from that in the dilute limit due to the
many-body effect. In particular, the LD and HD phases co-
exist in the MC regimes. By renewal theory, we provided
exact results for the current and diffusion coefficient. In the
LD regime, the disorder average of the diffusion coefficient
becomes 0 for α < 1/2, diverges for 1/2 < α < 2, and is
nonzero constant for α > 2, which is the same as in the
single-particle dynamics [Fig. 7(c)]. On the other hand, in the
HD and MC regimes, it becomes 0 in the large-L limit for
all α [Fig. 7(c)] due to the many-body effect. Moreover, we
introduced the SA parameter to quantify the SA property. We
obtained a self-averaging and non-self-averaging transition
for the current and the diffusion coefficient in the LD and HD
regimes, which is the same as in the single-particle dynamics.
However, in the MC regime, the current and diffusion coef-
ficient are non-SA for all α, which is different from the LD
and HD regimes. Therefore, many-body effects in quenched
random energy landscapes decrease the diffusion coefficient
and lead to a strong non-self-averaging feature.
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APPENDIX A: PASSAGE TIME DISTRIBUTION

In this Appendix, we derive the distribution of the passage
time Tm site m in the MC regime, where m is the site with the
maximal mean waiting time. The passage time can be divided
into the hole escape time xm and the particle escape time ym.

FIG. 9. Particle dynamics during the passage time. The filled
and dashed-line circles denote particles and holes, respectively. The
question mark is either a particle or a hole.

At time t1, a particle escapes from site m. At time t2, the
subsequent particle arrives at site m. The hole escape time is
defined as xm = t2 − t1 (Fig. 9). At time t3, the particle escapes
from site m. The particle escape time is defined as ym = t3 − t2
(Fig. 9). To obtain the hole escape time at site m, we consider
the hole dynamics. At site m, when the hole jump succeeds by
the ith attempt, the PDF of the hole escape time xm follows
the distribution of the sum of i IID variables following the
exponential distribution, ψm−1(t ) = τ−1

m−1 exp (−t/τm−1), i.e.,
the Erlang distribution

Er(xm; i, τm−1) = xi−1
m

(i − 1)!τ i
m−1

exp

(
− xm

τm−1

)
, (A1)

and the success probability is given by ρm−1(1 − ρm−1)i−1.
Therefore, the PDF f (xm) of xm follows the exponential dis-
tribution

f (xm) = ρm−1

∞∑
i=1

(1 − ρm−1)i−1Er(xm; i, τm−1)

= ρm−1

τm−1
exp

(
− xm

τm−1

)

×
∞∑

i=1

1

(i − 1)!

(
(1 − ρm−1)xm

τm−1

)i−1

= Ex

(
xm;

τm−1

ρm−1

)
, (A2)

where Ex(x; τ ) ≡ exp (−x/τ )/τ is the exponential distribu-
tion.

Because a particle cannot escape from site m until the
neighbor site becomes empty, we must consider the effect of
site m + 1. Using the same way of the derivation of Eq. (A2),
the PDF g(ym+1) of the particle escape time ym+1 at site m + 1
is given by

g(ym+1) = Ex

(
ym+1;

τm+1

1 − ρm+2

)
. (A3)

Using Eq. (A3), we derive the joint PDF of the hole escape
time xm and the particle escape time ym. When the sum of the
hole escape time xm and the particle escape time ym is larger
than the particle escape time ym+1, a particle at site m can jump
to site m + 1. When a particle succeeds to jump to site m + 1
once, i.e., xm + ym > ym+1, the weighted joint PDF h1(xm, ym)
of xm and ym is given by

h1(xm, ym) = f (xm)Ex(ym; τm)
∫ xm+ym

0
dym+1 g(ym+1). (A4)
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When a particle jump succeeds on the ith attempts (i > 1),
xm + y′

m < ym+1 < xm + ym, where y′
m follows the Erlang dis-

tribution Er(y′
m; i − 1, τm) and ym is sum of y′

m and the IID
random variable y with the exponential distribution Ex(y; τm).
Then, the weighted joint PDF hi(xm, ym) of xm and ym is given
by

hi(xm, ym) = f (xm)
∫ ym

0
dy′

m Ex(ym − y′
m; τm)Er(y′

m; i − 1, τm)

×
∫ xm+ym

xm+y′
m

dym+1 g(ym+1). (A5)

Therefore, the joint PDF h(xm, ym) of xm and ym is given by

h(xm, ym) =
∞∑

i=1

hi(xm, ym)

= f (xm)Ex(ym; τm) +
τm+1

1−ρm+2

τm − τm+1

1−ρm+2

× exp

(
−1 − ρm+2

τm+1
xm

)
f (xm)

× [Ex(ym; τm) − g(ym)]. (A6)

By the convolutional integration of h(xm, ym), we have the
PDF �(Tm) of the passage time Tm

�(Tm) =
∫ Tm

0
dx h(x, Tm − x)

= τm
ρm−1

τm−1
(ζ1 + ζ2ζ3)Ex(Tm; τm) − ζ1 f (Tm) − ζ2g(Tm)

+ ζ3E

(
Tm;

1
ρm−1

τm−1
+ 1−ρm+2

τm+1

)
, (A7)

where

ζ1 ≡ 1

τm
ρm−1

τm−1
− 1

, ζ2 ≡ 1

τm
1−ρm+2

τm+1
− 1

,

ζ3 ≡ 1

τm
(

ρm−1

τm−1
+ 1−ρm+2

τm+1

) − 1
.

Next, we derive the mean and variance of the passage time.
The Laplace transform of �(Tm) with respect to s is given by

�̂(s) ≡
∫ ∞

0
dTme−sTm�(Tm)

= τm
ρm−1

τm−1
(ζ1 + ζ2ζ3)

1

τms + 1
− ζ1

τm−1

ρm−1
s + 1

− ζ2
τm+1

1−ρm+2
s + 1

+ ζ3
s

ρm−1
τm−1

+ 1−ρm+2
τm+1

+ 1
. (A8)

It follows that the mean and variance of the passage time are
given by

〈Tm〉 = τm + τm−1

ρm−1
+

ρm−1

τm−1

ρm−1

τm−1
+ 1−ρm+2

τm+1

τm+1

1 − ρm+2
, (A9)

〈
T 2

m

〉 − 〈Tm〉2 = τ 2
m +

(
τm−1

ρm−1

)2

+
(

τm+1

1 − ρm+2

)2

− 3(
ρm−1

τm−1
+ 1−ρm+2

τm+1

)2 . (A10)

APPENDIX B: FRÉCHET DISTRIBUTION

Here, we derive that when random variables follow a
power-law distribution [Eq. (3)], the maximum of those fol-
lows the Fréchet distribution using the extreme value theory
[43]. We define τ1, . . . , τL as the random variables which
follow the power-law distribution with exponent α. The prob-
ability for τm = max{τ1, . . . , τL} � s is given by

Pr(τm � s) =
L∏

i=1

Pr(τi � s) = G(s)L, (B1)

where G(s) = Pr(τi � s) = 1 − (s/τc)−α . We normalize τm as

Xα = τm

τcL1/α
(B2)

for L → ∞. It follows that Pr(Xα � x) = Fα (x) is given by

Fα (x) = lim
L→∞

G(τcL1/αx)L = exp (−x−α ). (B3)

Therefore, the normalized τm follows the Fréchet distribution.
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