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Fluctuations play an important role in the dynamics of stochastic systems. In particular, for small systems,
the most probable thermodynamic quantities differ from their averages because of the fluctuations. Using the
Onsager Machlup variational formalism we analyze the most probable paths for nonequilibrium systems, in
particular, active Ornstein-Uhlenbeck particles, and investigate how the entropy production along these paths
differs from the average entropy production. We investigate how much information about their nonequilibrium
nature can be obtained from their extremum paths and how these paths depend on the persistence time and their
swim velocities. We also look at how the entropy production along the most probable paths varies with the active
noise and how it differs from the average entropy production. This study would be useful to design artificial
active systems with certain target trajectories.
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I. INTRODUCTION

Active matter is a new class of nonequilibrium systems
in condensed matter which constantly dissipates energy to
produce motion [1–4]. The flocking of birds and fish and the
swimming of organisms are examples of active matter systems
[5]. Many artificial motile systems like Janus colloids [6–8],
colloidal rollers [9], and water droplets [10,11] were devel-
oped that mimic these biological systems. Several models
were used to study active systems like the active Brownian
particle [12–14], run and tumble [15–17], and active Ornstein-
Uhlenbeck particle (AOUP) model [18–21]. AOUP is one of
the simplest models where the velocities of the active particles
are exponentially correlated in time and are modeled using the
Langevin equations with colored noise. All these models were
able to explain the collective behavior of active systems like
motility-induced phase separation [16,22–24] through a com-
bination of motility and steric repulsion. While most studies
on active matter looked at their collective behavior, here we
focus on the thermodynamics along the trajectories of a single
active particle.

In many of these systems, the correlated noise like the
Ornstein-Uhlenbeck (OU) noise induces stochastic transitions
between possible states, as in the case of chemical reactions
[25,26]. Many of these transitions in the two state systems
are induced by noise. These stochastic transitions are rare
with a very low probability like a microswimmer passing
through a slit [27] and escaping from a capture near a wall
[28]. These rare events help microorganisms in their survival.
Finding the most probable trajectory between two given points
is one of the key problems in rare events [29–33]. The path
probability along with the Onsager-Machlup (OM) integral
are useful tools to calculate the most probable path (MPP)
for arbitrary initial and final states [34–38]. The MPP of
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transitions have been studied in a double-well potential [32],
experiments [39], protein folding [31,40], and chemical reac-
tions [33]. Interest in the MPPs in active systems is very recent
[41]. Yasuda and Ishimoto recently showed that the extremum
path of a single active Brownian particle was analogous to
the pendulum equation. They obtained multiple extremum
paths of which they found the U-shaped path to be most
probable.

In this work, we find the MPP for a system of AOUP
particles from the extremum of the OM integral. We focus on
the case of noninteracting AOUP particles for which the MPPs
are analytically solvable for all types of boundary conditions
unlike ABP particles [41] and obtain their phase diagram.
Our primary objective is to investigate how much information
about the nonequilibrium nature of the AOUP is contained in
their extremum trajectories. We look at how the trajectories
differ at different regions of the phase space. We find that
the AOUP has an unstable fixed point and study its dynamics
around that fixed point. We then consider the entropy pro-
duction for the MPP. The entropy production quantifies the
time irreversibility of the nonequilibrium systems [42] and
is obtained from the ratio of the probabilities of the forward
and backward trajectories [43]. It was suggested [42] that the
OU noise can have different parities under time reversal in
the context of active particles in a thermal bath or second, a
passive particle in an active bath. The OU noise is odd under
time reversal [42] for an active AOUP particle in an equilib-
rium thermal bath [44–47] and even for a passive particle in
an active AOUP bath [19,48–56]. Accordingly, the entropy
productions are different in these cases. Here we consider
both the parities and compare the differences in behavior. We
also compare the entropy production along the MPP with the
average entropy production.

In the next section, we write the stochastic dynamics of
AOUP particles. The MPP is derived from the OM integral for
the AOUP system in Sec. III and the phase space of solutions
is obtained in Sec. IV for the case of a single AOUP particle.
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We calculate the entropy production along the most probable
and extremum trajectories in Sec. V and compare it with the
average entropy production. Finally we conclude in Sec. VI.

II. ACTIVE ORNSTEIN-UHLENBECK PARTICLE MODEL

Consider an active particle suspended in a thermal bath of
temperature T . The particle experiences a conservative force
−∇U (x) in addition to active forces η from their intrinsic self-
propulsion. U is the potential energy of a conservative force
due to the interactions with other particles as well as some
external potential and x is the position of the particle. This
description applies to both cases of a passive particle in an
active bath or an active particle in a passive bath.

We consider the overdamped Langevin equation [57,58]
for the particle

ẋ(t ) = f[x(t ), t] +
√

2Daη(t ) +
√

2Dξ(t ), (1)

where f (x, t ) = − 1
γ
∇U (x, t ) and γ is the hydrodynamic fric-

tion. ξ(t ) are the thermal fluctuations which are Gaussian
with zero mean and delta function correlations 〈ξα (t )ξβ (t ′)〉 =
δαβδ(t − t ′), where α and β are the Cartesian indices. D =
kBT/γ is the diffusion constant in the thermal bath and Da

is the diffusion constant due to activity. The active fluctu-
ations η are OU processes with zero mean and exponential
correlations

〈ηα (t )ηα (t ′)〉 = δαβ

2τ
exp(−|t − t ′|/τ ). (2)

τ is the persistence time that quantifies the persistence of
the active fluctuations. The active diffusion constant can be
written as Da = v2

0τ where v0 is the swim velocity of the
active particle [59]. These equations are easily generalized
to N identical particles with positions {xi} with the same
parameters D and Da. The active noise for two particles satis-
fies 〈ηiαη jβ〉 = δαβδi j

2τ
exp(−|t − t ′|/τ ), where i, j are particle

indices.

III. MOST PROBABLE TRAJECTORY

Let y = (x, η) denote the combined variable of the particle
position and the active noise. The probability of observing
certain trajectory of the Markovian process y(s)|t0 starting at
y0 at s = 0 and ending at y f at s = t is given by the Onsager-
Machlup path integral [34,35] by

p[y(t )|y0] ∝ exp

[
−

∫ t

0

ds

4

∑
i, j

∑
α,β

{ fiα[y(s)] − ẏiα}

× D−1
iα, jβ

{
f jβ[y(s)] − ẏ jβ

}]
. (3)

yiα denotes the α component of variable y for the particle i.
Diα, jβ is the diffusion tensor that is diagonal in our case. This
equation is derived in Appendix A following Refs. [41,60].
For the Langevin equation (1) summing over α, β and putting
the explicit form of y in terms of x and η and the diffusion
matrix (Appendix A), we get [42,61]

p(x, η|x0, η0) ∝ exp

(
−

∫ t

0
ds

N∑
i=1

[
[ẋi(s) − fi(s) − √

2Daηi(s)]2

4D
+ [τ η̇i(s) + ηi(s)]2

2
+ 1

2
∇ · fi(s)

])
. (4)

The last term in the exponent occurs from the indeterminacy of the time discretization [41].
The quantity inside the exponent of the OM integral is similar to a Lagrangian and we denote it by

L(x, ẋ, η, η̇) =
N∑

i=1

[ẋi(s) − fi(s) − √
2Daηi(s)]2

4D
+ [τ η̇i(s) + ηi(s)]2

2
+ 1

2
∇ · fi(s). (5)

The extremum paths are obtained by the variation of the OM integral and setting the first variation to zero

d

dt

δ

δẏiα (t )
L(x, ẋ) − δ

δyiα (t )
L(x, ẋ) = 0, (6)

which from Eq. (5) gives

1

2D

(
ẍiα − d

dt
fiα −

√
2Daη̇iα

)
= − 1

2D
∂iα f jβ (ẋ jβ − f jβ −

√
2Daη jβ ) + 1

2
∂iα∂ jβ f jβ,

(τ 2η̈iα + τ η̇iα ) = (τ η̇iα + ηiα ) −
√

2Da

2D
(ẋiα − fiα −

√
2Daηiα ). (7)

These coupled equations are solved to obtain the extremum paths. The second variation of the OM integral should be positive
for the probability to be maximum along the extremum path.

IV. FREE ACTIVE AOUP PARTICLES

The MPP in Eq. (7) can be solved analytically in the
case of free AOUP particles for which f = 0. The equa-
tions of motion of the particles decouple from one another

because of the absence of the interactions. The motion
along the x, y, and z coordinates also decouples due to
the nature of OU noise. Thus for the free AOUP system
we will focus on the dynamics of a single particle in one
dimension.
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FIG. 1. The constant L = 0.5 curves for different initial and final
active noise parameters η0 and η f . The paths that satisfies Eq. (8)
and L ≈ 0 would give the MPPs. t is the travel time for the particle
to reach x(t ) = 1 from the origin x(0) = 0 and persistence times τ .
The other parameters are fixed at D = 1 and Da = 5. We plot the
trajectories at the points (I) η0 = 0, η f = 0, (II) η0 = 0, η f = 1, (III)
η0 = 1, η f = 0, and (IV) η0 = 5, η f = 5 in Fig. 2.

Most probable path in one dimension

The extremum path for a single AOUP particle in one
dimension is given by

ẍ −
√

2Daη̇ = 0,

τ 2η̈ = η −
√

2Da

2D
(ẋ −

√
2Daη). (8)

Since the entire derivation is based on the use of transla-
tional probability in Eq. (3), we only solve for the trajectories
with a fixed start x(0) = x0 and end point x(t ) = x f for a travel
time t . The active noise also has fixed boundaries η(0) = η0

and η(t ) = η f . The solution gives the extremum trajectory
of the particle, which is nothing but the local minimum of
the function L in Eq. (8). For the rest of the discussions we
explore the behavior of the extremum paths of the particle
that always start at the origin x0 = 0 and ends at x f = 1. The
exact analytical solutions are obtained using MATHEMATICA

software [62] for x(t ) and η(t ) and are given in Appendix B.
These solutions are the local minimum of the L function. To
obtain the global minimum of L for the MPPs, we search the
phase space of the parameters η0 and η f keeping the other
parameters Da, D, and τ fixed. Since L � 0 for a free AOUP
particle, the global minimum is expected to be L ≈ 0. From
now on we fix the diffusion constants D = 1 and Da = 5. The
space of solutions of the MPP for which L ≈ 0 lies inside of
the closed curves of Fig. 1. As we increase the persistence
time τ , the solution space of the MPP shifts closer to the
origin and the area inside the curve decreases. This implies
that the MPP at large τ is obtained for very small active noise
parameters η0 ≈ 0 and η f ≈ 0.

In Fig. 2 we look at the trajectories at different regions of
the (η0, η f ) space, in particular at the four points (I), (II), (III),
and (IV) in Fig. 1. We numerically obtain the optimal noise

(a) (b)(a)

x(
s)

s s

(b)

x(
s)

(c) (d)

x(
s)

s s

x(
s)

FIG. 2. The extremum paths of the AOUP between x(0) = 0 and
x(t ) = 1 at the points (I), (II), (III), and (IV) in Fig. 1 for short time
t = 1 : (a) τ = 1, (b) τ = 10, and long time t = 10 : (c) τ = 1, and
(d) τ = 10. Also shown are the MPPs for parameters (η0 = ηo

0, η f =
ηo

f ) of which L function is minimum.

parameters (η(o)
0 , η

(o))
f ) that give the smallest values of the L

function for short trajectory time t = 1 in Figs. 2(a) and 2(b)
and for long time t = 20 in Figs. 2(c) and 2(d). For points
(I) and (IV) along the η0 = η f line in Fig. 1, the trajectories
oscillate about the straight line joining the end points x(0) = 0
and x(t ) = 1 and cross at t/2. For η0 > η f (III) the trajectories
are above the straight line while for η0 < η f (II) they remain
below. η0 = 0, η f = 0 is always a good approximation for
the MPP. Larger L values result in longer trajectories and
deviation from the straight line or the MPP. For low τ the
AOUP has larger swim velocity, thus reaching the end point
faster than for large τ . As seen from Fig. 1 at large τ , the
optimal noise becomes zero thus slowing the particle down.
The most probable trajectory of a passive particle between
two points x0 and x f is obtained by taking the Da → 0 limit
in Eq. (B1):

x(s) =
(

1 − s

t

)
x0 + s

t
x f . (9)

In the large τ limit Eq. (B1) reads

x(s) =
(

1 − s

t

)
x0 + s

t
x f +

√
2Da

s

2

(
s

t
− 1

)(
η

(o)
f − η

(o)
0

)
.

(10)

Since η
(o)
0 ≈ 0 and η

(o)
f ≈ 0 from Fig. 1, MPP Eq. (10) at large

τ coincides with the MPP of the passive particle in Eq. (9).
This is also observed in all the plots in Fig. 2, as τ increases
it coincides with the straight line joining x0 and x f . This
can be understood from the fact that, as the persistence time
τ increases for a fixed Da, the swim velocity v0 = √

Da/τ

decreases. Thus the AOUP behaves like a passive particle at
large τ . While for large t [Fig. 2(d)] even a small perturbation
of the noise from the optimal noise produces a large deviation
from the MPP, for short time t = 1 [Fig. 2(b)] the parti-
cle does not get enough time to deviate appreciatively from
the MPP.
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FIG. 3. The extremum path for C1 = 10 and the MPP of the
AOUP near the fixed point η f p of Eq. (11) for (a) t = 1, τ = 1,
(b) t = 1, τ = 10, (c) t = 10, τ = 1, and (d) t = 1, τ = 10.

We analyze the fixed point dynamics of the AOUP. We
rewrite Eq. (8) as

vx −
√

2Daη = C1,

τ 2vη

dvη

dη
= η −

√
2Da

2D
C1, (11)

where vx = ẋ, vη = η̇, and C1 is a constant of integration. C1 is
the velocity of the particle in the absence of active noise. The
drift of the AOUP particle is caused by the active noise and has
an unstable fixed point at η f p = −C1/

√
2Da. The dynamics of

the active noise evolves independently of the particle position
or velocity because of translational invariance. The second
equation of Eq. (11) is integrated to obtain

v2
η = V 2

0 + 1

τ 2

(
η −

√
2Da

2D
C1

)2

. (12)

V0 is the velocity at η =
√

2Da
2D C1. In Fig. 3 we see that the

extremum trajectories passing through the fixed point η = η f p

are less spread out as the active noise and hence the velocity
of the AOUP is smaller. The MPPs for all t and τ are always
close to the passive trajectory of the straight line 9. When t ≈
τ , the trajectories have similar behavior in Figs. 3(a) and 3(d)
except the trajectories are more spread out in Fig. 3(d) where t
is large. For smaller τ and large t in Fig. 3(c) the swim velocity
is large and especially for large C1 the trajectories spread out
significantly.

V. ENTROPY PRODUCTION FOR AOUP PARTICLES

The nonequilibrium nature of active systems is reflected in
the time irreversibility of their trajectories. This is quantified
by the entropy production which is the ratio of the probabili-
ties of the forward and the backward paths [43]

exp(
) = p(x, η|x0, η0)

p̃(x̃, η̃|x̃0, η̃0)
. (13)

To obtain the time-reversed trajectory for a time interval t , we
are left with the choice of the noise η being even or odd under
time reversal η̃±(s) = ±η(t − s). The authors of Ref. [42]

(a) (b)(a)

x(
s)

s s

(b)

x(
s)

(c) (d)

x(
s)

s s

x(
s)

FIG. 4. The time reversed trajectories in Eq. (14) corresponding
to the two parities for τ = 10 and C1 = 10. Trajectories in (a) and
(c) do not pass through the fixed point with η(0) = 0 and in (b) and
(d) pass through the fixed point. (a,b) t = 1 and (c,d) t = 10.

interpreted the active fluctuations as external forces to have
even parity for passive particles in an active bath, while having
odd parity for the case of self-propelled particles representing
the velocity of the particle. This interpretation of parity was
contested in Ref. [63]. The authors of Ref. [64] obtained the
entropy production without explicit assumptions about the
parity under time reversal. Here we consider both the parities
for the active noise and analyze the time-reversed trajectories
in both cases. The time-reversed trajectories according to the
two parities, x−(x+) for odd (even) parity, of the active noise
are

− ˙̃x−(s) +
√

2Daη̃−(s) = C1,

τ 2 ¨̃η−(s) = −η̃−(s) −
√

2Da

2D
C1,

− ˙̃x+(s) −
√

2Daη̃+(s) = C1,

τ 2 ¨̃η+(s) = η̃+(s) −
√

2Da

2D
C1. (14)

The plot of the time-reversed trajectories under odd and
even parities are shown in Fig. 4. When t < τ both time-
reversed trajectories are the same regardless of whether they
are passing through the fixed point [Figs. 4(a) and 4(b)]. They
are very different when t ≈ τ as seen in Figs. 4(c) and 4(d).
In the odd parity case, the entropy production from Eq. (13)
reads [42]


− =
∫ t

0
ds

[
1

D
f (s)(ẋ(s) −

√
2Daη(s)) − 2τ η̇(s)η(s)

]
.

(15)

In particular, for a free active particle in one dimension we get


−(t ) = −
∫ t

0
ds2τ η̇(s)η(s) = τ

(
η2

0 − η2
f

)
. (16)

We recover the passive trajectory in Eq. (9) in the large τ

limit of the MPP in Eq. (10) when η0 ≈ 0 and η f ≈ 0. Equa-
tion (16) too shows that the entropy production is zero along
the MPP. Using 〈η̇(s)η(s)〉 = − 1

2τ 2 [42], we get 〈
−(t )〉 = t
τ

.
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FIG. 5. The entropy production along the MPP (black) for τ =
100 with optimal noises (η(o)

0 , η
(o)
f ) as in Fig. 2 and the extremum

paths with suboptimal noises.

In the case of even parity, the entropy production from
Eq. (13) becomes


+ =
∫ t

0
ds

[
1

D
ẋ(s)(f (s) +

√
2Daη(s)) − 2τ η̇(s)η(s)

]
,

(17)

which for the free active particle in one dimension is


+ =
∫ t

0
ds

[
1

D
ẋ(s)

√
2Daη(s) − 2τ η̇(s)η(s)

]
. (18)

Entropy production is a measure of how far the system is
from equilibrium. In the long time limit t → ∞, the entropy
production from Eq. (18) along the extremum trajectories in
Eq. (B1) saturates as seen in Fig. 5. Similar to the behavior
of 
− in Eq. (16) vanishes along the MPP, 
+ also vanishes
along the MPP as seen in Fig. 5(a). This is because the optimal
noise (η(o)

0 , η
(o)
f ) is small at large τ (Fig. 1) in which case

we recover the passive particle in a thermal bath limit as
discussed in Sec. II. Thus for large τ , the system behaves as an
equilibrium system for which entropy production is zero. athe
larger the deviation from the optimal noise, the larger is the
entropy production thus driving the system away from equilib-
rium. The average entropy production 〈
+(t )〉 = (1 + Da

D ) t
τ

as derived in Appendix C increases linearly with time very
different from the saturation behavior of 
+ which is a result
of fixed end points.

VI. CONCLUSION

We studied the MPP for AOUP active systems. OM for-
malism was used to obtain the transition probabilities of these
systems. The extremum of the OM integral was then ob-
tained using the variational principle similar to the Lagrange
equation in classical mechanics to obtain the extremum path
of the AOUP particles. Out of all the extremum paths, the
MPPs are the ones that have the minimum OM integral
value.

Free AOUP dynamics is analytically solvable. The ex-
tremum paths were solved for fixed start and end points of
the trajectories, x0 and x f , and fixed start and end OU noise η0

and η f . We explored the phase space of the extremum paths by
varying the persistence time τ and the noise η0 and η f keeping
the diffusion constants D and Da constant. Unlike a passive
particle which moves in a straight line from x0 and x f , the
AOUP particle followed a curved path which approached the
passive trajectory at large τ . The AOUPs with higher swim
velocities deviated more from the straight line trajectories.
The AOUP had an unstable fixed point which depended only
on the active noise and particles passing through the fixed
point slows down resulting in less curved trajectories. The
entropy production along the extremum trajectories saturated
to a maximum value, unlike the average noise that increased
linearly with time. The active noise can be odd or even under
time reversal and accordingly the trajectories of the AOUP
were different. We also looked at the differences in entropy
production along both types of trajectories. This work would
be useful to control the trajectories of artificial active colloidal
systems.
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APPENDIX A: DERIVATION OF THE
TRANSITION PROBABILITY

The combined variable y = (x, η) for N particles follows
the Langevin equation by combining Eq. (1) and τ η̇i(t ) =
−ηi(t ) + ξi(t ),

ẏiα = Fiα + ξiα, (A1)

with Fi = (vi + √
2Daηi,− 1

τ
ηi ). The Gaussian white noise

〈ξiα〉 = 0 and 〈ξiα (t )ξ jβ (0)〉 = 2Diα, jβδ(t ), where Diα, jβ = 0
is the diffusion tensor. Following Refs. [41,60] we obtain for
the path probability of a given trajectory y(s) starting at y0 and
ending at y(t ) as

p[y(t )|y0] ∝ exp

[
−

∫ t

0

ds

4
{Fiα[y(s)] − ẏiα}

× D−1
iα jβ{Fjβ [y(s)] − ẏ jβ}

]
. (A2)

For free AOUP particle the diffusion tensor is

Diα jβ = δi j

(
D 0
0 1

)
, (A3)

which gives Eq. (3) in the text.
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APPENDIX B: EXACT SOLUTION OF EQ. (8)

The solution for the extremum path and the corresponding noise of Eq. (8) that satisfies the boundary conditions read

x(s) = csch(t/(2τ ))2[Daτ {(−x0 + x f ) cosh(s/τ ) + (x0 − x f ) cosh[(s − t )/τ ] + (x0 + x f )

× [−1 + cosh(t/τ )]} + D
√

2Daτ {−η f s + η f t − sη0 − η f t cosh(s/τ ) + tη0 cosh[(s − t )/τ ]

+ (η f s + sη0 − tη0) cosh(t/τ )} + D[−tx0 + s(x0 − x f )] sinh(t/τ ) + Da[−tx0 + s(x0 − x f )]

× sinh(t/τ ) +
√

2D3/2
a τ {−η f s + η f t − sη0 − η f t cosh(s/τ ) + tη0 cosh[(s − t )/τ ] + (η f − η0)τ

× sinh(s/τ ) + cosh(t/τ )[η f s + sη0 − tη0 + (−η f + η0)τ sinh(s/τ )] + 2(η f − η0)τ sinh[s/(2τ )]2

× sinh(t/τ )}]/{4Daτ − 2(D + Da)t coth[t/(2τ )]}, (B1)

while for the noise we get

η(s) = et/τ [2Da(η f + η0)τ + 2Da(η f − η0)τ cosh[(s − t )/τ ] − 2Da(η f + η0)τ cosh(t/τ )

+ 2(D + Da)t[η f − η0 cosh(t/τ )] sinh(s/τ ) −
√

2Da(x0 − x f ){− sinh(s/τ ) + sinh[(s − t )/τ ]

+ sinh(t/τ )} + 2 cosh(s/τ )[Da(−η f + η0)τ + (D + Da)tη0 sinh(t/τ )]]/[−(D + Da)t − 2Daτ

+ 4Daet/τ τ + e(2t )/τ [(D + Da)t − 2Daτ ]]. (B2)

APPENDIX C: AVERAGE ENTROPY PRODUCTION ALONG A TRAJECTORY

Applying the expression of the Langevin equation in Eq. (1) in one dimension for a single particle to Eq. (C1) we get

〈
〉 =
∫ t

0
ds

1

D
〈(ẋ(s)

√
2Daη(s) − 2τ η̇(s)η(s))〉

=
∫ t

0
ds

1

τ

(
Da

D
+ 1

)

= t

τ

(
Da

D
+ 1

)
. (C1)

Here we use ξ and η in Eq. (1) are uncorrelated, and 〈η(s)η(s′〉 = 1
2τ

exp(−|s − s′|/τ ).
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