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The Ornstein-Uhlenbeck process is interpreted as Brownian motion in a harmonic potential. This Gaussian
Markov process has a bounded variance and admits a stationary probability distribution, in contrast to the
standard Brownian motion. It also tends to a drift towards its mean function, and such a process is called mean
reverting. Two examples of the generalized Ornstein-Uhlenbeck process are considered. In the first one, we study
the Ornstein-Uhlenbeck process on a comb model, as an example of the harmonically bounded random motion in
the topologically constrained geometry. The main dynamical characteristics (as the first and the second moments)
and the probability density function are studied in the framework of both the Langevin stochastic equation and
the Fokker-Planck equation. The second example is devoted to the study of the effects of stochastic resetting on
the Ornstein-Uhlenbeck process, including stochastic resetting in the comb geometry. Here the nonequilibrium
stationary state is the main question in task, where the two divergent forces, namely, the resetting and the drift
towards the mean, lead to compelling results in the cases of both the Ornstein-Uhlenbeck process with resetting
and its generalization on the two-dimensional comb structure.
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I. INTRODUCTION

Statistical treatment of Brownian motion independently
suggested by Einstein [1] and Smoluchowski [2] triggered
extensive theoretical and mathematical studies of Brownian
motion. In particular, the Ornstein-Uhlenbeck (O-U) process
is one of such phenomena. With the method introduced by
Ornstein [3] for the velocity stochastic equation, among other
remarkable results, Uhlenbeck and Ornstein were able to ob-
tained an exact expression for the mean-squared displacement
(MSD) of a harmonically bound particle in Brownian mo-
tion as a function of the time and the initial deviation. The
latter phenomenon is known as the O-U process [4]. They
also expressed the relation to the Fokker-Planck equation that
summarized the results related to the universality of Brownian
motion as the Markov nature phenomenon.

In contemporary studies, it has been established that non-
Markov anomalous transport is a more general and ubiquitous
topic across different fields of science. This issue also re-
lates to generalization of the O-U approach to non-Markov
random processes, and this generalization of the O-U pro-
cess has attracted significant attention in many aspects from
non-Markovian Langevin equations [5] to the spectral prop-
erties of the propagator of the Fokker-Planck equation [6].
Nowadays, the strong motivation for studying the O-U

process and its generalization relates to anomalous diffu-
sion in inhomogeneous media leading to fractional transport
[7–10] and turbulence [11,12] and to its applications in fi-
nancial modeling [13]. It also includes a general aspect of
a relation between random matrix theory and Gaussian pro-
cesses with long-range correlations [14].

The main objective of the paper is a detailed consideration
of the O-U process with and without resetting, which takes
place in the comb geometry. To the best of our knowledge,
the first work on O-U process with resetting was by Pal [15],
where the author analyzed the probability density function
(PDF) and the nonequilibrium stationary state (NESS). Even
though the standard and generalized O-U processes (with and
without resetting) have been examined [16–20], a detailed
study of the influence of geometry like a comb model and its
anomalous properties is still an open question, which can shed
light on a realization of the harmonically bounded random
process in the topologically constrained geometry.

A one-dimensional Brownian motion affected by Poisso-
nian resetting with a constant resetting rate is introduced
in the seminal paper [21]. The issue of stochastic resetting,
which is extensively explored in various diffusion processes,
is well reviewed; see, e.g., Ref. [22]. In particular, stochastic
resetting is extensively explored in search processes [23–25],
population dynamics [26], Michaelis-Menten enzymatic
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FIG. 1. Illustration of a comblike structure.

reactions [27], human behavior of finding resources [28], var-
ious diffusion processes [29–31], geometric Brownian motion
[32–34], one-dimensional lattices [35,36], and complex net-
works [37,38], as well as, e.g., in quantum systems [39–42].
Experimental realizations of the first-passage under stochastic
resetting has been demonstrated as well, using holographic
optical tweezers [43] or laser traps [44].

The continuous time random walk (CTRW) for the topo-
logically constrained two-dimensional case, known as a comb
model, is extensively studied, and many various results are
well reviewed; see Refs. [45,46], where various realizations
of anomalous and heterogeneous diffusion processes are con-
sidered with an explanation of the influence of the geometry
on the anomalous transport. The comb structure consists of
a main backbone along the x direction and continuously dis-
tributed fingers along the y direction; see Fig. 1. The particle
moving along the backbone can be trapped in the fingers,
which leads to anomalous diffusion along the backbone. This
process can be described in the framework of the CTRW
theory, where the returning probability density to the back-
bone of the Brownian particle moving along the fingers can
be considered as a waiting time probability for the particle
movement along the backbone. Therefore, the waiting time
probability scales as t−3/2, which results in subdiffusion along
the backbone with the MSD scaled as t1/2.

The comb model has been introduced to investigate anoma-
lous diffusion in low-dimensional percolation clusters [47,48].
Nowadays, comb model and its generalizations have many
applications, for the understanding turbulent diffusion [49]
and continuous [50] and discrete [51] non-Markovian random
walks, including random walks on comb with ramified teeth
[52], to describe anomalous diffusion in spiny dendrites [53],
for describing transport properties in porous discrete media
[54] and the mechanism of superdiffusion of ultracold atoms
in a one-dimensional polarization optical lattice [55] observed
experimentally in Ref. [56].

With these implications in mind, we suggest two main
generalizations of these random processes. The first one is the
problem of a diffusive particle governed by the O-U process
in the comblike structures. Here we are giving an insight
on the anomalous transport derived from the combination of
anomalous diffusion, as a consequence of the comb geome-
try and the mean-reverting property of the process along the

backbone. This interplay between the mean-reverting property
of the Markovian process along the backbone and Brownian
motion along the fingers introduces an additional memory
to the Markovian O-U process, transforming it to a very
specific anomalous, non-Markovian transport in this topolog-
ically constrained geometry. The dynamics of the averaged
values are studied in detail both numerically and analytically.
The second problem at hand is the introduction of resetting
in this specific anomalous and topologically constrained O-U
process. The main issue here is a creation of a NESS by
resetting inside the anomalous and stationary O-U process,
which by itself is a very specific process.

Therefore, investigations of these generalizations of the
O-U processes can lead to compelling results and conclu-
sions that will be of great importance for further studies of
anomalous diffusion and its application in physics and fi-
nance, involving the O-U process, as well [7,8,11–13]. For
example, it can be helpful in description of financial models
such as the models of interest rates, currency exchange rates,
and commodity prices [13].

The paper is organized as follows. In Sec. II we set the
scene for the generalization of the standard O-U process. The
main properties of the O-U theory are briefly discussed. In
Sec. III we present some original results on resetting in the O-
U stationary transport. By observing the NESS and discussing
its properties analytically and numerically, the corresponding
Langevin equation is studied numerically, as well. In Sec. IV
analytical and numerical analysis for the O-U process on the
comb is suggested. We are presenting the results for the O-U
particle undergoing anomalous diffusion, due to the comb-
like structure, and the properties arising from that behavior
are studied. The influence of stochastic resetting on the O-U
process on the comb is investigated in Sec. V. In Sec. VI the
main topological structure is a fractal grid, where the O-U
process with resetting takes place. A summary of the obtained
results is presented in Sec. VII. Additional information for
the presented analysis on the solution to the Fokker-Planck
equation of the standard O-U process and basic definitions and
relations of Hermite function, fractional integral and deriva-
tives, and the Mittag-Leffler functions are presented in five
Appendixes.

II. O-U PROCESS

In this section we set the scene for the generalizations of
the O-U process. We do that by laying out the results for the
PDF and the first two moments of the displacement for the
standard O-U process, as well explaining the properties of
the process. We define the standard O-U process in terms of
the modified stochastic overdamped Langevin equation (see
Refs. [4,57,58]),

ẋ(t ) = λ[μ − x(t )] + σ ξ (t ), (1)

where λ is a parameter called the rate of mean reversion and
it represents the magnitude of the drift, ξ (t ) is a white noise
of zero mean and correlation 〈ξ (t )ξ (t ′)〉 = δ(t − t ′), and σ

is the standard deviation. Larger values of λ will cause the
process to mean revert more intensely. The parameter μ is the
long-term mean value, the point toward which the process is
driven. Whenever the x(t ) is smaller than the long-term mean
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value μ, the drift is positive and the process is pulling the par-
ticle towards the long-term mean, if the x(t ) is greater than μ,
the opposite happens and the drift is negative. The first part of
the r.h.s. of Eq. (1), is the deterministic or the driving part
of the process, and it is what causes the mean reversion.
The second part of the r.h.s. of the Langevin equation is the
probabilistic part, due to the white noise.

The O-U process can also be defined with its corresponding
Fokker-Planck equation in the following way:

∂

∂t
P(x, t ) = LFPP(x, t ), (2)

with the initial condition P(x, t = 0) = δ(x − x0) and zero
boundary conditions at infinity both for the PDF P(x, t ) and
its first space derivative, where

LFP ≡ λ
∂

∂x
(x − μ) + σ 2

2

∂2

∂x2
(3)

is the Fokker-Planck operator. The solution to the partial dif-
ferential equation for the O-U process (2) can be obtained by
the method of characteristics in Fourier space and has the form
(see Appendix A)

P0(x, t ) =
exp

(
− [x−x0e−λt −μ(1−e−λt )]2

σ2
λ

e−2λt (e2λt −1)

)
√

2π σ 2

2λ
e−2λt (e2λt − 1)

. (4)

From the PDF one can calculate the mean and the MSD

〈x(t )〉 = x0 e−λt + μ(1 − e−λt ), (5)

〈x2(t )〉 = x2
0 e−2λt + μ2(1 + e−2λt ) − 2μ2 e−λt

+ σ 2

2λ
(1 − e−2λt ) + 2μx0(1 − e−λt )e−λt , (6)

respectively. Therefore, the long-time limit of the MSD satu-
rates to 〈x2(t )〉 ∼ μ2 + σ 2

2λ
due to the confining potential. For

λ = 0, the MSD corresponds to normal diffusion, 〈x2(t )〉 =
x2

0 + σ 2t . We also find the variance,

〈[x(t ) − 〈x(t )〉]2〉 = σ 2

2λ
(1 − e−2λt ). (7)

III. O-U PROCESS WITH RESETTING

Let us consider the O-U process in the presence of stochas-
tic Poissonian resetting [21]. This means that between two
consecutive resetting events, the particle undergoes the O-U
process driven towards the long-term mean value μ. The re-
setting of the particle is done to the initial position x = x0,
and the process is randomly repeated. The interplay of these
two random phenomena results in a completely new renewal
process with effects different from the standard O-U process.

A. Langevin equation approach

To define the one-dimensional O-U process with a Poisso-
nian resetting, we take into account the Langevin equation (1)
for the O-U process and follow the concept of Poissonian
resetting, namely, let us consider resetting with the rate r to a
fixed position. In our case, it is the initial position x(0) = x0.
If we suppose that at the time t = τ	t the random particle is

at the position x(t ) = x(τ	t ), then for the next small time
interval 	t its dynamics is defined either by reset to the
position x0 with the probability r	t or by the O-U motion
according to the Langevin (1). Therefore, this dichotomous
process can be simulated in the framework of the discretized
Langevin equation,

x(τ	t )=
⎧⎨
⎩

x(0), with prob. r 	t,
x[(τ − 1)	t] + λ [μ − x[(τ − 1)	t]]	t

+σ
√

	t ξ [(τ − 1)	t], with prob. (1 − r 	t )
,

(8)

where x(0) = x0 is the initial particle’s position. Here we
introduce the probability r	t for the diffusing particle to be
reset to the initial position x0, and therefore the process is
starting from the beginning, and, respectively, the probability
(1 − r	t ) for the process to continue evolving according to
the Langevin equation (8) [21,22]. The properties of the dis-
cretized white noise are defined by zero mean 〈ξ (τ	t )〉 = 0,
and the correlation function 〈ξ (τ	t )ξ (τ ′	t )〉 = δτ,τ ′ .

Results of the numerical simulations of the diffusive tra-
jectories according to Eq. (8) without resetting (left panel
with r = 0) and with resetting (right panel with r = 1) are
presented in Fig. 2. The O-U trajectory tends to random os-
cillations around its long-term mean value μ, while random
resets change the trajectory drastically. That eventually leads
to a new equation with the solution for the PDF Pr (x, t ).

B. PDF and NESS

From the Langevin description of the O-U process with
stochastic resetting one can find the governing Fokker-Planck
equation, which reads

∂

∂t
Pr (x, t ) = LFPPr (x, t ) − r Pr (x, t ) + r δ(x − x0), (9)

with the initial condition Pr (x, t = 0) = P(x, t = 0) =
δ(x−x0) and zero boundary conditions at infinity. Here LFP is
defined in Eq. (3), and −r is the loss of the probability at the
position x due to the reset to the initial position x = x0, while
the gain of the probability takes place with the rate +r at the
initial position x0.

The Fokker-Planck equation (9) can be rewritten as follows
(see Appendix B):

∂

∂t
Pr (x, t ) = d

dt

∫ t

0
η(t − t ′) LFPPr (x, t ′) dt ′, (10)

where η(t ) = e−rt . It can be solved by using the subordination
approach (see Appendix B), from which one can write the
following renewal equation [22,59–61]:

Pr (x, t ) = e−rt P0(x, t ) +
∫ t

0
r e−rt ′

P0(x, t ′) dt ′. (11)

The temporal evolution of the PDFs without and with
resetting according to Eq. (11) are presented in Figs. 3(a)
and 3(b), respectively. The simulated PDFs for the different
values of the mean-reverting rate at time t = 5 without and
with resetting are shown in Figs. 3(c) and 3(d), respectively.
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FIG. 2. The O-U trajectories without and with resetting (r = 1) according to Eq. (8) for τ	t ∈ (0, T ). We set x0 = 0, μ = 5, λ = 1, σ = 1,
	t = 0.01, T = 10.

From Eq. (11), we obtain that in the long-time limit the
system reaches a NESS, given by

Pst
r (x) = lim

t→∞ Pr (x, t )

=
∫ ∞

0
r e−rt ′

P0(x, t ′) dt ′ = r P̂0(x, r). (12)

This NESS can be find by using that in the long-time limit,
t → ∞, the time derivative in Eq. (9) tends to zero, that is,
∂
∂t Pr (x, t ) = 0, which yields the following equation:

0 = LFPPst
r (x) − r Pst

r (x) + r δ(x − x0). (13)

This equation can be solved by following the procedure pre-
sented in [15]; see Appendix D.

FIG. 3. Simulations of the PDF of the O-U process according to the Langevin equation (8); (a) Evolution of the PDF for x0 = 0, r = 0,
μ = 5, λ = 1, σ = 1, 	t = 0.01, for an initial ensemble of N = 104 trajectories. (b) Same as (a) with the resetting rate r = 1. (c) PDF for
different values of the rate of mean reversion λ and x0 = 0, t = 5, μ = 0, σ = 1, 	t = 0.01, N = 104 with resetting rate r = 0. (d) Same as
(c) with the resetting rate r = 1.
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The NESS, which is a solution of Eq. (13), can be also
computed numerically and confirmed with Monte Carlo sim-
ulations. The equation used for numerical calculation of the
NESS is

0 = LFPPst
r (x) − r Pst

r (x) + r

a
√

π
e− (x−x0 )2

a2 , (14)

where the Gaussian function with a = 0.001 approximates the
Dirac δ function. The methods used here for the numerical
computation of the PDF are the “shooting and fourth-order
Runge-Kutta methods”; see Ref. [62]. The “shooting method”
is used for approximating boundary-value problems by initial
value problems. With this method, the missing initial con-
ditions are guessed, and then the fourth-order Runge-Kutta
method is used for solving the approximated initial value
problem. The results of the numerical calculations are pre-
sented in Fig. 4, where the numerical results obtained by the
“shooting and fourth-order Runge-Kutta methods” are shown
by lines, while the simulation results are shown by markers.
The NESS, as the PDF, are obtained by the Monte Carlo
simulation of the Langevin equation (8) for different values
of the resetting rate r [see Fig. 4(a)] and different mean-
reverting rates λ [see Fig. 4(b)]. The position distribution
at any time τ	t is roughly approximated from a histogram
of an ensemble of N = 104 particles. In particular, P(x) ≈
hist[bin(x)]/

∑
bin hist(bin), where bin(x) is the bin containing

a specific position x and hist(y) is the number of particles
in the yth bin. As a convention, in bin(x), we calculate the
average number of particle positions between two successive
time steps.

As follows from the numerical results and confirmed by the
simulations, the two cases can be distinguished. In the first
case, when r � λ, it is evident that there is a singular point
with a peak at x = x0, and as the value of the mean-reverting
coefficient λ increases, the stationary probability distribution
around the long-term mean value μ increases as well. In the
second case when r < λ, the singular point at the reset point
x = x0 appears again, but now the peak of the function has
moved away from the reset point and is around the long-term
mean value μ. Note also that the greater the coefficient λ is,
the closer the peak is to the point x = μ.

C. MSD

The MSD can be defined from the renewal (11) as well. It
reads

〈x2(t )〉r = e−rt 〈x2(t )〉 +
∫ t

0
r e−rt ′ 〈x2(t ′)〉 dt ′, (15)

where 〈x2(t )〉 is the MSD without resetting (6). Performing
the Laplace transform of Eq. (15) and then after small algebra
and the inverse Laplace transform, we obtain

〈x2(t )〉r = σ 2 + r x2
0

r + 2λ
+

(
x2

0 − σ 2

2λ

)
2λ

r + 2λ
e−(r+2λ)t

+ 2λ(λμ2 + μrx0)

(r + λ)(r + 2λ)
[1 − e−(r+2λ)t ]. (16)

FIG. 4. Numerical results (lines) and simulations (markers) of
the NESS (12): (a) for different values of r = {0, 1} and (b) different
values of λ = {0, 0.5, 1} with parameters σ = 1, μ = 3, dt = 10−3,
r = 0.5, x0 = 0 and an initial ensemble of N = 104 trajectories.
(c) We set x0 = 1, σ = 1, μ = {0, 1}, λ = 1, dt = 10−3, r = 0.6,
and an initial ensemble of N = 104 trajectories; for μ = 0, we get
the same results given by Pal [15].

In the long-time limit (t → ∞), the MSD (16) reads

〈x2(t )〉r ∼ σ 2 + r x2
0

r + 2λ
+ 2λ(λμ2 + μrx0)

(r + λ)(r + 2λ)
. (17)
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FIG. 5. (a) MSD as a function of time for the O-U process with different resetting rates and μ = 0. (b) Same as (a) with μ = 1. (c) Long-
time behavior of the PDF with different resetting rates and μ = 0. (d) Same as (c) with μ = 1. We use σ 2 = 1, λ = 1, T = 1000, dt = 0.01,
and an initial ensemble of N = 104 trajectories. For the Monte Carlo simulations, the Langevin Eq. (8) is used, and Eq. (16) for the analytical
solution of the MSD [dashed lines in (a) and (b)]. Here the analytical solution of the MSD is being used to acquire precise simulation
parameters, needed for plotting the PDF.

For μ = 0, Eq. (16) turns to

〈x2(t )〉r = σ 2 + r x2
0

r + 2λ
+

(
x2

0 − σ 2

2λ

)
2λ

r + 2λ
e−(r+2λ)t , (18)

and the long-time limit yields

〈x2(t )〉r ∼ σ 2 + r x2
0

r + 2λ
,

which for r = 0 recovers the O-U result without resetting,

〈x2(t )〉r=0 = σ 2

2λ
+

(
x2

0 − σ 2

2λ

)
e−2λt .

The MSDs (16) for different resetting rates are depicted in
Figs. 5(a) and 5(b) with μ = 0 and μ = 1, respectively, and
the results are compared with those obtained by simulations.
The MSD at some time τ	t , where τ is an integer and 	t is a
discrete time increment, is calculated as an ensemble average
of N = 104 particles. As is seen from the numerical results,
the influence of the long-term mean value μ on the MSD
is straightforward: the large the μ, the larger the MSD. The
long-time behavior of the PDFs is presented in Figs. 5(c) and
5(d) for μ = 0 and μ = 1, respectively. Another important
result relates to the resetting rate r; namely, for the larger r,
the probability of finding the particle near the initial condition

is larger, and correspondingly the smaller the MSD. Corre-
spondingly, for r = 0, the maximum of the PDF is at x ∼ μ.

IV. ORNSTEIN-UHLENBECK PROCESS ON COMB

In this section we employ a comb model for the O-U pro-
cess as a further extension of the comb model in the presence
of confining branches [63]. We follow the phenomenological
Fokker-Planck equation, suggested in Ref. [47] and exten-
sively explored in a variety of applications; see Refs. [45,46].
According to the comb model, the two-dimensional trans-
port consists of two independent processes, shown in Fig. 6.
The first is the O-U process, which takes place along
the x axis exactly at y = 0, and this axis is called the
backbone, and the corresponding motion is the backbone
transport. In the y direction, there is Brownian motion
with the diffusion coefficient Dy = σ 2

y /2, which is the side-
branched motion, and the direction is called fingers or side
branches. The corresponding Fokker-Planck equation for this
process is

∂

∂t
P(x, y, t ) = δ(y) LFP,xP(x, y, t ) + Dy

∂2

∂y2
P(x, y, t ), (19)

with the initial condition P(x, y, t = 0) = δ(x − x0) δ(y) and
zero boundary conditions at infinity. The Fokker-Planck
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FIG. 6. Two-dimensional comb structure. The backbone along
the x axis has continuously distributed fingers (or branches) along
the y axis. The O-U transport takes place along the backbone, while
Brownian motion is in fingers.

operator on the backbone reads

LFP,x ≡ λ
∂

∂x
(x − μ) + Dx

∂2

∂x2
, (20)

where Dx = σ 2
x /2. Note that the complete form of the Fokker-

Planck operator contains δ(y) as well. We, however, keep its
present form of Eq. (3) to separate the O-U process and to
stress it in the ensuing analysis. Here λδ(y) now is the rate of
mean reversion, such that λ is the velocity of mean reversion.
Bearing this change in mind, we also admit that the backbone
diffusion coefficient is Dxδ(y). In what follows we keep the
same notation for the velocity of mean reversion to stress the
O-U process along the backbone.

A. Fokker-Planck equations for the marginal PDFs

Inferring the differential equations for the movement of
the particle along the backbone and the fingers separately, we
introduce the corresponding marginal PDFs as follows:

p1(x, t ) =
∫ ∞

−∞
P(x, y, t ) dy (21)

and

p2(y, t ) =
∫ ∞

−∞
P(x, y, t ) dx. (22)

The Laplace transform of Eq. (19) yields

s P̂(x, y, s) − δ(x − x0) δ(y) = δ(y) LFP,xP̂(x, y, s)

+ Dy
∂2

∂y2
P̂(x, y, s). (23)

Following Refs. [47] and [49], the solution P̂(x, y, s) is pre-
sented in the following form:

P̂(x, y, s) = ĝ(x, s) e−r̂(x,s) |y|, (24)

which yields the backbone marginal PDF as follows [do not
confuse r̂(x, s) with the reset rate r]:

p̂1(x, s) =
∫ ∞

−∞
ĝ(x, s) e−r̂(x,s)|y| dy = 2ĝ(x, s)

r̂(x, s)
. (25)

Taking into account the expression for the step sign function
d
dy |y| = 2θ (y) − 1, where θ (y) is the Heaviside theta function,
one obtains

∂

∂y
P̂(x, y, s) = −ĝ(x, s) r̂(x, s) e−r̂(x,s)|y|[2θ (y) − 1]. (26)

By using the property of the Heaviside function: d
dy θ (y) =

δ(y), we obtain

∂2

∂y2
P̂(x, y, s) = − r̂(x, s) ĝ(x, s) {2δ(y)

− r̂(x, s)[2θ (y) − 1]2} e−r̂(x,s)|y|. (27)

Taking into account Eqs. (24) and (27) and using the property
f (y) δ(y) = f (0) δ(y), we obtain Eq. (23) as follows:

s ĝ(x, s) e−r̂(x,s)|y| − δ(x − x0) δ(y) = λ δ(y) ĝ(x, s)

+ λ δ(y) (x − μ)
∂

∂x
ĝ(x, s) + Dx δ(y)

∂2

∂x2
ĝ(x, s)

+ Dy r̂2(x, s) ĝ(x, s) e−r̂(x,s)|y| − 2 δ(y)Dy r̂(x, s) ĝ(x, s).
(28)

Thus, we arrive at the system of two equations

s = Dy r̂2(x, s) → r̂(x, s) =
√

s

Dy
(29)

and

−δ(x − x0) = λ ĝ(x, s) + λ (x − μ)
∂

∂x
ĝ(x, s)

+ Dx
∂2

∂x2
ĝ(x, s) − 2Dy r̂(x, s) ĝ(x, s). (30)

From Eqs. (25) and (29) we derive

ĝ(x, s) = 1

2

√
s

Dy
p̂1(x, s). (31)

Now by substituting for ĝ(x, s) in Eq. (30) we get

s1/2 p̂1(x, s) − s−1/2 δ(x − x0) = λ

2
√
Dy

p̂1(x, s)

+ λ (x − μ)

2
√
Dy

∂

∂x
p̂1(x, s) + Dx

2
√
Dy

∂2

∂x2
p̂1(x, s),

(32)

which by the inverse Laplace transform yields the following
time fractional diffusion equation:

∂

∂t
p1(x, t ) = 1

2
√
Dy

RLD1/2
t LFP,x p1(x, t ), (33)

where RLDμ
t is the Riemann-Liouville fractional derivative

(E3) of order μ = 1/2. It can be also written in terms of the
Caputo fractional derivative,

CD1/2
t p1(x, t ) = 1

2
√
Dy

LFP,x p1(x, t ), (34)

where CDμ
t is the Caputo fractional derivative (E4) of order

μ = 1/2. Analytical properties of the fractional O-U process,
described by the fractional Fokker-Planck equation (33), has
been discussed in great detail in Ref. [64] and solved by the

054129-7



PECE TRAJANOVSKI et al. PHYSICAL REVIEW E 107, 054129 (2023)

method of separation of variables in terms of infinite series in
Hermite polynomials.

Integrating Eq. (19) with respect to x, we obtain the
Fokker-Planck equation for the marginal PDF along fingers,
which reads

∂

∂t
p2(y, t ) = Dy

∂2

∂y2
p2(y, t ). (35)

The solution to this equation is the Gaussian PDF, as expected,
since the particle performs Brownian motion along the fingers.

B. First-moment and MSD

The MSD along the backbone can be found by multiplying
both sides of the Eq. (34) with x2 and integrating with respect
to x,

CD1/2
t 〈x2(t )〉c = λ

2
√
Dy

∫ ∞

−∞
x2 ∂

∂x
[(x − μ) p1(x, t )]dx

+ Dx

2
√
Dy

∫ ∞

−∞
x2 ∂2

∂x2
p1(x, t ) dx, (36)

which yields

CD1/2
t 〈x2(t )〉c = − λ√

Dy
〈x2(t )〉c

+ λμ

2
√
Dy

〈x(t )〉c + Dx√
Dy

. (37)

The equation for the mean value 〈x(t )〉 is obtained in the
same way:

CD1/2
t 〈x(t )〉c = − λ

2
√
Dy

〈x(t )〉c + λμ

2
√
Dy

. (38)

In Laplace space, the mean value is

〈x̂(s)〉c = x0 s−1/2

s1/2 + λ

2
√

Dy

+ λμ

2
√
Dy

s−1

s1/2 + λ

2
√

Dy

. (39)

Performing the inverse Laplace transform, we get

〈x(t )〉c = x0 E1/2

(
− λ

2
√
Dy

t1/2

)

+ λμ

2
√
Dy

t1/2 E1/2,3/2

(
− λ

2
√
Dy

t1/2

)
, (40)

where Eα (z) and Eα,β (z) are the one- and two-parameter
Mittag-Leffler functions, respectively; see Eqs. (E9) and (E8)
in Appendix E.

Now the exact expression for the MSD in Eq. (37) can be
obtained. Performing the Laplace transform of Eq. (37) and
taking into account Eq. (39), we obtain the Laplace image of

the MSD as follows:

〈x̂2(s)〉c = x2
0

s−1/2

s1/2 + λ√
Dy

+ Dx√
Dy

s−1

s1/2 + λ√
Dy

+ λμx0√
Dy

s−1/2(
s1/2 + λ√

Dy

)(
s1/2 + λ

2
√

Dy

)

+ λ2μ2

2
√
Dy

s−1(
s1/2 + λ√

Dy

)(
s1/2 + λ

2
√

Dy

) . (41)

The inverse Laplace transform yields the expression for the
MSD along the backbone,

〈x2(t )〉c = x2
0 E1/2

(
− λ√

Dy
t1/2

)

+ Dx√
Dy

t1/2 E1/2,3/2

(
− λ√

Dy
t1/2

)

+ λμx0

2
√
Dy

t1/2 E(1/2,1),3/2

(
− 3λ

2
√
Dy

t1/2 λ2

2Dy
t

)

+ λ2μ2

4Dy
t E(1/2,1),2

(
− 3λ

2
√
Dy

t1/2,− λ2

2Dy
t

)
, (42)

where E(α1,α2 ),β (z; λ1, λ2) is the multinomial Mittag-Leffler
function; see Eq. (E13). The long-time limit yields the satu-
ration behavior of the MSD,

〈x2(t )〉c ∼ μ2
√
Dy + Dx

λ
. (43)

However, the transition to the constant MSD is slower (of
the power-law decay) than the one for the one-dimensional
O-U process (of the exponential decay) due to the fact that
the particle is hindered in the fingers before it turns back to
the backbone transport. The power-law decay to the constant
value can be shown by asymptotic analysis of the exact MSD
(43). For λ = 0 we recover the result for the comb model,
〈x2(t )〉c = x2

0 + Dx√
Dy

t1/2

�(3/2) , as expected.

V. ORNSTEIN-UHLENBECK PROCESS ON COMB
WITH RESETTING

In this section we extend the problem of the O-U pro-
cess on a comb by introducing stochastic resetting [65]. We
consider resets to the initial position (x, y) = (x0, 0) with the
resetting rate r. This results in the following Fokker-Planck
equation:

∂

∂t
Pr (x, y, t ) = δ(y) LFP,xPr (x, y, t ) + σ 2

y

2

∂2

∂y2
Pr (x, y, t )

− r Pr (x, y, t ) + r δ(x − x0) δ(y) (44)

with the initial condition Pr (x, y, t = 0) = δ(x − x0) δ(y) and
zero boundary conditions at infinity. We analyze the transport
properties of the particle on the backbone and inside the
fingers separately; that is, we calculate the marginal PDFs
p1(x, t ) and p2(y, t ).
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t t

FIG. 7. Trajectories of the particle on the backbone (a) and in the fingers (b) according to the Langevin equations (45) and (46) for x0 = 0,
μ = 3, λ = 3, σx = σy = 1, r = 0.8, 	t = 0.01, T = 10, τ	t ∈ (0, T ). The trapping of the tracer in the fingers is reflected by plateaus of the
backbone’s trajectory.

A. Numerical simulations: Coupled Langevin equations

The motion with resetting on the two-dimensional comb
structure can be simulated by the following coupled Langevin
equations [65,66] (in the case of no resetting we refer to
[67,68]):

x(τ	t ) = x[(τ − 1)	t] + A(y)λ{μ − x[(τ − 1)	t]}	t

+
√

2DxA(y)	t ξx[(τ−1)	t], with prob. (1−r	t ),

x(τ	t ) = x(0), with prob. r	t, (45)

for the movement along the backbone, and

y(τ	t ) = y[(τ − 1)	t] + √
2Dy 	t ξy[(τ − 1)	t],

with prob. (1 − r	t ),
y(τ	t ) = y(0), with prob. r	t,

(46)

for the Brownian motion along the fingers. Here ξi, i =
{x, y}, is the same white noise as in Eq. (8) with zero mean,
〈ξi(τ	t )〉 = 0, and correlation function 〈ξi(τ	t )ξi(τ ′	t )〉 =
δτ,τ ′ . The function A(y) is introduced to describe the motion
along the backbone at y = 0, where A(y) is the approximation
of the Dirac δ function by means of the expression A(y) =

1√
2πσδ

exp[−y2/(2σ 2
δ )], σδ → 0. Here σδ is taken such that

it must be of order of 2σδ �
√

2Dy	t . We have found that

if we take the value of σδ to be σδ =
√

2Dy	t

2 + ε where
ε = 10−3, more than satisfactory matching of the analyti-
cal and simulated results is obtained. For the simulations
of the marginal PDF along the backbone, the diffusion co-
efficient along the backbone and the mean-reverting rate
are renormalized by factor 1/[2

√
Dy]; see Refs. [65,66]

and Eq. (48).
Results of the simulated trajectories according to the cou-

pled Langevin (45) and (46) with resetting to x = x0 = 0
are presented in Fig. 7. The plateaus with the fixed x in the
backbone dynamics reflect the waiting times due to diffusion
in the fingers.

B. Fokker-Planck equations for the marginal PDFs

We find the differential equations for the marginal PDFs
along the backbone and fingers, with the same procedure as
in the case of diffusion on the comb model without resetting.
Thus, integration of Eq. (44) with respect to x yields

∂

∂t
p2,r (y, t ) = Dy

d

dt

∫ t

0
e−r(t−t ′ ) ∂2

∂y2
p2,r (y, t ′) dt ′. (47)

It describes Brownian motion with resetting along the fingers.
Performing integration with respect to y, we obtain

∂

∂t
p1,r (x, t ) = 1

2
√
Dy

TRLD1/2
0+ LFP,x p1,r (x, t ), (48)

which is the equation for the transport along the backbone,
where TRLDμ

0+ f (t ) is the so-called tempered Riemann-
Liouville fractional derivative (E5) of order μ = 1/2 with
tempering parameter r. Again, here we use σ 2

i /2 = Di, for
i = {x, y}. From the subordination approach, it can be shown
that the marginal PDF along the backbone can be obtained
from the PDF of the standard O-U process or the PDF for the
comb without resetting,

p̂1,r (x, s) = 1

s η̂r (s)
P̂0(x, 1/η̂r (s))

= (s + r)1/2

s
P̂0(x, (s + r)1/2)

= s + r

s
p̂1(x, s + r), (49)

which actually is the renewal equation for the marginal PDF
(see also [66]),

p1,r (x, t ) = e−rt p1(x, t ) +
∫ t

0
r e−rt ′

p1(x, t ′) dt ′. (50)

Comparing the results for the PDF for the O-U pro-
cess without resetting, presented in Fig. 3(a) with the same
results for the comb structure presented in Fig. 8(a), it be-
comes evident the staggering of the particles diffusing on
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FIG. 8. Simulations of the marginal PDF along the backbone, according to the Langevin equation (45), using the renormalized diffusion
coefficient and the mean-reverting velocity by the parameter 1/[2

√
Dy]; see Eq. (48) and Refs. [65,66]. (a) Evolution of the PDF in time for

x0 = 0, r = 0, μ = 5, λ = 1, σx = σy = 1, 	t = 0.01, and an initial ensemble of N = 104 particle trajectories. (b) Same as (a) for the resetting
rate r = 1. (c) PDF for different values of λ and x0 = 0, t = 5, μ = 0, σx = σy = 1, 	t = 0.01, and an initial ensemble of N = 104 trajectories
without resetting. (d) Same as (c) for the resetting rate r = 1.

the backbone as the result of their getting stuck in the
fingers. This is mostly visible for the PDF at t = 1. For
example, in Fig. 8(a), there is a finite probability of find-
ing the particle near the initial position x0 = 0, while it
is not the case in Fig. 3(a), where this probability is less
dispersed and the particles are concentrated around some
point in the temporal evolution of the process. The corre-
sponding cases with resetting are compared in Figs. 3(b)
and 8(b). As shown in Fig. 3(b) the one-dimensional O-U
process with resetting tends to the homogeneous distribu-
tion of particles in the interval x ∈ (x0, μ). This situation
changes drastically in the comb geometry, shown in Fig. 8(b),
where the asymptotic marginal PDF has a well-defined
maximum. Obviously, this shape of the PDF results from
the long-time trapping of the particles inside fingers. Fig-
ures 8(c) and 8(d) are the evidence of another property
of hindering of relaxation due to the parameters λ and r.
As follows from the numerical results, the larger values
of the mean reverting velocity lead to stronger localiza-
tion of the initial distribution. Resetting is responsible for
the decreasing of the relaxation rate. Comparing Figs. 8(c)
and 3(c) for λ = 0, the comb geometry effect becomes ev-
ident, which, however, is attenuated by the O-U process
for λ �= 0.

From Eq. (49) we find that in the long-time limit the system
approaches a NESS given by

pst
1,r (x) = lim

t→∞ p1,r (x, t )

= lim
s→0

s p̂1,r (x, s) = r p̂1(x, r). (51)

In Fig. 9(c) and 9(d) we present the marginal NESS in
Eq. (51), obtained by numerical simulations.

C. MSD

The corresponding MSD for the O-U process with resetting
on the comb can be found from Eq. (49). Thus, we find

〈x̂2(s)〉c,r = s + r

s
〈x̂2(s + r)〉c, (52)

and the renewal equation reads

〈x2(t )〉c,r = e−rt 〈x2(t )〉c +
∫ t

0
r e−rt ′ 〈x2(t ′)〉c dt ′, (53)

where 〈x2(t )〉c is the MSD (42) in the absence of resetting.
From Eq. (53), the long-time behavior of the MSD reads

lim
t→∞〈x2(t )〉c,r =

∫ ∞

0
r e−rt ′ 〈x̂2(t ′)〉c dt ′ = r 〈x̂2(r)〉c, (54)
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FIG. 9. (a) The MSD for the O-U process on the backbone with different resetting rates. (b) Same as (a) for μ = 1. (c) Long-time PDF with
different reset rates for μ = 0, using the renormalized diffusion coefficients and mean-reverting rate; see Refs. [65,66]. (d) Same as (c) with
μ = 1. We use x0 = 0, λ = 1, σx = σy = 1, dt = 0.001, σδ = 0.016, and an initial ensemble of N = 104 trajectories. The σδ = 0.016 is used
inside the approximation of the δ function, A(y) in (45). The dashed lines in (a) and (b) are the analytical solution for the MSD (53). As in the
case of Fig. 5, the analytical solution here is being used as a way to acquire the simulation parameters needed for creating the PDFs.

which eventually yields

〈x2(t )〉c,r ∼
x2

0 r1/2 + Dx√
Dy

r1/2 + λ√
Dy

+
λμ√

Dy

(
λμ

2
√

Dy
+ x0 r1/2

)
(

r1/2 + λ√
Dy

)(
r1/2 + λ

2
√

Dy

) . (55)

In Figs. 9(a) and 9(b) the graphical representation of the MSD
(53) obtained analytically and by numerical simulations is
plotted, where the saturation of the MSD in the long-time limit
is according to Eq. (55).

As obtained in Eq. (55) the saturation value of the MSD
is a function of the mean-reversion velocity λ. Therefore, the
extremum equation

∂

∂λ
〈x2(t )〉c,r = 0 (56)

determines λmin(r) for which the MSD is minimal. Consider-
ing the long-time MSD (55) vs λ, we arrive at the conclusion
that there are specific values of λ and r, which minimize the
MSD. As follows from Figs. 8(c) and 8(d) and Figs. 9(c) and
9(d), the evolution of the marginal PDF p1,r (x, t ) depends
essentially on the parameters λ and r. The same situation

is for the MSD. Therefore, the minimal value of the MSD,
determined by Eq. (56) defines also the stronger localization
of the marginal PDF due to the resetting.

VI. ORNSTEIN-UHLENBECK PROCESS
ON FRACTAL GRID

Further geometrical generalization, is the consideration of
the O-U process on a fractal grid structure [69–71], which
contains infinitely-uncountable number of backbones inside
a finite-width strip. The backbones are positioned at y = l j ∈
Sν , where Sν is a fractal set with the fractal dimension ν. The
corresponding Fokker-Planck equation reads

∂

∂t
P(x, y, t ) =

∑
l j∈Sν

δ(y − l j ) LFP,xP(x, y, t )

+ σ 2
y

2

∂2

∂y2
P(x, y, t ). (57)

The geometrical structure of the equation means that
the O-U process described by the Fokker-Planck opera-
tor LFP,x, takes place along the fractal structure of the
backbones.

In the section we study the anomalous O-U transport along
the fractal backbone structure, which is described by the
marginal PDF p1(x, t ). Integrating Eq. (57) with respect to
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y, we obtain

∂

∂t
p1(x, t ) =

∑
l j∈Sν

{
λ

∂

∂x
[x P(x, y = l j, t )]

+ σ 2
x

2

∂2

∂x2
P(x, y = l j, t )

}
. (58)

The Laplace transform of Eq. (58) yields

s p̂1(x, s) − p1(x, t = 0) =
∑
l j∈Sν

{
λ

∂

∂x
[x P̂(x, y = l j, s)]

+ σ 2
x

2

∂2

∂x2
P̂(x, y = l j, s)

}
. (59)

In Laplace space, we look for the solution to Eq. (59) in the
form

P̂(x, y, s) = g(x, s) e
−√

s
σ2

y /2
|y|

, (60)

from where it follows

P̂(x, y = l j, s) = ĝ(x, s) e
−√

s
σ2

y /2
|l j |

. (61)

From Eq. (60), we obtain the Laplace image of the marginal
PDF as follows:

p̂1(x, s) = 2 ĝ(x, s)

√
σ 2

y /2

s
. (62)

The summation in Eqs. (58) and (59) is performed over the
fractal set Sν , and it corresponds to integration over the frac-
tal measure μν ∼ lν , and thus

∑
l j∈Sν

→ lν−1

�(ν) is the fractal

density, while dμν = 1
�(ν) l

ν−1 dl; see Ref. [69]. Thus, by
summation over the fractal set, we have∑

l j∈Sν

P̂(x, y, s) = ĝ(x, s)
1

�(ν)

∫ ∞

0
e
−√

s
σ2

y /2
l
lν−1 dl

= g(x, s)

(
σ 2

y /2

s

)ν/2

= 1

2
(
σ 2

y /2
) 1−ν

2

s
1−ν

2 p̂1(x, s), (63)

where the last line is according to Eq. (62). From Eq. (59), we
find

s
1+ν

2 p̂1(x, s) − s
1+ν

2 −1 p1(x, t = 0)

= 1

2
(
σ 2

y /2
) 1−ν

2

{
λ

∂

∂x
[x p̂1(x, s)] + σ 2

x

2

∂2

∂x2
p̂1(x, s)

}
.

(64)

The inverse Laplace transform of Eq. (64) yields

CD
1+ν

2
t p1(x, t ) = 1

2
(
σ 2

y /2
) 1−ν

2

×
{
λ

∂

∂x
[x p1(x, t )] + σ 2

x

2

∂2

∂x2
p1(x, t )

}
,

(65)

where CDβ
t is the Caputo fractional derivative (E4) of order

1
2 < β = 1+ν

2 < 1 (since 0 < ν < 1).
From here, we find the MSD by multiplying both sides of

the equation by x2 and integrating over the x,

CD
1+ν

2
t 〈x2(t )〉 = − λ(

σ 2
y /2

) 1−ν
2

〈x2(t )〉 + σ 2
x

2
(
σ 2

y /2
) 1−ν

2

, (66)

which yields

〈x̂2(s)〉 = x2
0

s
1+ν

2 −1

s
1+ν

2 + λ(
σ 2

y /2
) 1−ν

2

+ σ 2
x

2
(
σ 2

y /2
) 1−ν

2

s−1

s
1+ν

2 + λ(
σ 2

y /2
) 1−ν

2

. (67)

By the inverse Laplace transform, we eventually obtain

〈x2(t )〉 = x2
0 E 1+ν

2

⎛
⎝− λ(

σ 2
y /2

) 1−ν
2

t
1+ν

2

⎞
⎠

+ σ 2
x t

1+ν
2

2
(
σ 2

y /2
) 1−ν

2

E 1+ν
2 , 3+ν

2

⎛
⎝− λ(

σ 2
y /2

) 1−ν
2

t
1+ν

2

⎞
⎠. (68)

For the short timescale, we find

〈x2(t )〉 ∼ x2
0 + σ 2

x − 2λ x2
0

2
(
σ 2

y /2
) 1−ν

2

t
1+ν

2

�
(

3+ν
2

)
+ 2λ2x2

0 − λσ 2
x

2
(
σ 2

y /2
)1−ν

t1+ν

�(2 + ν)
, (69)

while the long-time limit yields saturation of the MSD,

〈x2(t )〉 ∼ x2
0

big(σ 2
y /2

) 1−ν
2

λ

t− 1+ν
2

�
(
1 − 1+ν

2

)

+ σ 2
x

2
(
σ 2

y /2
) 1−ν

2

t
1+ν

2

(
σ 2

y /2
) 1−ν

2

λ
t− 1+ν

2 ∼ σ 2
x

2λ
, (70)

with the power-law decay (t− 1+ν
2 ) to the stationary value.

The obtained result for the MSD can be easily generalized
for the presence of resetting by using the renewal equation ap-
proach. Thus, the MSD in Laplace space reads

〈x̂2(s)〉r = s + r

s
〈x̂2(s + r)〉

= s + r

s

⎡
⎢⎢⎢⎣x2

0
(s + r)

1+ν
2 −1

(s + r)
1+ν

2 + λ(
σ 2

y /2
) 1−ν

2

+ σ 2
x

2
(
σ 2

y /2
) 1−ν

2

(s + r)−1

(s + r)
1+ν

2 + λ(
σ 2

y /2
) 1−ν

2

⎤
⎥⎥⎥⎦, (71)

where 〈x̂2(s)〉 is the MSD (67) without resetting.
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In the short-time limit (s → ∞) the MSD turns to the one
obtained in the case without resetting (68). In the long-time
limit, one obtains the constant value for the MSD, given by

lim
t→∞〈x2(t )〉r = lim

s→0
s 〈x̂2(s)〉r = r 〈x̂2(r)〉

=
x2

0 r
1+ν

2 + σ 2
x

2
(
σ 2

y /2
) 1−ν

2

r
1+ν

2 + λ(
σ 2

y /2
) 1−ν

2

. (72)

For r = 0 we recover the previous result (70) for the case
without resetting, and for ν = 0 the result (55) for the standard
comb with μ = 0.

VII. SUMMARY

In this work, we investigated the O-U process in the
presence of stochastic resetting to the initial position of the
particle. We used the Langevin equation approach to perform
the numerical simulation and the Fokker-Planck equation to
find analytical results for the PDF, NESS, and MSD. We
also performed a thorough analysis of the compound effect of
the comb geometry and stochastic resetting on the statistical
properties of the O-U process. Even though the standard O-
U process, with and without resetting, has been considered
before, a geometry impact was an open question, and the
present paper on the detailed study of the influence of a comb
structure and its anomalous properties can be the answer to the
question. We found the corresponding Fokker-Planck equa-
tions for the marginal PDFs along the backbone and fingers of
the comb in the absence and presence of Poissonian resetting.
The corresponding mean displacement and the MSD of the
particle are calculated exactly by using the one-parameter,
two-parameter, and multinomial Mittag-Leffler functions, and
the obtained results are confirmed by numerical simulations
performed in the framework of the coupled Langevin equa-
tions. We also introduced the O-U process on a fractal grid
structure, and we have showed that the fractal dimension of
the fractal backbone structure has an influence on the PDF
and MSD.

In conclusion, we admit that the O-U process is one of
several classical approaches used to model interest rates, cur-
rency exchange rates, and commodity prices stochastically.
The parameter μ represents the equilibrium or mean value
supported by fundamentals; σ plays the role of the degree
of volatility around it caused by shocks, and λ becomes the
rate by which these shocks dissipate and the variable reverts
towards the mean. However, a plethora of studies [72–75]
show that the distribution of returns log[x(t + dt )/x(t )] has a
sharper maximum and fatter tails, thus further suggesting that
a simple O-U trajectory may not be an adequate representation
for these types of asset dynamics, due to asymmetries found
when comparing its properties with empirical distributions. In
addition, an empirical trajectory of interest rates or currency
exchange rates may exhibit approximately constant values
between two points in time, due to market inactivity. These
constant periods can be considered to be trapping of parti-
cles, as is done in physical systems that manifest anomalous
diffusion (subdiffusion) [76,77]. This empirical investigation

represents a potential research avenue for application of the
models considered in this work, and the further analysis we
are leaving for future work.

ACKNOWLEDGMENTS

The authors thank Viktor Domazetoski for useful dis-
cussions on numerical simulations for the comb structure.
P.T., P.J., K.Z., L.K., and T.S. acknowledge financial sup-
port by the German Science Foundation (DFG, Grant No.
ME 1535/12-1). This work is also supported by the Alliance
of International Science Organizations (Project No. ANSO-
CR-PP-2022-05). A.I. acknowledges the hospitality at the
MPIPKS, Dresden. T.S. was supported by the Alexander von
Humboldt Foundation.

APPENDIX A: SOLUTION OF THE FOKKER-PLANCK
EQUATION FOR THE O-U PROCESS

The equation for the standard O-U process is

∂

∂t
P0(x, t ) = LFPP0(x, t ), (A1)

where

LFP ≡ λ
∂

∂x
(x − μ) + σ 2

2

∂2

∂x2
(A2)

is the Fokker-Planck operator. The initial condition is P(x, t =
0) = δ(x − x0) and zero boundary conditions are chosen at in-
finity. This equation is solved by the method of characteristics
[78] in Fourier space. Equation (A1) in Fourier space reads

∂P̃0(k, t )

∂t
= −λk

∂P̃0(k, t )

∂k
−

(
k2σ 2

2
+ iμλk

)
P̃0(k, t ).

(A3)

The Lagrange-Charpit equations for this equation are

∂t

∂u
= 1;

∂k

∂u
= λk;

∂P̃0

∂u
= −

(
k2σ 2

2
+ iμλk

)
P̃0(k, t ),

(A4)

and the parametrization invariant form of the Lagrange-
Charpit equations is

dt

1
= dk

λk
= dP̃0(k, t )

−(
k2σ 2

2 + iμλk
)
P̃0(k, t )

. (A5)

From the first two terms with integration we get

k = k0 eλt → k0 = k e−λt , (A6)

and then again from the last two terms of (A5) by integrating
with separation of the variables we get the expression

P̃0(k, t ) = C e− iμλk+ σ2k2
4

λ = C e− iμk0eλt λ+ k2
0 e2λt σ2

4
λ . (A7)

The coefficient C is determined at time t = 0, when
P̂0(k, 0) = eik0x0 . It follows that C has the form

C = eik0x0 e
iμλk0+ σ2k2

0
4

λ . (A8)
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Inserting the coefficient C in Eq. (A7) and exchanging for
k0 = k e−λt we get the final form of the PDF in Fourier space

P̂0(k, t ) = eikx0 e−λt
e− iμkλ

λ
(eλt −1)e−λt − k2σ2

4λ
(e2λt −1)e−2λt

. (A9)

By the inverse Fourier transform of the last expression, we get
the solution for the PDF of the standard O-U process

P0(x, t ) =
exp

(
− [x−x0e−λt −μ(1−e−λt )]2

σ2
λ

e−2λt (e2λt −1)

)
√

2π σ 2

2λ
e−2λt (e2λt − 1)

. (A10)

APPENDIX B: PDF FOR THE O-U PROCESS
WITH RESETTING: SUBORDINATION APPROACH

In order to obtain the Fokker-Planck equation with stochas-
tic resetting in a form (10), we apply the Laplace transform
to Eq. (9), L[Pr (x, t )] = ∫ ∞

0 e−st Pr (x, t ) dt = P̂r (x, s), which
yields

s P̂r (x, s) − δ(x − x0) = s

s + r
LFPP̂r (x, s). (B1)

The inverse Laplace transform directly yields Eq. (10).
The solution to this equation can be found by using the

subordination approach [64,79–82]. Let us start by consider-
ing the Fokker-Planck equation (2) without resetting. By the
Laplace transform, one finds

s P̂0(x, s) − δ(x − x0) = LFPP̂0(x, s). (B2)

By using s → s + r it becomes

(s + r) P̂0(x, s + r) − δ(x − x0) = LFPP̂0(x, s + r), (B3)

i.e.,

s + r

s
P̂0(x, s + r) − 1

s
δ(x − x0) = 1

s
LFPP̂0(x, s + r).

(B4)

Let us introduce the function Pr (x, t |x0), defined in Laplace
space by

P̂r (x, s) = s + r

s
P̂0(x, s + r), (B5)

and exchange it in Eq. (B4). Thus, we arrive at the same
equation (B1) for the PDF in case of resetting. Therefore, from
(B5) we find that

P̂r (x, s) = s + r

s

∫ ∞

0
P0(x, u) e−u(s+r) du. (B6)

This yields the form of the subordination integral

P̂r (x, s) =
∫ ∞

0
P0(x, u) ĥ(u, s) du, (B7)

where the subordination function reads

ĥ(u, s) = 1

s η̂(s)
e− u

η̂(s) , (B8)

where η̂(s) = 1
s+r . By the inverse Laplace transform of

Eq. (B7) we arrive at the known form for the subordination
integral

Pr (x, t ) =
∫ ∞

0
P0(x, u) h(u, t ) du. (B9)

FIG. 10. Hermite functions (C3) for both positive and negative
orders: ν = 1/2 (blue solid line), ν = −1/2 (red dotted line), ν = 1
(green dashed line), and ν = −1 (purple dot-dashed line).

Here

h(u, t ) = L−1

(
s + r

s
e−(s+r)u

)

= e−rt δ(t − u) + r e−ru θ (t − u), (B10)

where θ (t − u) is the Heaviside step function. Therefore, one
finds

Pr (x, t ) =
∫ ∞

0
P0(x, u)[e−rt δ(t − u) + r e−ru θ (t − u)]du,

(B11)

which yields the renewal equation [22,59–61]

Pr (x, t ) = e−rt P0(x, t ) +
∫ t

0
r e−rt ′

P0(x, t ′) dt ′. (B12)

APPENDIX C: HERMITE FUNCTION

The solution of the Hermite differential equation

w′′(z) − 2z w′(z) + 2ν w(z) = 0 (C1)

is given by

w(z) = c1 Hν (z) + c2 ez2
H−ν−1(ız), (C2)

where

Hν (z) = 2ν
√

π

[
1

�
(

1−ν
2

) 1F1

(
−ν

2
,

1

2
, z2

)

− 2z

�
(− ν

2

) 1F1

(
1 − ν

2
,

3

2
, z2

)]
(C3)

is the Hermite function [83] (it is implemented in Wolfram
language as HermiteH[ν, z]) and 1F1(a, b, z) is the confluent
hypergeometric function. For ν = n ∈ N, the Hermite func-
tion reduces to the Hermite polynomials; see also Fig. 10.
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The series expansion of the Hermite function for z → 0 is
given by [83]

Hν (z) = 2ν
√

π

�
(

1−ν
2

)[1 − ν z2 − ν(2 − ν)

6
z4 + · · ·

]

− 2ν+1√π

�
(− ν

2

) z

[
1 + 1 − ν

3
z2 + (1 − ν)(3 − ν)

30
z4 + · · ·

]
.

(C4)

For |z| → ∞ one can use the following asymptotic expansion
formula [83]:

Hν (z) ∼ (z2)−
ν
2 −1

{√
π ez2

(
√

z2 − z)

2�(−ν)

[
1 + O

(
1

z2

)]

− 2ν
√

−z2 (−z4)ν/2[
√

−z2 cos(νπ/2)

+ z sin(νπ/2)]

[
1 + O

(
1

z2

)]}
. (C5)

The following formulas hold true for the first derivative of
the Hermite function [83]:

∂

∂z
Hν (z) = 2ν Hν−1(z), (C6)

∂

∂z

[
e−z2

Hν (z)
] = −e−z2

Hν+1(z), (C7)

which can be used to obtain the constants in the solutions for
the NESS in Eqs. (D4) and (D6).

APPENDIX D: NESS FOR O-U PROCESS IN PRESENCE
OF RESETTING

The solution to Eq. (13), which is the NESS, is obtained as
follows. We follow the procedure suggested by Pal in Ref. [15]
with μ = 0. We consider two regions x > x0 and x < x0.
Therefore, the corresponding solution for x > x0 is Pst

r,1(x),
while when x < x0 the solution is Pst

r,2(x). The solution should
be continuous at x = x0,

Pst
r,1(x)

∣∣
x=x0

= Pst
r,2(x)

∣∣
x=x0

. (D1)

Moreover, by integration of Eq. (13) in vicinity of x = x0, one
finds

d

dx
Pst

r,1(x)

∣∣∣∣
x=x0

− d

dx
Pst

r,2(x)

∣∣∣∣
x=x0

= − r

σ 2/2
, (D2)

which means that the first derivatives at x = x0 have a discon-
tinuity. Let us first consider the equation for x > x0,

0 = λ
∂

∂x

[
(x − μ) Pst

r,1(x)
] + σ 2

2

∂2

∂x2
Pst

r,2(x) − r Pst
r,1(x).

(D3)

Using Mathematica, we obtain the solution as follows:

Pst
r,1(x) = c1 e− λx(x−2μ)

σ2 H− r
λ

(√
λ(x − μ)

σ

)

+ c2 e− λx(x−2μ)
σ2

1F1

(
r

2λ
,

1

2
,
λ(x − μ)2

σ 2

)
, (D4)

where c1,2 are constants and Hν (z) is the Hermite function (for
details, see Appendix C), while 1F1(a, b, z) is the confluent
hypergeometric function. For x < x0, we have

0 = λ
∂

∂x

[
(x − μ) Pst

r,2(x)
] + σ 2

2

∂2

∂x2
Pst

r,2(x) − r Pst
r,2(x),

(D5)

and the solution reads

Pst
r,2(x) = c3 e− λx(x−2μ)

σ2 H− r
λ

[√
λ(x − μ)

σ

]

+ c4 e− λx(x−2μ)
σ2

1F1

(
r

2λ
,

1

2
,
λ(x − μ)2

σ 2

)
, (D6)

where c3,4 are constants. One should also take into considera-
tion the normalization condition∫ x0

−∞
Pst

r,2(x) dx +
∫ ∞

x0

Pst
r,1(x) dx = 1. (D7)

For the evaluation of the coefficients, a numerical procedure
is suggested.

APPENDIX E: FRACTIONAL CALCULUS AND RELATED
MITTAG-LEFFLER FUNCTIONS

The Riemann-Liouville fractional integral of order μ > 0
is defined by [84]

Iμ
0+ f (t ) = 1

�(μ)

∫ t

0

f (t ′)
(t − t ′)1−μ

dt ′, Re(μ) > 0, (E1)

such that for μ = 0 it is

I0
0+ f (t ) = f (t ). (E2)

The Riemann-Liouville fractional derivative of order 0 <

μ < 1 is defined as a derivative of the Riemann-Liouville
fractional integral of a function [84],

RLDμ
t f (t ) = d

dt
I1−μ
0+ f (t )

= 1

�(1 − α)

d

dt

∫ t

0
(t − t ′)−μ f (t ′) dt ′, (E3)

while the Caputo fractional derivative of order 0 < μ < 1 is
defined as the Riemann-Liouville fractional integral of the
first derivative of a function [84],

CDμ
t f (t ) = I1−μ

0+
d

dt
f (t )

= 1

�(1 − α)

∫ t

0
(t − t ′)−μ d

dt ′ f (t ′) dt ′. (E4)

The tempered Riemann-Liouville fractional derivative of
order 0 < μ < 1 with tempering parameter r is defined
by [46,85]

TRLDμ
0+ f (t ) = 1

�(1 − μ)

d

dt

∫ t

0
e−r(t−t ′ )(t − t ′)−μ f (t ′) dt ′.

(E5)
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The three-parameter Mittag-Leffler function (also known
as a Prabhakar function) is defined by [86]

Eγ

α,β (z) =
∞∑

k=0

(γ )k

�(αk + β )

zk

k!
, (E6)

where β, γ , z ∈ C, Re(α) > 0, (γ )k is the Pochhammer sym-
bol

(γ )0 = 1, (γ )k = �(γ + k)

�(γ )
. (E7)

It is a generalization of the two-parameter Mittag-Leffler func-
tion

E1
α,β (z) =

∞∑
k=0

zk

�(αk + β )
= Eα,β (z), (E8)

and the one-parameter Mittag-Leffler function

E1
α,1(z) =

∞∑
k=0

zk

�(αk + 1)
= Eα (z). (E9)

The associated three-parameter Mittag-Leffler function is de-
fined by

Eγ

α,β (t ; ±λ) = tβ−1 Eγ

α,β (∓λtα ), (E10)

with min{α, β, γ } > 0, λ ∈ R, and the corresponding Laplace
transform

L
[
Eγ

α,β (t ; ±λ)
] = sαγ−β

(sα ± λ)γ
, (E11)

where |λ/sα| < 1.
The associated multinomial Mittag-Leffler function is de-

fined as follows:

E(α1,α2,...,αn ),β (t ; ±λ1,±λ2, . . . ,±λn)

= tβ−1 E(α1,α2,...,αn ),β (∓λ1tα1 ,∓λ2tα2 , . . . ,∓λntαn ),
(E12)

where

E(α1,α2,...,αn ),β (z1, z2, . . . , zn)

=
∞∑

k=0

l1+l2+···+ln=k∑
l1�0,l2�0,...,ln�0

(
k

l1, . . . , ln

) ∏n
i=1 zli

i

�
(
β + ∑n

i=1 αili
)

(E13)

is the multinomial Mittag-Leffler function [87], and(
k

l1, . . . , ln

)
= k!

l1! l2! . . . ln!

are the multinomial coefficients. The associated multinomial
Mittag-Leffler function can be obtained by the following in-
verse Laplace transform:

L−1

[
s−β

1 ± ∑n
j=1 λ j s−α j

]

= E(α1,α2,...,αn ),β (t ; ±λ1,±λ2, . . . ,±λn). (E14)

From the definition of the associated multinomial Mittag-
Leffler function (E12), one finds that for n = 1 (i.e., λ1 =
λ, α1 = α) it corresponds to the associated two-parameter
Mittag-Leffler function,

E(α),β (t ; ±λ) = L−1

(
s−β

1 ± λs−α

)

= L−1

(
sα−β

sα ± λ

)
= tβ−1 Eα,β (∓λ1tα1 )

= E1
α,β (t ; ±λ) ≡ Eα,β (t ; ±λ). (E15)

Moreover, for n = 2, applying the series expansion ap-
proach (see Ref. [88]), we have [46]

E(α1,α2 ),β (t ; ±λ1,±λ2) = L−1

(
s−β

1 ± λ1s−α1 ± λ2s−α2

)

= L−1

(
s−β

1 ± λ1s−α1

1

1 ± λ2
s−α2

1±λ1s−α1

)

=
∞∑

k=0

(∓λ2)k L−1

(
s−(α2−α1 )k+α1−β

(sα1 ± λ1)k+1

)

=
∞∑

k=0

(∓λ2)ktα2k+β−1Ek+1
α1,α2k+β

(∓λ1tα1 )

=
∞∑

k=0

(∓λ2)kEk+1
α1,α2k+β (t ; ±λ1), (E16)

where we also use the Laplace transform (E11) of the as-
sociated three-parameter Mittag-Leffler function. Thus, the
associated multinomial Mittag-Leffler function (E12) reduces
to infinite series of the associated three-parameter Mittag-
Leffler functions (E10), which is shown to be convergent (see
Appendix C in Ref. [89], and Ref. [90]).
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