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Embedded random matrix ensembles with k-body interactions are well established to be appropriate for
many quantum systems. For these ensembles the two point correlation function is not yet derived, though these
ensembles are introduced 50 years back. Two-point correlation function in eigenvalues of a random matrix
ensemble is the ensemble average of the product of the density of eigenvalues at two eigenvalues, say E
and E ′. Fluctuation measures such as the number variance and Dyson-Mehta �3 statistic are defined by the
two-point function and so also the variance of the level motion in the ensemble. Recently, it is recognized
that for the embedded ensembles with k-body interactions the one-point function (ensemble averaged density
of eigenvalues) follows the so called q-normal distribution. With this, the eigenvalue density can be expanded
by starting with the q-normal form and using the associated q-Hermite polynomials Heζ (x|q). Covariances
Sζ Sζ ′ (overline representing ensemble average) of the expansion coefficients Sζ with ζ � 1 here determine the
two-point function as they are a linear combination of the bivariate moments �PQ of the two-point function.
Besides describing all these, in this paper formulas are derived for the bivariate moments �PQ with P + Q � 8,
of the two-point correlation function, for the embedded Gaussian unitary ensembles with k-body interactions
[EGUE(k)] as appropriate for systems with m fermions in N single particle states. Used for obtaining the
formulas is the SU (N ) Wigner-Racah algebra. These formulas with finite N corrections are used to derive
formulas for the covariances Sζ Sζ ′ in the asymptotic limit. These show that the present work extends to all k
values, the results known in the past in the two extreme limits with k/m → 0 (same as q → 1) and k = m (same
as q = 0).
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I. INTRODUCTION

Classical random matrix ensembles, i.e., the Gaussian or-
thogonal, unitary, and symplectic ensembles (GOE, GUE, and
GSE) are well known now in physics and need no intro-
duction [1–3]. Hamiltonians (H) for atoms, atomic nuclei,
molecules, mesoscopic systems such as quantum dots, etc.,
consist of a mean-field one-body part and a residual two-
body interaction. With the two-body part sufficiently strong,
energy levels of these systems in general exhibit quantum
chaos and the appropriate random matrix ensembles for de-
scribing this, as recognized first in nuclear shell model studies
[4–7], are the so-called embedded ensembles (EE) generated
by k-body interactions [EE(k)] in many-particle (m particle
with m > k) spaces (assumed is that the particles are in N
number of single particle states with N � m). In particular,
the embedded Gaussian orthogonal and unitary ensembles
generated by k-body interactions [EGOE(k) and EGUE(k)],
applicable to many fermion systems, have received consid-
erable attention in the last two decades. Remarkably, for
m � k (with N � m), these ensembles generate Gaussian
eigenvalue densities, i.e., the one point function in the eigen-
values (one, two, and higher point functions are defined by
Dyson [8]). Here, it is important to note that for m = k, EE
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will reduce to the classical ensembles giving the well known
Wigner semicircle form for the one-point function [6,7,9].
This important result is seen in a large number of numerical
calculations and it is also proved analytically [6,9–11]. With
E denoting eigenvalues and ρ(E ) the eigenvalue density for
a given member of an ensemble of random matrices, the one
point function is ρ(E ) where the overline indicates ensemble
average.

Turning to the two-point correlation function, though a
large number of EGOE calculations showed that the spac-
ing distribution, number variance, and the Dyson-Mehta �3

statistic [12] and other measures of level fluctuations follow
GOE, until today there was no success in deriving the two-
point correlation function ρ(x)ρ(y) for EGOE(k) or EGUE(k),
even in the limit of k << m. The earliest attempt is due to
French [6,7,13] who has shown that EGOE(k) in the dilute
limit (with k finite, N → ∞, m → ∞, and m/N → 0) gener-
ates average-fluctuation separation that is absent in classical
Gaussian ensembles. However, experimental confirmation of
this feature is not yet available nor the formula for the two
point function. The next attempt is due to Verbaarschot and
Zirnbauer [14]. This is followed by an attempt due to Wei-
denmüller and collaborators [9,15]. However, as shown by
Srednicki later [16], the results in [9] for the nature of level
fluctuations generated by EGUE(k) are inconclusive. A sig-
nificant result due to Weidenmüller et al. is that EE generate
the so called cross correlations that are absent in classical
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ensembles; see [17,18] for results regarding cross correlations
in EE. Here also, definitive experimental tests of these are not
yet available.

Recently, a new direction in exploration of EE has opened
up with the analysis of quantum chaos in the Sachdev-
Ye-Kitaev (SYK) model using random matrix theory by
Verbaarschot and collaborators [19–24]. The most significant
result in these papers, for the present purpose, is the recog-
nition that the so-called q-normal distribution indeed gives
the eigenvalue density in the SYK model. Bryc, Szablowski,
Ismail, and others [25–29] earlier clearly showed that this
q-normal distribution (see Sec. II for definition and other
mathematical details) has a purely commutative and clas-
sical probabilistic meaning. With the q normal reducing to
Gaussian form for q = 1 and semicircle form for q = 0, it im-
mediately shows that EE(k) will generate q-normal form for
the eigenvalue densities. Remarkably, it is seen that the lower
order moments (up to the eighth order) of the eigenvalue den-
sity (one-point function) generated by EE(k) are essentially
identical to the lower order moments given by q-normal dis-
tribution [30,31] with the fourth moment (this depends on k)
determining the value of the q parameter. With this, there
is a possibility that expansions for ρ(E ) starting from the
q-normal form using the associated q-Hermite polynomials
may allow us to understand the two-point function for EE(k)
with k changing from k = 2 to m (k = 1 appears to be special
[32,33]) just as it was done in the past for the classical Gaus-
sian ensembles and also adopted for EGOE(k) with k << m
[6,7,34]. Interestingly, expansion involving q-Hermite poly-
nomials is also employed in investigating level fluctuations
in the SYK model [22]. Following this, we have revisited
the problem of deriving the two-point correlation function
for EE(k) and analytical formulas for the bivariate moments
(to order eight) of the two-point function for EGUE(k) are
presented in this paper. These will determine the covariances
of the expansion coefficients appearing in the q-Hermite poly-
nomial expansion of the eigenvalue density of the EGUE(k)
ensemble members. It is expected that these results may yield
the two-point function for EGUE(k) in the near future. Now
we will give a preview.

In Sec. II, first for completeness, EGUE(k) is defined.
Second, we introduce the two-point function and its integral
version along with their relation to the number variance, �3

statistic, and variance of the level motion in the ensemble. The
q-normal form fqN , along with q-Hermite polynomials, are
defined and collected in addition to some of their properties.
In Sec. III, using the expansion of the eigenvalue density in
terms of q-normal fqN and q-Hermite polynomials Heζ (x|q),
it is shown that the covariances of the expansion coefficients
Sζ (ζ = 1, 2, ..., ∞) are related in a simple manner to the
bivariate moments �PQ of the two-point function. Follow-
ing this, in Sec. IV formulas are derived for the bivariate
moments �PQ of the two point function for EGUE(k) for
P + Q � 8 using the formulation in terms of SU (N ) Wigner-
Racah algebra as described in [10]. Presented in Sec. V
are asymptotic limit formulas for the covariances Sζ Sζ ′ for
EGUE(k) ensemble. In addition, some general structures in-
dicated by these formulas are also discussed and an expansion
for the number variance is given. Finally, Sec. VI gives
conclusions.

II. PRELIMINARIES : EGUE(k), TWO-POINT FUNCTION,
q-NORMAL DISTRIBUTION, q-HERMITE POLYNOMIALS

A. EGUE(k) definition

Given a system of m spinless fermions distributed in N de-
generate single particle (sp) states and interacting via k-body
(1 � k � m) interactions, the EGUE(k) in m fermion spaces
is generated by representing the k-particle H by GUE. For a
more precise definition, first consider the sp states (denoted by
νi) in increasing order, ν1 � ν2 � · · · � νN . Now, a random
k-body H in second quantized form is

H (k) =
∑
α, β

Vα,β (k) ψ†(k; α) ψ (k; β ). (1)

Here, α (similarly β) are k-particle states (configurations)
|νo

1, ν
o
2, . . . , ν

o
k 〉 in occupation number representation; ν0

i are
occupied sp states. Distributing k fermions (following Pauli’s
exclusion principle) in N sp states will generate a complete
set of these distinct configurations (α, β, . . .) and the total
number of these configurations is ( N

k ). Operators ψ†(k; α) and
ψ (k; β ), respectively, are k-particle creation and annihilation
operators, i.e., ψ†(k; α) =∏k

i=1 a†
να

i
and ψ (k; β ) =∏k

j=1 a
ν

β
j
;

here, for example, να
i is the ith occupied sp state for the

k-particle configuration α. The one-particle creation (a†
νi

) and
annihilation (aν j ) operators obey the usual anticommutation
relations. In Eq. (1), Vα,β (k) matrix is chosen to be a ( N

k )
dimensional GUE in k-particle spaces (V matrix is com-
plex Hermitian). That means Vα, β (k) are antisymmetrized
k-particle matrix elements chosen to be randomly distributed
independent Gaussian variables with zero mean and variance,

Vα,β (k) Vα′,β ′ (k) = v2 δα,β ′ δα′,β . (2)

Here, the bar denotes ensemble averaging and we choose v =
1 without loss of generality. Distributing the m fermions in all
possible ways in the N states generates the many-particle basis
states (configurations) |νo

1, ν
o
2, . . . , ν

o
m〉 in occupation number

representation defining a ( N
m ) dimensional Hilbert space. Ac-

tion of the Hamiltonian operator H (k) defined by Eq. (1) on
the above many-particle basis states generates an H matrix
ensemble in m-particle spaces with dimension ( N

m ) and this is
the EGUE(k) ensemble—it is a random matrix ensemble in
m-particle spaces generated by k-body interactions. Note that
EGUE(k) has three parameters (N, m, k). See [7,15,18,35]
for further details regarding not only EGUE(k), but also for
EGOE(k), EGSE(k), and many other extensions of embedded
ensembles including those for interacting boson systems. In
the present paper we restrict to EGUE(k).

B. Two-point function

Let us begin with the ensemble averaged eigenvalue den-
sity or the one-point function ρ(E ) of EGUE(k) where ρ(E )
is the eigenvalue density (normalized to unity and usually it
is called frequency function in statistics) for each member of
EGUE(k); E denotes energy eigenvalues, and some times we
will use x or y to denote eigenvalues. The integral version of
ρ(E ) is the distribution function F (x) (also called stair case
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function),

F (x) = d
∫ x

−∞
ρ(E ) dE . (3)

Note that F (x) gives the number of levels up to the eigenvalue
x and d = ( N

m ) is the total number of eigenvalues, i.e., dimen-
sion of the given EGUE(k). Now, the two-point correlation
function Sρ (x, y) for the eigenvalues and its integral version
SF (x, y) are (here and elsewhere in this paper mostly we
employ the notations used in [7])

Sρ (x, y) = ρ(x) ρ(y) − ρ(x) ρ(y),

SF (x, y) = d2
∫ x

−∞

∫ y

−∞
Sρ (x′, y′)dx′dy′

= F (x) F (y) − F (x) F (y). (4)

From Eq. (4), as the bar denotes ensemble average, it is clear
that Sρ (and SF ) gives measures for level fluctuations and the
simplest two-point measure is the number variance �2(n).
Say there are n number of levels between energies x and y.
Then n = F (x) − F (y), and similarly n = F (x) − F (y). With
this, a measure for fluctuation in number of levels, with n the
average number of levels, is the number variance �2(n) =
(n − n)2 and this is simply related to SF (x, y),

�2(n) = SF (x, x) + SF (y, y) − 2SF (x, y). (5)

In addition, the �3 statistic is simply related to �2(n) [7],

�3(n) = 2

n4

∫ n

0
(n3 − 2n2r + r3) �2(r) dr. (6)

Further, an approach to study SF (x, x) is to examine level mo-
tion in the ensemble. For example, variance of the fluctuation
in an eigenvalue E , measured in units of the local level spacing

D(E ), is denoted by δE2/D(E )
2
. This is often called level

motion variance. Then, it is easy to see that the variance of
level motion is

δE2/D(E )
2 = SF (E , E ). (7)

Similarly, SF (x, y) and Sρ (x, y) can be probed or constructed
using the bivariate moments �̃PQ of Sρ (x, y),

�̃PQ =
∫

xP yQ Sρ (x, y) dxdy = 〈HP〉〈HQ〉 − 〈HP〉 〈HQ〉

(8)

with |αi〉, i = 1, 2, . . . , d denoting the m fermion basis states,
the Pth moment of ρ(E ) is 〈HP〉 = d−1 tr(HP ), where tr(HP )
is the trace of HP in m fermion space. Note that tr(HP ) =∑

i〈αi|HP|αi〉 =∑i(Ei )P as traces are invariant under a uni-
tary transformation [also,

∑
i(Ei )P = d

∫
EPρ(E ) dE ]. It is

easy to see from Eq. (8) that �̃PQ = �̃QP and �̃P0 = 0. Also,
with

�PQ = 〈HP〉〈HQ〉, (9)

we have �P,0 = 〈H p〉m, the Pth moment of ρ(E ). Our purpose
in this paper is to derive formulas for the bivariate moments
�PQ with P + Q � 8 (these are given in Sec. IV) as they will
determine the lower order terms in an expansion of the two-
point function and this is discussed in more detail in Sec. III.

Before turning to these, in the next subsection we introduce
the q-normal distribution and q-Hermite polynomials as the
eigenvalue density for EE(k) (well demonstrated for EGOE(k)
and EGUE(k) in [30]) is close to q normal and this reduces to
Gaussian form for k << m and semicircle for k = m. Thus,
the q-normal form covers all k values.

C. q-normal distribution and q-Hermite polynomials

First, q numbers [n]q are defined by (with [0]q = 0)

[n]q = 1 − qn

1 − q
= 1 + q + q2 + · · · + qn−1. (10)

Note that [n]q→1 = n. Similarly, q-factorial [n]q! = �n
j=1 [ j]q

with [0]q! = 1. With this, the q binomials are[
n
k

]
q

= [n]q!

[n − k]q! [k]q!
(11)

for n � k � 0 and 0 otherwise. Going further, the q-normal
distribution fqN (x|q) [27,29], with x being a standardized vari-
able (then x is zero centered with variance unity), is defined
as

fqN (x|q) =
√

1 − q
∏∞

k′=0(1 − qk′+1)

2π
√

4 − (1 − q)x2

×
∞∏

k′=0

[(1 + qk′
)2 − (1 − q)qk′

x2]. (12)

The fqN (x|q) is defined for x in the domain defined by S(q),
where

S(q) =
(

− 2√
1 − q

, + 2√
1 − q

)
(13)

with q taking values 0 to 1 (in this paper). Note that
fqN (x|q) = 0 for x outside S(q) and the integral of fqN (x|q)
is unity, i.e.,

∫
S(q) fqN (x|q) dx = 1. For q = 1, taking the

limit properly will give fqN (x|1) = (1/
√

2π ) exp −x2/2,
the Gaussian with S(q = 1) = (−∞,∞). Also, fqN (x|0) =
(1/2π )

√
4 − x2, the semicircle with S(q = 0) = (−2, 2). If

we put back the centroid ε and the width σ in fqN , then S(q)
changes to

S(q : ε, σ ) =
(

ε − 2σ√
1 − q

, ε + 2σ√
1 − q

)
.

All odd central moments of fqN are zero and then the lowest
shape parameter is excess or kurtosis γ2 that is simply related
to the reduced fourth central moment μ4, γ2 = μ4 − 3. For
fqN we have μ4 = 2 + q. Thus, μ4 (or γ2) determines the
value of q [30]; see Eq. (39) ahead.

The q-Hermite polynomials Hen(x|q), that are orthogonal
with fqN as the weight function, are defined by the recursion
relation:

x Hen(x|q) = Hen+1(x|q) + [n]q Hen−1(x|q) (14)

with He0(x|q) = 1 and He−1(x|q) = 0. Note that for q = 1,
the q-Hermite polynomials reduce to normal Hermite polyno-
mials (related to Gaussian) and for q = 0 they will reduce to
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Chebyshev polynomials (related to semicircle). The polyno-
mials up to order four, for example, are

He0(x|q) = 1,

He1(x|q) = x,

He2(x|q) = x2 − 1, (15)

He3(x|q) = x3 − (2 + q)x,

He4(x|q) = x4 − (3 + 2q + q2)x2 + (1 + q + q2).

Orthogonal property of Hen(x|q)’s that plays an important
role in the discussion that follows, is∫ 2/

√
1−q

−2/
√

1−q
Hen(x|q) Hem(x|q) fqN (x|q) dx = [n]q! δmn. (16)

Using Eq. (16), it is easy to derive formulas for the lower order
moments of fqN .

With the ensemble averaged eigenvalue density ρ(E ) for
EGOE(k) or EGUE(k) being fqN (E ), we can seek an expan-
sion of the eigenvalue density ρ(E ) of the members of the
ensemble in terms of the polynomial excitations of fqN (E )
with the polynomials being obviously q-Hermite polynomials.
This will allow us to study the two-point correlation function
and we will turn to this in the following section. A similar
study was made recently [22] for the two-point correlation
function in the SYK model.

III. EIGENVALUE DENSITY IN TERMS OF q-HERMITE
POLYNOMIALS AND THE COVARIANCES OF EXPANSION
COEFFICIENTS DETERMINING TWO-POINT FUNCTION

A. Two-point function in terms of q-Hermite polynomials

Eigenvalue density ρ(E ) for various members of an em-
bedded random matrix ensemble can be expanded in terms of
q-Hermite polynomials starting with q normal, giving

ρ(E ) dE = fqN (Ê |q)

⎡⎣1 +
∞∑

ζ�1

Sζ

Heζ (Ê |q)

[ζ ]q!

⎤⎦ dÊ ;

Ê = (E − Ec)/σ. (17)

Here, Sζ are the expansion coefficients and the Sζ should not
be confused with Sρ (x, y) used for the two-point function. It
is important to recall, as mentioned at the end of Sec. II B, the
ensemble averaged eigenvalue density ρ(E ) for EGUE(k) is
fqN , i.e.,

ρ(E ) dE = σ−1 fqN (Ê ) dÊ . (18)

Therefore in Eq. (17), Ec is the centroid and σ is the width
of ρ(E ). Now, using the expansion given by Eq. (17) the
distribution function is

F (E ) = FqN (E ) + d
∑
ζ�1

Sζ

[ζ ]q!

∫ Ê

−2/
√

1−q
fqN (Ê ′|q)

× Heζ (Ê ′|q) dÊ ′, (19)

and Eqs. (3) and(18) give

F (E ) = FqN (E ) = d
∫ Ê

−2/
√

1−q
fqN (Ê ′|q) dÊ ′. (20)

In the limits q = 1 (i.e., for Gaussians or in the limit k << m)
and q = 0 (semicircle or k = m limit), the integrals in
Eqs. (19) and (20) are easy to obtain. More importantly, the
Sζ in Eqs. (17) and (19) are for a given member of the EE(k)
ensemble and it is easy to see that the ensemble average of
Sζ is zero, i.e., Sζ = 0. However, Sζ Sζ ′ 	= 0 [22] and these
determine the two-point function as discussed ahead. Before
turning to this, let us add that in the past, using Eq. (17)
with additional approximations, some aspects of the variance
of level motion in embedded ensembles has been studied by
many groups [6,7,36–39].

Equation (17) generates an expansion of the two-point
function Sρ (x, y) in terms of q-Hermite polynomials (in the
remainder of this paper, the symbols x and y are standardized
variables, i.e., they denote Ê ),

Sρ (x, y) = fqN (x|q) fqN (y|q)

×
∞∑

ζ , ζ ′=1

Sζ Sζ ′
Heζ (x|q)

[ζ ]q!

Heζ ′ (y|q)

[ζ ′]q!
. (21)

Here, it is significant to note that the covariances Sζ Sζ ′ of the
Sζ ’s are related to the bivariate moments �̃PQ of the two-point
function and this is seen as follows. First,

〈H p〉 = 〈H p〉 +
∑
ζ�1

Sζ

σ p

[ζ ]q!

∫
S(q)

xp fqN (x|q) Heζ (x|q) dx.

(22)

Note that σ 2 = �2,0 = �0,2. Now, writing xp in terms of q-
Hermite polynomials using “Proposition 1” in [28] and then
applying Eq. (16) will simplify Eq. (22), giving

〈H p〉 = 〈H p〉 +
∑
ζ�1

Sζ σ p C p−ζ

2 ,p(q);

Cr,n(q) = (1 − q)−r
r∑

j=0

(−1) jq j( j+1)/2

×
{(

n

r − j

)
−
(

n

r − j − 1

)} [
n − 2r + j

j

]
q

.

(23)

This combined with Eq. (21) generates formulas for the re-
duced bivariate moments �̂PQ in terms of the covariances
Sζ Sζ ′ ,

�̂PQ = �̃PQ

[�2,0](P+Q)/2 =
∞∑

ζ ,ζ ′=1

Sζ Sζ ′ C P−ζ

2 ,P(q)C Q−ζ ′
2 ,Q(q).

(24)

Note that �̃Pq is defined by Eq. (8) and �PQ by Eq. (9). Let us
add that �̂PQ = 0 for P + Q is odd, and similarly Sζ Sζ ′ = 0
for ζ + ζ ′ is odd. Also, �̂P0 = 0, �̂PQ = �̂QP, Sζ = 0, and
Sζ Sζ ′ = Sζ ′ Sζ .

B. Covariances Sζ Sζ′

Using Eq. (24) successively with P + Q increasing from
two, it is easy to see that the covariances Sζ Sζ ′ can be written
in terms of the moments �̂PQ. Formulas for the moments
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can be derived for low values of P + Q and, as presented in
Sec. IV, at present we can go up to P + Q = 8 (there are
some restrictions for P + Q = 6 and 8). With this, Sζ Sζ ′ for
ζ + ζ ′ � 8 are

S1 S1 = �̂11,

S3 S1 = �̂31 − C13 �̂11,

S2 S2 = �̂22,

S5 S1 = �̂51 − C15 S3 S1 − C25 S1 S1,

S4 S2 = �̂42 − C14 S2 S2,

S3 S3 = �̂33 − C2
13 S1 S1 − 2C13 S1 S3,

S7 S1 = �̂71 − C17 S5 S1 − C27 S3 S1 − C37 S1 S1,

S6 S2 = �̂62 − C16 S4 S2 − C26 S2 S2,

S5 S3 = �̂53 − C13 S5 S1 − C15 S3 S3

− [C25 + C15C13] S1 S3 − C25C13 S1 S1,

S4 S4 = �̂44 − 2C14 S2 S4 − C2
14 S2 S2. (25)

In the above, we have dropped q in Cr,n(q) for brevity. In order
to apply Eq. (25), Eq. (23) for Cr,n(q) is simplified for r = 1,
2, and 3 (note that n � 2r + 1). First, C0P(q) = 1 for any P.
Similarly, the formula for r = 1 is simple:

C1,P(q) =
P∑

κ=2

(κ − 1)qP−κ . (26)

Then, for example C1,2(q) = 1, C1,3 = q + 2, C1,4 = q2 +
2q + 3, C1,5 = q3 + 2q2 + 3q + 4, and so on. Besides this,
we need the formulas for C25, C26, C27, and C37 for applying
Eq. (25). These are

C2,5(q) = [q3 + 3q2 + 6q + 5],

C2,6(q) = [q5 + 3q4 + 7q3 + 12q2 + 13q + 9],

C2,7(q) = [q7 + 3q6 + 7q5 + 13q4 (27)

+ 21q3 + 24q2 + 22q + 14],

C3,7(q) = [q6 + 4q5 + 10q4 + 20q3 + 28q2 + 28q + 14].

It is important to note that SiS j = 〈Hei(H )〉m 〈Hej (H )〉m, and
this can be used to verify Eq. (25). Now we will derive formu-
las for the bivariate moments �PQ, with finite N corrections,
so that we can obtain lower order covariances of the Sζ ’s.

IV. FORMULAS FOR LOWER ORDER BIVARIATE
MOMENTS OF TWO-POINT CORRELATION FUNCTION

In this section we will derive formulas for the moments
�PQ (thereby, for �̂PQ) of the two-point correlation function
by restricting to EGUE(k) for a system of m fermions in
N single particle states. As established in [10], these will
follow from the Wigner-Racah algebra of U (N ). For EGUE(k)
Hamiltonians, all the m-fermion states belong to the totally
antisymmetric irreducible representation (irrep) fm = {1m} of
U (N ) (note that we are using Young tableaux notation for
irreps; see Appendix A). Then, the conjugate irrep is fm =
{1N−m}. Given a k-body H , it will decompose into U (N )
tensors Bν (k) with the irreps ν = {2ν1N−2ν}; note that ν = ν

(the “bar” used here for denoting conjugate irrep should not

be confused with the “bar” used for ensemble averages). As
SU (N ) instead of U (N ) is used in the derivations, ν = 0 cor-
responds to {1N } = {0} irrep. With m particle states denoted
by | fm, α〉, we need the SU (N ) Clesh-Gordan (CG) coeffi-
cients 〈 fmα1 fm α2|ν ων〉 where α’s and ων are additional
labels needed for complete specification of various states.
In the following we will often use the short hand notation
Cν,ων

α1 α2
by dropping the fm label; as always we will deal with

m-particle states. Some important properties of the CG coeffi-
cients C fabvab

fava fbvb
= 〈 fava fbvb| fabvab〉 are [10,40,41]

C0,0
α1 α1

= 1√
d ( fm)

, Cν,ων

α2 α1
= {Cν,ων

α1 α2

}∗
,∑

α1,α2

C
ν1,ων1
α1 α2

{
C

ν2,ων2
α1 α2

}∗ = δν1ν2 δων1 ων2
,

∑
α1

Cν,ων

α1 α1

{
C0,0

α1 α1

}∗ = δν,0,

C fabvab

fava fbvb
= (−1)φ( fa, fb, fab) C fabvab

fbvb fava
,

C fabvab

fava fbvb
= C fabvab

fava fbvb
,

C fabvab

fava fbvb
= (−1)φ( fa, fb, fab)

√
d ( fab)

d ( fa)
C fava

fabvab fbvb
.

(28)

Here d ( f ) is the U (N ) dimension of the irrep { f } and the
formula for this is well known [42,43]. We have, for ex-
ample, d ( fm) = ( N

m ). Also, φ( fa, fb, fab) = �( fa) + �( fb) +
�( fab), and in the present work we do not need the explicit
form of the function �. Just as the Wigner or CG coefficients,
one can define the Racah coefficients for SU (N ) [40,41]. The
Wigner and Racah (or U−) coefficients and their various
properties will allow one to derive the following important
results for the ensemble average of the product any two m-
particle matrix elements 〈 fmα1|H | fmα2〉 of H . As proved in
[9,10] we have

Hα1α2 Hα3α4 = 〈 fmα1|H | fmα2〉 〈 fmα3|H | fmα4〉
=

∑
ν=0,1,...,k;ων

�ν (N, m, m − k) Cν,ων

α1 α2
Cν,ων

α3 α4
,

(29)

and

Hα1α2 Hα3α4 =
∑

μ=0,1,...,m−k;ωμ

�μ(N, m, k) Cμ,ωμ

α1 α4
Cμ,ωμ

α3 α2
(30)

with

�ν (N, m, r) =
(

m − ν

r

)(
N − m + r − ν

r

)
. (31)

These equations are important as we use “binary correlation
approximation.” In this approximation, in the ensemble av-
erages involving sums of product of many particle matrix
elements of the H operator (similarly any other operator) only
terms with pair wise correlated parts will dominate [6,9–11].
Equations (28), (29), (30), and (31) along with the “binary
correlation approximation” are used to derive formulas for
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�PQ and, hence, for �̂PQ. Now, we will present the results
for �̂PQ with P + Q = 2, 4, 6, and 8.

A. Formulas for �̂PQ with P + Q = 2

Formulas for �2,0 = �0,2 and �1,1 are already presented
in [9,10] and they are briefly discussed here for completeness.
First, the variance �2,0 is simply

�2,0 = 〈H2〉m = 1

d ( fm)

∑
α1,α2

Hα1α2 Hα2α1

= 1

d ( fm)

∑
μ=0,1,...,m−k;ωμ

∑
α1,α2

�μ(N, m, k) Cμ,ωμ

α1 α1
Cμ,ωμ

α2 α2

= �0(N, m, k). (32)

Here, in the second step, we have used Eq. (30) and in the
last step the fact that C0,0

α,α = 1/
√

d ( fm) and the sum rules
given in Eq. (28). Similarly, the �1,1 or the covariance in the
eigenvalue centroids is

�1,1 = 〈H〉m〈H〉m = 1

[d ( fm)]2

∑
α1,α2

Hα1α1 Hα2α2

= 1

[d ( fm)]2 �0(N, m, m − k)
∑
α1,α2

C0,0
α1 α1

C0,0
α2 α2

= 1

d ( fm)
�0(N, m, m − k). (33)

Here, in the second step we have used the result that only a
SU (N ) scalar (ν = 0) part of H contributes to the eigenvalue
centroids, and also Eq. (29). In the last step used is the result
C0,0

α,α = 1/
√

d ( fm) and the sum over α’s will give [d ( fm)]2.
Combining Eqs. (32) and (33) will give the formula for �̂11,

�̂11 = �0(N, m, m − k)

d ( fm) �0(N, m, k)
. (34)

B. Formulas for �̂PQ with P + Q = 4

With P + Q = 4, we have �4,0 = �0,4, �3,1 = �1,3, and
�2,2. For �4,0,

�4,0 = 〈H4〉m = 1

d ( fm)

∑
α1,α2,α3,α4

Hα1α2 Hα2α3 Hα3α4 Hα4α1

(35)

using binary correlation approximation, there will be two bi-
nary correlated terms. Denoting the correlated pairs as A, B,

etc., and applying the cyclic invariance of m-particle averages,
the two terms are 2〈AABB〉m = 2[〈AA〉m]2 and 〈ABAB〉m.
Then, Eq. (35) simplifies to

�4,0 = 〈H4〉m = 2[�2,0]2 + 1

d ( fm)

×
∑

α1,α2,α3,α4

Hα1α2 Hα3α4 Hα2α3 Hα4α1 . (36)

Simplifying the last binary correlated term 〈ABAB〉m using
Eqs. (28), (29), and (30) and properties of SU (N ) Racah

coefficients, we have [10] (see also [9]):

〈ABAB〉m = 1

d ( fm)

min{k,m−k}∑
ν=0

�ν (N, m, m − k)

× �ν (N, m, k) d (ν), (37)

where d (ν) = ( N
ν

)2 − ( N
ν−1 )2. Then,

�4,0 = 〈H4〉m = 2[�0(N, m, k)]2 + 〈ABAB〉m (38)

with the last term given by Eq. (37). Note that Eq. (37) also
gives the formula for the q parameter for EGUE(k) [30],

q =
∑min{k,m−k}

ν=0 �ν (N, m, m − k) �ν (N, m, k) d (ν)

d ( fm) [�0(N, m, k)]2 . (39)

Turning to �3,1,

�3,1 = �1,3 = 〈H〉m〈H3〉m
, (40)

clearly the H matrix element in 〈H〉m has to correlate with
one of the H matrix elements in 〈H3〉m in the binary corre-
lation approximation. Denoting the correlated terms again as
A, B, etc., we have the three terms 〈A〉m〈ABB〉m, 〈A〉m〈BAB〉m,
and 〈A〉m〈BBA〉m, and these three are same due to the cyclic
invariance of m-particle averages. Then, we have the simple
result

�3,1 = �1,3 = 3〈H〉m〈H〉m 〈H2〉m

= 3

d ( fm)
�0(N, m, k) �0(N, m, m − k) (41)

and the ensemble averages here follow from Eqs. (32) and
(33). With this, �̂31 is

�̂31 = 3 �̂11. (42)

Finally, let us consider �2,2,

�2,2 = 〈H2〉m〈H2〉m
. (43)

Here, again, there will be three correlated terms 〈AA〉m 〈BB〉m,
〈AB〉m 〈AB〉m, and 〈AB〉m 〈BA〉m with the later two equal due
to the cyclic invariance of m-particle averages. Simplifying
these will easily give [9,10]

�2,2 = 〈H2〉m〈H2〉m

= [〈H2〉m]2 + 2〈AB〉m〈AB〉m

〈AB〉m〈AB〉m = 1

[d ( fm)]2

∑
α1,α2,αa,αb

Hα1α2 Hαaαb Hα2α1 Hαbαa

= 1

[d ( fm)]2

∑
ν=0,1,...,k

[�ν (N, m, m − k)]2d (ν).

(44)

Note that the formula for 〈H2〉m is given by Eq. (32). Using
this, for �̂22 we have

�̂22 = 2
∑k

ν=0 [�ν (N, m, m − k)]2d (ν)

[d ( fm) �0(N, m, k)]2 . (45)
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C. Formulas for �̂PQ with P + Q = 6

With P + Q = 6, we have �6,0 = �0,6, �5,1 = �1,5, �4,2 = �2,4, and �3,3. For �6,0 with

�6,0 = �0,6 = 〈H6〉m
, (46)

there will be four different binary correlated terms:

�6,0 = 5〈AABBCC〉m + 6〈AABCBC〉m + 3〈ABACBC〉m + 〈ABCABC〉m (47)

and the first two terms follow from Eq. (32) giving

5〈AABBCC〉m = 5[�0(N, m, k)]3,

6〈CCABAB〉m = 6�0(N, m, k) 〈ABAB〉m (48)

with 〈ABAB〉 given by Eq. (37). Now let us consider the third term,

〈ABACBC〉m = 1

d ( fm)

∑
α1,α2,α3,α4,α5,α6

Hα1α2 Hα3α4 Hα2α3 Hα5α6 Hα4α5 Hα6α1 . (49)

Applying Eq. (30) to the first and third ensemble averages in Eq. (49) and Eq. (29) to the second term will give

〈ABACBC〉m = 1

d ( fm)

∑
α1,α2,α3,α4,α6,α6

∑
μ1=0,1,...,m−k;ωμ1

�μ1 (N, m, k) C
μ1,ωμ1
α1 α4

C
μ1,ωμ1
α3 α2

×
∑

μ2=0,1,...,m−k;ωμ2

�μ2 (N, m, k) C
μ2,ωμ2
α4 α1

C
μ2,ωμ2
α6 α5

∑
ν1=0,1,...,k;ων1

�ν1 (N, m, m − k) C
ν1,ων1
α2 α3

C
ν1,ων1
α5 α6

. (50)

Now, applying the sum rules for the CG coefficients using Eq. (28), the final result is obtained:

〈ABACBC〉m = 1

d ( fm)

min(k,m−k)∑
ν=0

�ν (N, m, m − k) [�ν (N, m, k)]2 d (ν). (51)

We are now left with the term 〈ABCABC〉m and this can be written as

〈ABCABC〉m = 1

d ( fm)

∑
αi,α j ,αk ,α�,αP,αQ

Hαiα j Hαkα�
Hα jαP Hα�αQ HαPαk HαQαi . (52)

It is easy to see that Eq. (52) is the same as the S3 term in [44]; see Eq. (32) in this paper. Then, its simplification involves SU (N )
Racah (or U−) coefficients. The final result follows from Eq. (36) of [44] with t = k giving

〈ABCABC〉m = 1

[d ( fm)]2

k∑
μ1,μ2=0

min(2k,m−k)∑
ν=0

d (μ1) d (μ2) |U ( fmμ1 fmμ2 ; fmν)|2

× �μ1 (N, m, m − k) �μ2 (N, m, m − k) �ν (N, m, k). (53)

In Eq. (53), for simplicity we are not showing the multiplicities that appear in the U -coefficient. See [40,41] for SU (N ) Racah
coefficients and for some of their properties. Equation (48) of [44] gives the formula in the asymptotic limit for the U coefficient
appearing above and this is used in Appendix C. Equations (47), (48), (51), and (53) together will give the formula for �6,0 =
�0,6,

�6,0 = 5 [�0(N, m, k)]3 + 6

d ( fm)
�0(N, m, k)

min(k,m−k)∑
ν=0

�ν (N, m, m − k) �ν (N, m, k) d (ν)

+ 3

d ( fm)

min(k,m−k)∑
ν=0

�ν (N, m, m − k) [�ν (N, m, k)]2 d (ν) + 1

[d ( fm)]2

k∑
μ1,μ2=0

min(2k,m−k)∑
ν=0

d (μ1) d (μ2)

× |U ( fmμ1 fmμ2 ; fmν)|2�μ1 (N, m, m − k) �μ2 (N, m, m − k) �ν (N, m, k). (54)

Though �̂6,0 = 0, we need the formula for �6,0 when we consider �̂PQ with P + Q � 8; see Sec. D.
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The formula for �5,1 is simple and this follows from the same arguments that gave Eq. (41). Then,

�5,1 = �1,5 = 〈H5〉m〈H〉m = 5 〈H〉m〈H〉m 〈H4〉m (55)

with the first factor given by Eq. (33) and the second factor by Eq. (38). Then,

�̂5,1 = 10 �̂1,1 + 5 �̂1,1
∑min{k,m−k}

ν=0 �ν (N, m, m − k) �ν (N, m, k) d (ν)

d ( fm) [�0(N, m, k)]2 . (56)

Coming to �4,2, it is easy to see that there are three different binary correlation terms giving

�4,2 = �2,4 = 〈H4〉m 〈H2〉m

= 〈H2〉m 〈H4〉m + 8〈ABCC〉m〈AB〉m + 4〈ABCB〉m〈AC〉m

= 〈H2〉m 〈H4〉m + 8〈H2〉m 〈AB〉m〈AB〉m + 4〈ABCB〉m〈AC〉m. (57)

Here the first two terms follow from Eqs. (32), (38), and (44) and the third term is simplified as follows. First as in Eq. (52),

〈ABCB〉m〈AC〉m = 1

[d ( fm)]2

∑
α1,α2,α3,α4,αa,αb

Hα1α2 Hαaαb Hα2α3 Hα4α1 Hα3α4 Hαbαa

= 1

[d ( fm)]2

∑
α1,α2,α3,α4,αa,αb

∑
μ1=0,1,...,k;ωμ1

�μ1 (N, m, m − k) C
μ1,ωμ1
α1 α2

C
μ1,ωμ1
αa αb

×
∑

μ2=0,1,...,k;ωμ2

�μ2 (N, m, m − k) C
μ2,ωμ2
α3 α4

C
μ2,ωμ2
αb αa

∑
ν1=0,1,...,m−k;ων1

�ν1 (N, m, k) C
ν1,ων1
α2 α1

C
ν1,ων1
α4 α3

. (58)

Now the sum rules for the CG coefficients, as given by Eq. (28), allow us to carry out the sum over all the α’s giving μ1 = μ2 =
ν1, and similarly ωμ1 = ωμ2 = ων1 . With these, Eq. (58) simplifies to

〈ABCB〉m〈AC〉m = 1

[d ( fm)]2

min(k,m−k)∑
ν=0

�ν (N, m, k) [�ν (N, m, m − k)]2 d (ν). (59)

Combining Eqs. (59) and (57) will give the formula for �4,2 = �2,4. Now, the formula for �̂4,2 is

�̂4,2 = 4 �̂2,2 + 4
∑min(k,m−k)

ν=0 �ν (N, m, k) [�ν (N, m, m − k)]2 d (ν)

[d ( fm)]2 [�0(N, m, k)]3 . (60)

Finally, for �3,3 defined by

�3,3 = 〈H3〉m〈H3〉m
, (61)

there will be three binary correlated terms:

�3,3 = 9〈ABB〉m〈ACC〉m + 3〈ABC〉m〈ACB〉m + 3〈ABC〉m〈ABC〉m. (62)

Note that by definition, for EGUE(k), 〈H3〉m = 0. The first term in Eq. (62) is simple,

〈ABB〉m〈ACC〉m = [〈H2〉m]2 〈H〉m〈H〉m. (63)

The second term in Eq. (62) has a structure quite similar to the one in Eq. (58),

〈ABC〉m〈ACB〉m = 1

[d ( fm)]2

∑
α1,α2,α3,αa,αb,αc

Hα1α2 Hαaαb Hα2α3 Hαcαa Hα3α1 Hαbαc . (64)

Simplifying just as in Eqs. (58) and (59) will give the final formula:

〈ABC〉m〈ACB〉m = 1

[d ( fm)]2

∑
μ=0,1,...,m−k

[�μ(N, m, k)]3 d (μ). (65)

The third term 〈ABC〉m〈ABC〉m has a structure quite similar to 〈ABCABC〉m. Following the same steps that led to Eq. (53) will
give the formula involving SU (N ) U coefficients. First,

〈ABC〉m〈ABC〉m = 1

[d ( fm)]2

∑
α1,α2,α3,αa,αb,αc

Hα1α2 Hαaαb Hα2α3 Hαbαc Hα3α1 Hαcαa . (66)
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Now, simplifying this using the same procedure as in Eqs. (32)–(36) of [44] will generate the following formula:

〈ABC〉m 〈ABC〉m = 1

[d ( fm)]3

k∑
ν,ν1,ν2=0

d (ν1) d (ν2) |U ( fmν1 fmν2 ; fmν)|2

× �ν1 (N, m, m − k) �ν2 (N, m, m − k) �ν (N, m, m − k). (67)

As in Eq. (53), again in Eq. (67), for simplicity, we are not showing the multiplicities that appear in the U coefficient.
Equations (62), (63), (65), and (67) will give the formula for �3,3. With these, the formula for �̂3,3 is

�̂3,3 = 9 �̂1,1 + 3
∑m−k

μ=0 [�μ(N, m, k)]3 d (μ)

[d ( fm)]2[�0(N, m, k)]3 + 3

[d ( fm) �0(N, m, k)]3

k∑
ν,ν1,ν2=0

d (ν1) d (ν2) |U ( fmν1 fmν2 ; fmν)|2

× �ν1 (N, m, m − k) �ν2 (N, m, m − k) �ν (N, m, m − k). (68)

Thus, we have simple finite-N formulas for all �̂P,Q with P + Q = 6, except for the U coefficient in Eq. (68).

D. Formulas for �̂PQ with P + Q = 8

With P + Q = 8, we need to derive formulas for �̂7,1 = �̂1,7, �̂6,2 = �̂2,6, �̂5,3 = �̂3,5, and �̂4,4. First, �̂7,1 is simple,

�̂7,1 = �̂1,7 = 〈H7〉m 〈H〉m

[�2,0]4 = 7 �̂11
�6,0

[�0(N, m, k)]3 (69)

and the formula for �6,0 is given by Eq. (54).
The formula for �̂6,2 is more complicated and �6,2 contains four different terms:

�6,2 = �2,6 = 〈H6〉m 〈H2〉m = 〈H2〉m 〈H6〉m + 12 〈ABH4〉m〈AB〉m + 12 〈ABCDEF 〉m〈AC〉m + 6 〈ABCDEF 〉m〈AD〉m. (70)

The second term here is simple, giving

〈ABH4〉m〈AB〉m = 〈AB〉m〈AB〉m 〈H4〉m
, (71)

and the formulas for the two terms on the R.H.S. are given by Eqs. (44), (38), and (37). The third term in Eq. (70) is

〈ABCDEF 〉m〈AC〉m = 1

[d ( fm)]2

∑
α1,α2,α3,α4,α5,α6,αa,αb

X1 [X2 + X3 + X4];

X1 = Hα1α2 Hαaαb Hα3α4 Hαbαa , X2 = Hα2α3 Hα4α5 Hα5α6 Hα6α1 ,

X3 = Hα2α3 Hα5α6 Hα4α5 Hα6α1 , X4 = Hα2α3 Hα6α1 Hα4α5 Hα5α6 . (72)

First, the “X1” term is simplified using Eq. (29). Similarly, the second part of X2, i.e., Hα5α6 Hα6α1 , gives �0(N, m, k) δα1α5 . Then,
X1X2 with sum over all the α’s, after applying Eq. (29), is given by

∑
α′s

X1X2 =
k∑

ν=0

[�ν (N, m, m − k)]2
�0(N, m, k)

∑
μ=0,1,...,m−k

�μ(N, m, k)
∑

α1,α2,α3,α4,ων ,ωμ

Cν,ων

α1α2
Cν,ων

α3α4
Cμ,ωμ

α2α1
Cμ,ωμ

α4α3

= �0(N, m, k)
min(k,m−k)∑

ν=0

[�ν (N, m, m − k)]2
�ν (N, m, k) d (ν). (73)

In the last step here we have used the sum rules for the CG coefficients as given in Eq. (28). Going further it is easy to see that
the X1X4 with sum over all the α’s is the same as X1X2 with sum over all the α’s. Then we are left with X1X3. Applying Eqs. (29)
and (30) will give

∑
α′s

X1X3 =
k∑

ν=0

[�ν (N, m, m − k)]2
k∑

μ=0

�μ(N, m, m − k)
∑

μ′=0,1,...,m−k

�μ′
(N, m, k)

×
∑

α1,α2,α3,α4,α5,α6,ων ,ωμ,ωμ′

Cν,ων

α1α2
Cν,ων

α3α4
Cμ,ωμ

α2α3
Cμ,ωμ

α5α6
C

μ′,ωμ′
α4α1

C
μ′,ωμ′
α6α5

. (74)
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This is simplified using Eq. (28) and the transformation of product of two CG coefficients as given by Eq. (21) of [10]. Applying
these will give the formula:

∑
α′s

X1X3 =
k∑

ν=0

min(k,m−k)∑
μ=0

[�ν (N, m, m − k)]2
�μ(N, m, m − k)�μ(N, m, k)

√
d (ν)d (μ) U ( fm fm fm fm ; νμ). (75)

Combining Eqs. (73) and (75) will give the formula for 〈ABCDEF 〉m〈AC〉m. Turning to the fourth term in �6,2, first we have

〈ABCDEF 〉m〈AD〉m = 1

[d ( fm)]2

∑
α1,α2,α3,α4,α5,α6,αa,αb

Y1 [Y2 + Y3 + Y4];

Y1 = Hα1α2 Hαaαb Hα4α5 Hαbαa , Y2 = Hα2α3 Hα3α4 Hα5α6 Hα6α1 ,

Y3 = Hα2α3 Hα5α6 Hα3α4 Hα6α1 , Y4 = Hα2α3 Hα6α1 Hα3α4 Hα5α6 . (76)

The Y1Y2 term is simplified easily using Eqs. (28)–(30) and similarly, the Y1Y4 term giving

∑
α′s

Y1Y2 =
k∑

ν=0

[�ν (N, m, m − k)]2[�0(N, m, k)]2 d (ν),

∑
α′s

Y1Y4 =
min(k,m−k)∑

ν=0

[�ν (N, m, m − k) �ν (N, m, k)]2 d (ν). (77)

Simplification of the Y1Y3 term needs not only Eqs. (28)–(30) but also Eq. (21) of [10] for Y1 and and Eq. (35) of [44] for Y3.
With these we have

∑
α′s

Y1Y3 =
2k∑

μ=0

k∑
μ1,μ2,ν=0

[�ν (N, m, m − k)]2
�μ1 (N, m, m − k) �μ2 (N, m, m − k)

× d (μ1)d (μ2)
√

d (ν)

d ( fm)
√

d (μ)
U ( fm fm fm fm; νμ)|U ( fmμ1 fmμ2; fmμ)|2. (78)

Combining Eqs. (77) and (78) will give the formula for 〈ABCDEF 〉m〈AD〉m. With all these, the formula for �̂6,2 is

�̂6,2 = �̂2,6 = [�0(N, m, k)]−4 {A1 + A2 + A3};

A1 = 12

[d ( fm)]2

k∑
ν=0

{[�ν (N, m, m − k)]2d (ν)}
⎧⎨⎩2[�0(N, m, k)]2 + 1

d ( fm)

min(k,m−k)∑
ν=0

�ν (N, m, m − k) �ν (N, m, k) d (ν)

⎫⎬⎭,

A2 = 24

[d ( fm)]2
�0(N, m, k)

min(k,m−k)∑
ν=0

[�ν (N, m, m − k)]2�ν (N, m, k) d (ν) + 12

[d ( fm)]2

×
⎧⎨⎩

k∑
ν=0

min(k,m−k)∑
μ=0

[�ν (N, m, m − k)]2�μ(N, m, m − k)�μ(N, m, k)
√

d (ν)d (μ) U ( fm fm fm fm ; νμ)

⎫⎬⎭,

A3 = 6

[d ( fm)]2
[�0(N, m, k)]2

k∑
ν=0

[�ν (N, m, m − k)]2 d (ν) + 6

[d ( fm)]2

min(k,m−k)∑
ν=0

[�ν (N, m, m − k)]2 [�ν (N, m, k)]2 d (ν)

+ 6

[d ( fm)]2

⎧⎨⎩
2k∑

μ=0

k∑
μ1,μ2,ν=0

[�ν (N, m, m − k)]2 �μ1 (N, m, m − k) �μ2 (N, m, m − k)

× d (μ1)d (μ2)
√

d (ν)

d ( fm)
√

d (μ)
U ( fm fm fm fm; νμ)|U ( fmμ1 fmμ2; fmμ)|2

⎫⎬⎭. (79)

Now, we will consider �̂5,3 and �̂4,4.
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TABLE I. Covariances SiS j for EGUE(k). Results are shown for (N, m) = (12, 6) with k = 2 and 3, and for (N, m) = (30, 10), k = 2, 3,
and 4. Numbers in the brackets are from asymptotic limit formulas given by Eq. (82). The q values obtained using Eq. (39) are also given.

N = 12, m = 6
SiS j k = 2 k = 3

q = 0.287 q = 0.006
S1S1 8.117 × 10−3 (3.444 × 10−3) 1.082 × 10−3 (4.132 × 10−4)
S3S1 5.787 × 10−3 (3.444 × 10−3) 1.021 × 10−3 (4.132 × 10−4)
S2S2 1.160 × 10−3 (4.591 × 10−4) 1.227 × 10−4 (4.132 × 10−5)
S5S1 6.835 × 10−3 (4.845 × 10−3) 1.075 × 10−3 (3.968 × 10−4)
S4S2 1.533 × 10−3 (5.251 × 10−4) 1.497 × 10−4 (4.064 × 10−5)
S3S3 3.062 × 10−2 (1.303 × 10−2) 5.176 × 10−3 (1.974 × 10−3)
S7S1 1.249 × 10−2 (1.063 × 10−2) 1.282 × 10−3 (3.993 × 10−4)
S6S2 (3.676 × 10−4) (4.276 × 10−5)
S5S3 (1.539 × 10−2) (2.08 × 10−3)
S4S4 (3.907 × 10−4) (4.126 × 10−5)

N = 30, m = 10
SiS j k = 2 k = 3 k = 4

q = 0.524 q = 0.208 q = 0.005
S1S1 4.478 × 10−4 (2.378 × 10−4) 1.669 × 10−5 (7.28 × 10−6) 7.211 × 10−7 (2.796 × 10−7)
S3S1 2.13 × 10−4 (2.378 × 10−4) 1.322 × 10−5 (7.28 × 10−6) 6.884 × 10−7 (2.796 × 10−7)
S2S2 1.718 × 10−5 (1.057 × 10−5) 2.577 × 10−7 (1.213 × 10−7) 6.719 × 10−9 (2.663 × 10−9)
S5S1 2.354 × 10−4 (2.413 × 10−4) 1.528 × 10−5 (9.725 × 10−6) 7.182 × 10−7 (3.151 × 10−7)
S4S2 1.559 × 10−5 (9.731 × 10−6) 3.025 × 10−7 (1.365 × 10−7) 7.532 × 10−9 (2.797 × 10−9)
S3S3 1.177 × 10−3 (6.252 × 10−4) 6.887 × 10−5 (3.004 × 10−5) 3.473 × 10−6 (1.345 × 10−6)
S7S1 5.852 × 10−4 (6.316 × 10−4) 2.016 × 10−5 (1.826 × 10−5) 7.659 × 10−7 (3.885 × 10−7)
S6S2 (1.703 × 10−6) (1.141 × 10−7) (2.746 × 10−9)
S5S3 (6.91 × 10−4) (3.472 × 10−5) (1.405 × 10−6)
S4S4 (5.566 × 10−6) (1.111 × 10−7) (2.652 × 10−9)

It is easy to see that �̂5,3 and �̂4,4 will involve a much
larger number of terms than �6,2 and they will also involve
several SU (N ) U coefficients. Details of various terms in �̂5,3

and �̂4,4 are given in Appendix B. Following this, the formula
for �̂5,3 is

�̂5,3 = 15(2 + q) �̂1,1 + 5(1 + q)[�̂3,3 − 9�̂1,1] + X53.

(80)

Here, Eqs. (B2), (B3), (65), (67), (68), and (B5) are used with
X53 defined by Eq. (B5). Similarly, the formula for �̂4,4 is

�̂4,4 = 16�̂2,2 + 8[�̂4,2 − 4�̂2,2] + 8

[d ( fm)]2

×
min(k,m−k)∑

ν=0

[�ν (N, m, m − k) �ν (N, m, k)]2 d (ν)

[�0(N, m, k)]4

+ 4

[d ( fm)]2

m−k∑
ν=0

[�ν (N, m, k)]4 d (ν)

[�0(N, m, k)]4
+ X44. (81)

Here, Eqs. (B8), (32), (44), (59, (B10), and (B14) are used
with X44 defined by Eqs. (B11) and (B12). Note that X53 in
Eq. (80) and X44 in Eq. (81) involve SU (N ) U coefficients for
which formulas are not available. However, both X53 and X44

can be neglected in the asymptotic limit (see Appendix c).
Formulas derived in this section along with Eq. (25) will

allow us to calculate SiS j numerically for i + j � 8, as well

as allow to examine their asymptotic structure. We will turn to
these in the following section.

V. ASYMPTOTIC LIMIT RESULTS FOR THE
COVARIANCES AND EXPANSION

FOR THE NUMBER VARIANCE

In the previous section we have derived formulas for �̂P,Q

with P + Q = 2 − 8. In particular, the formula for (P, Q) =
(1, 1) is given by Eq. (34); for (3,1) by Eq. (42); for (2,2)
by Eq. (45); for (5,1) by Eq. (56); for (4,2) by Eq. (60); for
(3,3) by Eq. (68); for (7,1) by Eqs. (69) and (54); for (6,2)
by Eq. (79); for (5,3) by Eq. (80): and finally, for (4,4) by
Eq. (81). Also, note that the formula for the q parameter
is given by Eq. (39) and �ν (N, m, r) is given by Eq. (31).

In addition, the dimensions d ( fm) = ( N
m ) and d (ν) = ( N

ν
)
2 −

( N
ν−1 )

2
. Using all these equations along with Eq. (25), the

covariances SiS j for (i, j) = (1, 1), (3,1), (2,2), (5,1), (4,2),
(3,3), and (7,1) are calculated and the results are shown in
Table I. For (3,3), the last term in Eq. (68) is not included
as the U coefficients needed here are not available. Finite N
results for (6,2) are not shown as formulas, for the two U
coefficients appearing in Eq. (79) are not available. Similarly,
the finite N results for (5,3) and (4,4) are not shown in the
table. It is seen from the table that in general, the covariances
are small and they are of the same order of magnitude as in the
SYK model (for Majorana fermions) reported earlier in [22].

054128-11



V. K. B. KOTA PHYSICAL REVIEW E 107, 054128 (2023)

A. Asymptotic limit formulas for SiS j

For further insight into the structure of SiS j , the formulas in
Sec. IV are used to derive asymptotic limit formulas for �̂PQ

and these are given in Appendix C. Now, using the formulas
in Eq. (C3) and Eqs. (25)–(27), the following asymptotic limit
formulas are obtained for SiS j with i + j � 8,

S1S1 =
(m

k

)(N
k

)2 ,

S3S1 = (1 − q) S1S1,

S2S2 = 1(N
k

)2 ,

S5S1 = (1 − q2)2 S1S1,

S4S2 = (1 − q2) S2S2,

S3S3 = 3(1 − q) S1S1 + 3(m
k

)(N
k

)2 + O

⎛⎝ 1(N
k

)4
⎞⎠,

S7S1 = (1 − q)(1 − q2)2[1 + 2q + 3q2 + 2q3 + q4] S1S1,

S6S2 = (q6 + q5 − q4 + 4q3 − 7q2 + q + 1) S2S2

+O

⎛⎝ 1(N
k

)4
⎞⎠,

S5S3 = (1 − q)2
[
q3 + 7q2 + 11q + 5

]
S1S1

+ 3(1 − q)(q2 + 3q + 1)(m
k

)(N
k

)2 + O

⎛⎝ 1(N
k

)4
⎞⎠,

S4S4 = (1 − q2)2 S2S2 + 4(m
k

)2 (N
k

)2 + O

⎛⎝ 1(N
k

)4
⎞⎠;

q =
(m−k

k

)(m
k

) . (82)

All these formulas agree with the GUE (k = m giving q =
0) results given in [7,34]. They also agree with results for
EGUE(k) in the k/m → 1 limit as given in [6,7] and this cor-
responds to q → 1 in Eq. (82). Thus, the formulas in Eq. (82)
cover the two extreme limits and therefore expected to apply
to all k values (validity of this needs further testing of the
approximations used in Appendix C). In addition, the results
in Sec. IV give finite N corrections to the formulas in Eq. (82)
for all k values.

Going further, numerical results given by Eq. (82) are
shown in brackets in Table I. These results are not too far
from the finite N results. The correlations, as seen from the
asymptotic limit formulas in Eq. (82), are of the order of
1/[( N

k )]2. With the 1/[( N
k )]2 scaling, correlations SiS j shown

in Table I are no longer small. More strikingly, for q → 1 (i.e.,
k/m → 0) the SiS j = 0 for i 	= j and S2

i = ( m
k )2−i ( N

k )−2. Sim-
ilarly, for q = 0 (i.e., k = m) the structure of SiS j is simple and
SiS j 	= 0 both for i = j and i 	= j. However, for intermediate k
values (between k << m and k = m), SiS j are a combination

of q, S1S1, S2S2, and ( m
k )r ( N

k )−2 with r � 1. Besides these, the
case k/m → 0 (i.e., q → 1), the so-called dilute limit, seems
to imply an uncorrelated spectra, since SiS j = 0 for i 	= j.
This seems to agree with a conclusion obtained first in [46]
(see also the discussion in Sec. I and [9,15]).

Numerical evaluation of �6,0, �3,3, and �6,2 (also, for
�5,3 and �4,4, see Appendix B) requires formulas for
SU (N ) U coefficients of the type U ( fm fm fm fm; νμ) and
U ( fmν1 fmν2; fmν). The situation here is similar to the U
coefficients needed even for the fourth moment for EGUE’s
with spin and spin-isospin SU (4) symmetries [47,48] as en-
countered before. Thus, much of the progress in analytical
approach to EGUE(k)’s will depend on extending our knowl-
edge on SU (N ) U coefficients. One approach is to further
develop the so-called pattern calculus introduced by Louck
and Biedenharn many years back for SU (N ) Wigner-Racah
algebra [49–51]. Another is to derive asymptotic expansions
for the SU (N ) Racah coefficients as attempted in the past by
French [52].

B. Expansion for number variance �2(n)

Before concluding the paper, as an example it is instructive
to consider the expansion for the number variance �2(n) in
terms of SiS j, and this follows from the expansion for the two-
point function. The definition given by Eq. (5) together with
Eqs. (4) and (19) will give the expansion,

�2(n) = d2
∞∑

ζ ,ζ ′=1

Sζ Sζ ′ [Rζ (x|q) − Rζ (y|q)]

× [Rζ ′ (x|q) − Rζ ′ (y|q)];

Rζ (x|q) =
∫ x

− 2√
1−q

fqN (z|q)
Heζ (z|q)

[ζ ]q!
dz. (83)

Note that we have used the property Sζ = 0. In Eq. (83),
with �2(n) defined over x0 ± (nD)/2, x = x0 − (nD)/2, and
y = x0 + (nD)/2. Note that D is the average mean spacing
(in σ units) and x0 is the eigenvalue around which �2(n) is
evaluated. It is expected that �2(n) is to be independent of
x0, except perhaps near the spectrum ends. With formulas for
SiS j and for i + j � 8 available as given by the equations in
Sec. IV along with Eq. (25), the series given by Eq. (83) can be
evaluated up to ζ + ζ ′ � 8 terms. Alternatively, one can use
the asymptotic limit formulas given by Eq. (82). Note that at
present the function Rζ (x|q) need to be evaluated numerically
as no analytical formula for the integral defining Rζ (x|q) is
available except for q = 1 and 0.

Finally, direct derivation of asymptotic limit formulas for
many other �̂PQ for higher P + Q values (i.e., P + Q > 8)
may prove to be useful in the future as they will provide
systematics for �̂PQ and hence for SiS j . With this, it may
be possible to carry out the sum in Eq. (21) [or the sum in
Eq. (83)] and obtain the two-point function (or the number
variance) for EGUE(k) just as it was carried out using the
moment method for GOE and GUE in the past [7,18,34]. This
work is left for the future.
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VI. CONCLUSIONS AND FUTURE OUTLOOK

Two-point correlation function in eigenvalues of embed-
ded random matrix ensembles with k-body interactions is not
yet available though these ensembles are applied to many
different quantum systems in the last 50 years (see [18,53–
62] and references therein for the previous and more recent
applications of EE). With the recent recognition that the one-
point function for these ensembles follows q-normal form, it is
possible to seek an expansion of the eigenvalue density of the
members of the ensemble in terms of q-Hermite polynomials.
Covariances Sζ Sζ ′ of the expansion coefficients Sζ with ζ � 1
determine the two-point function here. As the covariances are
a linear combination of the bivariate moments �PQ of the two-
point function (see Sec. III), in this paper, in Sec. IV, formulas
are derived for the bivariate moments �PQ with P + Q � 8
for the embedded Gaussian unitary ensembles with k-body
interactions [EGUE(k)], as appropriate for systems with m
fermions in N single particle states. The Wigner-Racah alge-
bra for SU (N ) plays a central role in deriving the formulas
with finite N corrections [10,44]. However, the �PQ with
P + Q = 6 and 8 need extension of the available knowledge in
calculating SU (N ) U coefficients; see Sec. IV. Using the finite
N formulas, in Sec. V asymptotic limit (N → ∞, m → ∞,
m/N → 0 with k finite) formulas for Sζ Sζ ′ with ζ + ζ ′ � 8
are derived. In summary, the present work extends to all k
values, the results known in the past in the two extreme limits
with k/m → 0 (same as q → 1) and k = m (same as q = 0).
Also, the case k/m → 0 (i.e., q → 1), seems to imply an
uncorrelated spectra as here SiS j = 0 for i 	= j. This seems
to agree with a conclusion obtained in [46].

In the future, expecting the availability of new methods
for evaluating general SU (N ) U coefficients, it may be pos-
sible to get systematics of �PQ and Sζ Sζ ′ , and with these
it may be possible to derive the two-point correlation func-
tion for EGUE(k) ensemble [perhaps also for EGOE(k) and
EGSE(k)]. Once the two-point function is available, this may
also open the possibility of studying ergodicity and stationar-
ity properties of EGUE(k); see [6,7,63] for some past attempts
in this direction.
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APPENDIX A

Reduction of the Kronecker product of the irreps ν1 and ν2,

giving irreps ν3, is symbolically denoted by

ν1 × ν2 =
∑
ν3

�ν1ν2ν3 ν3, (A1)

where × denotes the Kronecker product and � gives the
multiplicity, i.e., the number of times ν3 appears in the Kro-
necker product. If �ν1ν2ν3 = 0, it implies that the irrep ν3 will
not appear in the Kronecker product. In our applications, the
irreps ν correspond to the Young tableaux {2ν1N−2ν} of U (N ).

Then, Eq. (A1) changes to

{2ν1 1N−2ν1} × {2ν2 1N−2ν2} =
∑
ν3

�ν1ν2ν3{2ν3 1N−2ν3}. (A2)

Though the methods to obtain the reduction given by Eq. (A2)
are well known [42,43], a simpler approach is to first evaluate
the Kronecker product of the transpose of the irreps and then
take the transpose of the final irreps. By taking transpose, the
two column irreps {2ν1N−2ν} change to two rowed irreps {N −
ν, ν} giving

{N − ν1, ν1} × {N − ν2, ν2} =
∑
ν3

�ν1ν2ν3 {N − ν3, ν3}.

(A3)

The Kronecker product here is easy to evaluate using the
identity

{N − ν1, ν1} × {N − ν2, ν2}
= {N − ν1, ν1} × [{N − ν2} × {ν2}

− {N − ν2 + 1} × {ν2 − 1}]. (A4)

Now the product {n1, n2} × {n3} is simply the sum of
the irreps {n1 + na, n2 + nb, nc} with na � 0, nb � n1 − n2,
nc � n2, and na + nb + nc = n3. Similarly, for the product
{n1, n2, n3} × {n4}; see [42,43] and Eq. (B9) in [45]. Applying
this to Eq. (A4) gives, in general, two, three, and four rowed
irreps, however, we need only two rowed irreps. Regular-
ization of the three and four rowed irreps is done using the
rules: (i) four rowed irreps {n1, n2, n3, n4} = 0 if n1 	= N and
n2 	= N . As n1 + n2 + n3 + n4 = 2N , the allowed irrep is just
{N, N, 0, 0}; (ii) three rowed irreps {n1, n2, n3} = {n2, n3} if
n1 = N and zero otherwise. Also, note that ν = 0 corresponds
to {1N } for U (N ) and {0} for SU (N ). Using all these, we find
the following results for N � ν and N large:

ν × 1 = (ν ± 1)1, (ν)2,

ν × 2 = (ν ± 2)1, (ν ± 1)2, (ν)3,

ν × 3 = (ν ± 3)1, (ν ± 2)2, (ν ± 1)3, (ν)4,

ν × 4 = (ν ± 4)1, (ν ± 3)2, (ν ± 2)3, (ν ± 1)4, (ν)5. (A5)

In the above, r in (μ)r denotes multiplicity of the irrep μ.
Continuing the above for ν × 5, ν × 6, etc., it is easy to see
that ν × ν always gives the irrep ν but with multiplicity.

APPENDIX B

Let us consider �5,3,

�5,3 = �3,5 = 〈H5〉m 〈H3〉m
. (B1)

First, 〈H3〉m = 0 and 〈H5〉m = 0 for EGUE(k). Therefore,

�̂5,3 = �̂3,5 = [〈H2〉m]−4 �5,3. (B2)

In the binary correlation approximation, for �5,3 there are two
possibilities: (i) one H in 〈H3〉m correlates with one of the
H’s in 〈H5〉m; (ii) the three H’s in 〈H3〉m correlate pairwise
with three of the H’s in 〈H5〉m. These will give five binary
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correlated terms:

�5,3 = 15〈AH4〉m 〈AH2〉m + 15〈ABCDD〉m 〈ABC〉m + 15〈ABCDD〉m 〈ACB〉m

+ 15〈ABDCD〉m 〈ABC〉m + 15〈ABDCD〉m 〈ACB〉m

= 15〈H〉m 〈H〉m 〈H4〉m 〈H2〉m + 15〈H2〉m [〈ABC〉m〈ABC〉m + 〈ABC〉m〈ACB〉m]

+ 15〈ABDCD〉m 〈ABC〉m + 15〈ABDCD〉m 〈ACB〉m. (B3)

Except for the last two terms, formulas for rest of the terms in Eq. (B3) are already given in Sec. IV; see Eqs. (65) and (67). The
last two terms are

〈ABDCD〉m〈ABC〉m = 1

[d ( fm)]2

∑
α1,α2,α3,α4,α5,αa,αb,αc

Hα1α2 Hαaαb Hα2α3 Hαbαc Hα3α4 Hα5α1 Hα4α5 Hαcαa ,

〈ABDCD〉m〈ACB〉m = 1

[d ( fm)]2

∑
α1,α2,α3,α4,α5,αa,αb,αc

Hα1α2 Hαaαb Hα2α3 Hαcαa Hα3α4 Hα5α1 Hα4α5 Hαbαc . (B4)

Further simplification of these follow from the SU (N ) algebra given in [10,40,41,44]. Clearly, these will involve several
SU (N )U coefficients. However, assuming N → ∞ and (m, k) are finite, it is possible to use the approximation 〈ABDCD〉m ∼
[( m

k )]−1( m−k
k ) 〈ABCDD〉m; see [6,18]. Also, q ∼ [( m

k )]−1( m−k
k ). With these, the last two terms in Eq. (B3) can be written as

15〈ABDCD〉m〈ABC〉m + 15〈ABDCD〉m〈ACB〉m = 15 q 〈H2〉m[〈ABC〉m〈ABC〉m + 〈ABC〉m〈ACB〉m] + X53. (B5)

Here, X53 is the correction to the approximation given by the first term and this is expected to be of the order of [( N
k )]−4. With

this, �5,3 is

�5,3 = 15 〈H〉m 〈H〉m 〈H4〉m 〈H2〉m + 15(1 + q) 〈H2〉m [〈ABC〉m〈ABC〉m + 〈ABC〉m〈ACB〉m] + X53. (B6)

Turning to �4,4,

�4,4 = 〈H4〉m 〈H4〉m
, (B7)

in the binary correlation approximation, there are three possibilities: (i) the two 〈H4〉m’s are independent; (ii) two of H’s in one
〈H4〉m correlate with two H’s in the other 〈H4〉m; (iii) the four H’s in 〈H4〉m correlate pairwise with the four H’s in the other
〈H4〉m. These will give one, three, and six binary correlated terms, respectively,

�4,4 =〈H4〉m 〈H4〉m + 32〈ABCC〉m 〈ABDD〉m + 32〈ABCC〉m 〈ADBD〉m + 8〈ACBC〉m 〈ADBD〉m

+ 4〈ABCD〉m 〈ABCD〉m + 4〈ABCD〉m 〈ABDC〉m + 4〈ABCD〉m 〈ACBD〉m

+ 4〈ABCD〉m 〈ACDB〉m + 4〈ABCD〉m 〈ADBC〉m + 4〈ABCD〉m 〈ADCB〉m. (B8)

The formula for the first term is given by Eqs. (38) and (37). Further, the second term reduces to (〈H2〉m)2 〈AB〉m〈AB〉m and the
formula for this follows from Eqs. (32) and (44). Similarly, the third term reduces to 〈H2〉m 〈AB〉m〈ADBD〉m and the formula for
this follows from Eq. (59). The fourth term is explicitly

〈ACBC〉m〈ADBD〉m = 1

[d ( fm)]2

∑
α1,α2,α3,α4,αa,αb,αc,αd

Hα1α2 Hαaαb Hα2α3 Hα4α1 Hα3α4 Hαcαd Hαbαc Hαd αa

= 1

[d ( fm)]2

∑
α1,α2,α3,α4,αa,αb,αc,αd

k∑
ν1,ν3=0

m−k∑
ν2,ν4=0

∑
ων1 ,ων2 ,ων3 ,ων4

�ν1 (N, m, m − k)C
ν1,ων1
α1α2

C
ν1,ων1
αaαb

�ν2 (N, m, k)

× C
ν2,ων2
α2α1

C
ν2,ων2
α4α3

�ν3 (N, m, m − k)C
ν3,ων3
α3α4

C
ν3,ων3
αcαd

�ν4 (N, m, k)C
ν4,ων4
αbαa

C
ν4,ων4
αd αc

. (B9)

Here we have applied Eqs. (29) and (30). Now, simplifying the CG coefficients will give the formula,

〈ACBC〉m〈ADBD〉m = 1

[d ( fm)]2

min(k,m−k)∑
ν=0

[�ν (N, m, m − k) �ν (N, m, k)]2 d (ν). (B10)

For the last six terms in Eq. (B8) we can write formulas similar to the one in Eq. (B9). First, the first five terms are

〈ABCD〉m〈ABCD〉m = X1 = 1

[d ( fm)]2

∑
α1,α2,α3,α4,αa,αb,αc,αd

Hα1α2 Hαaαb Hα2α3 Hαbαc Hα3α4 Hαcαd Hα4α1 Hαd αa ,

〈ABCD〉m〈ABDC〉m = X2 = 1

[d ( fm)]2

∑
α1,α2,α3,α4,αa,αb,αc,αd

Hα1α2 Hαaαb Hα2α3 Hαbαc Hα3α4 Hαd αa Hα4α1 Hαcαd ,
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〈ABCD〉m〈ACBD〉m = X3 = 1

[d ( fm)]2

∑
α1,α2,α3,α4,αa,αb,αc,αd

Hα1α2 Hαaαb Hα2α3 Hαcαd Hα3α4 Hαbαc Hα4α1 Hαd αa ,

〈ABCD〉m〈ACDB〉m = X4 = 1

[d ( fm)]2

∑
α1,α2,α3,α4,αa,αb,αc,αd

Hα1α2 Hαaαb Hα2α3 Hαd αa Hα3α4 Hαbαc Hα4α1 Hαcαd ,

〈ABCD〉m〈ADBC〉m = X5 = 1

[d ( fm)]2

∑
α1,α2,α3,α4,αa,αb,αc,αd

Hα1α2 Hαaαb Hα2α3 Hαcαd Hα3α4 Hαd αa Hα4α1 Hαbαc . (B11)

Further simplification of these five terms called X1, X2, X3, X4, and X5 in Eq. (B9) follow from the SU (N ) algebra given in
[10,40,41,44] and they involve several SU (N )U coefficients. However, formulas for these U coefficients are not available in
literature. For future reference, we call the sum of the five terms as X44,

X44 = X1 + X2 + X3 + X4 + X5. (B12)

Finally, the sixth term is

〈ABCD〉m〈ADCB〉m = 1

[d ( fm)]2

∑
α1,α2,α3,α4,αa,αb,αc,αd

Hα1α2 Hαaαb Hα2α3 Hαd αa Hα3α4 Hαcαd Hα4α1 Hαbαc

= 1

[d ( fm)]2

∑
α1,α2,α3,α4,αa,αb,αc,αd

m−k∑
ν1,ν2,ν3,ν4=0

∑
ων1 ,ων2 ,ων3 ,ων4

�ν1 (N, m, k)C
ν1,ων1
α1αb

C
ν1,ων1
αaα2

× �ν2 (N, m, k)C
ν2,ων2
α2αa

C
ν2,ων2
αd α3

�ν3 (N, m, k)C
ν3,ων3
α3αd

C
ν3,ων3
αcα4

�ν4 (N, m, k)C
ν4,ων4
α4αc

C
ν4,ων4
αbα1

. (B13)

Now, simplifying the CG coefficients will give

〈ABCD〉m〈ADCB〉m = 1

[d ( fm)]2

m−k∑
ν=0

[�ν (N, m, k)]4 d (ν). (B14)

APPENDIX C

Formulas derived in Sec. IV contain finite N corrections and they can be used to derive asymptotic limit formulas. These
will provide a test, as often asymptotic formulas follow from a quite different formulation as given for example, in [6,7,11].
To derive asymptotic formulas we will use the limit N → ∞, m → ∞, m/N → 0 with k finite. Then we have the following
approximations: (

N − p

r

)
p/N→0−→ Nr

r!
, d (ν)

ν/N→0−→ N2ν

(ν!)2
,

�0(N, m, k) →
(

m

k

)(
N

k

)
, �k (N, m, k) →

(
m − k

k

)(
N

k

)
,

�k (N, m, m − k) →
(

N

m − k

)
, �0(N, m, m − k) →

(
m

k

)(
N

m − k

)
. (C1)

Using these, first we have

�2,0 =
(

m

k

)(
N

k

)
. (C2)

Using Eqs. (C1) and (C2) and the formulas given in Sec. IV, the following asymptotic limit formulas are obtained for �̂PQ with
(P, Q) = (1, 1), (3,1), (2,2), (5,1), (4,2), (3,3), (7,1), (6,2), (5,3), and (4,4). These are

�̂1,1 =
(m

k

)(N
k

)2 ,

�̂3,1 = 3

(m
k

)(N
k

)2 = 3 �̂1,1,

�̂2,2 = 2(N
k

)2 .
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�̂5,1 = 5

(m
k

)(N
k

)2
[

2 +
(m−k

k

)(m
k

) ] = (10 + 5q)�̂1,1,

�̂4,2 = 4(N
k

)2
[

2 +
(m−k

k

)(m
k

) ] = (4 + 2q)�̂2,2,

�̂3,3 = 9

(m
k

)(N
k

)2 + 3(m
k

) (N
k

)2 + 3(N
k

)2 |U |2 = 9�̂1,1 + 3(m
k

) (N
k

)2 + O

⎛⎝ 1(N
k

)4
⎞⎠,

�̂7,1 = 7�̂1,1

{
5 + 6q + 3q2 +

(m−2k
k

)(m
k

) (q)

}
� 7�̂1,1 [5 + 6q + 3q2 + q3],

�̂6,2 = 1(N
k

)2 [30 + 36q + 6q2 + 12U1 + 6U2]

= �̂2,2[15 + 18q + 3q2 + 9q3] + O

⎛⎝ 1(N
k

)4
⎞⎠,

�̂5,3 = 15(2 + q)�̂1,1 + 5(1 + q)[�̂3,3 − 9�̂1,1] + X53

= 15

⎧⎨⎩(2 + q)�̂1,1 + (1 + q)(m
k

) (N
k

)2
⎫⎬⎭+ O

⎛⎝ 1(N
k

)4
⎞⎠,

�̂4,4 = 4(q + 2)2 �̂2,2 + 4(m
k

)2 (N
k

)2 + X44

= 4(q + 2)2 �̂2,2 + 4(m
k

)2 (N
k

)2 + O

⎛⎝ 1(N
k

)4
⎞⎠;

q =
(m−k

k

)(m
k

) . (C3)

In the above equations, the following approximations (i)–(iv) are adopted. (i) |U |2 in �̂3,3 is the U coefficient appearing in
Eq. (68) and it is expected to givea negligible contribution to �̂3,3. More importantly, the GUE formula (i.e., for m = k) for �̂3,3

that can be derived easily shows that |U |2 ∼ ( N
k )−2 and this gives the final formula in Eq. (C3). (ii) In �̂7,1, for the last term we

used the approximation established in [30]. (iii) Going further, U1 and U2 in �̂6,2 are the terms with Ucoefficients in A2 and A3
in Eq. (79). The GUE formulas and EGUE(k) formulas, assuming ( m−k

k )/( m
k ) = 1 as given in [7], indicate the plausible result

6U1 + 3U2 = 9q3 + O( 1
( N

k )2 ). (iv) From the GUE formulas it is plausible that X53 and X44 introduced in Appendix B will be of

the order of 1/( N
k )4 and this is used in Eq. (C3) for �̂5,3 and �̂4,4. Finally, let us add that the diagrammatic method developed in

[11] may hopefully give, in the near future, exact asymptotic limit formulas for �̂6,2, �̂5,3, and �̂4,4 and for the last term in �̂3,3.
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