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Inverse problem beyond two-body interaction: The cubic mean-field Ising model
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In this paper, we solve the inverse problem for the cubic mean-field Ising model. Starting from configuration
data generated according to the distribution of the model, we reconstruct the free parameters of the system. We
test the robustness of this inversion procedure both in the region of uniqueness of the solutions and in the region

where multiple thermodynamics phases are present.
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I. INTRODUCTION

In this paper, we study the inverse problem for a class of
mean-field models in statistical mechanics with cubic interac-
tion. The direct problem of statistical mechanics is to compute
macroscopic variables (i.e., the average values of magneti-
zations and correlations) when the couplings and fields are
known. In the inverse problem, the reverse is done: the cou-
plings and fields are computed using the (statistical) datum
of the macroscopic quantities. This is often achieved by a
technique known as Boltzmann machine learning, a special
case of learning in statistical inference theory [1,2] when the
probability measure is the Boltzmann-Gibbs one.

The system we consider here is made of Ising spins and,
beside a homogeneous magnetic field and a constant two-body
interaction, it contains a constant three-body term. One of the
peculiarities of this model, which turns out to have a cubic
Hamiltonian function, is that it lacks the standard convexity
property of its quadratic version and its direct and inverse
problems are therefore outside the general methods of convex
optimization problems. Taking into account the three-body
term, we move from a generic graph (network) structure,
where we consider only dyadic or pairwise interactions, into
hypergraphs, where faces are also considered [3-5]. This al-
lows for the consideration of a large spectrum of applications
that are closely related to real-world phenomena, such as team
collaborations rather than collaborations between pairs (see
[6]). According to [4,6], the presence of higher-order interac-
tions, such as three-or-more-body interactions, may also have
a significant impact on the dynamics of interacting networked
systems and potentially lead to abrupt transitions between
states [7]. Abrupt transitions are a prevalent phenomenon in
nature that can be found in areas as diverse as social networks
or biology [6,8].

In recent years, studies in deep learning for artificial intel-
ligence have been approached in terms of the inverse problem
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in statistical mechanics [9-11]. The techniques to study that
case are of a very different nature than those we treat in
this work because the parameters to be identified are of very
high dimension and the involved models concern the theory
of disordered systems [12]. Although in this study we are
only interested in computing three parameters, we believe
that a robust understanding of the statistical mechanics low-
dimensional of the inverse problem may shed some light on
the general Boltzmann machine learning problem due to the
presence of phase transitions for very large systems.

A further reason of interest for the problem we deal with is
that in recent times, this method has attracted some attention
due to its ability to advance a useful novel approach for several
applications such as neural networks, protein structures, com-
puter vision [13-17], and socioeconomic sciences [18-26].

The model we consider is invariant under the permutation
group, but its extension to the case in which that symmetry
is not present has already been considered in [27] for the
two-populated case with the same perspectives of the multi-
populated quadratic models [21,28]. An intriguing feature of
such model is that it shows a discontinuous first-order phase
transition which is not present in the case of the standard
quadratic mean-field model.

To solve the inverse problem, we first compute, exploit-
ing the exact solution of the model [27,29], the analytical
formulas for the system’s macroscopic variables in the ther-
modynamic limit where they provide explicit expressions
for the interaction couplings (cubic and quadratic) and the
magnetic field. It is worth noticing that since the number of
necessary relations to compute the free parameters is three,
we need to make observations up to the third moment of the
probability distribution. To relate the analytical inversion with
the (statistical) observations, we use the maximum likelihood
criteria and we establish a link between estimated and the-
oretical values. Finally, we test how well the model’s free
parameters are reconstructed using the inversion formulas
and how their robustness is affected by both the system size
and the number of independent samples simulated from the
model’s equilibrium configuration.

The paper is organized as follows. The cubic mean-field
model is introduced in Sec. II, where it is shown how to
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compute and test the robustness of the analytical inverse for-
mulas using the maximum-likelihood estimation procedure.
Section III is devoted to the numerical testing of the robust-
ness of the inversion formulas for unique stable solutions. In
Sec. IV, the case of metastable or multiple solutions for finite-
size systems is discussed. The final section, Sec. V, provides
a general conclusion and the model’s future prospects.

II. INVERSE PROBLEM FOR THE CUBIC MEAN-FIELD
ISING MODEL

Let us consider the Hamiltonian of an Ising model on N
spin configurations, Qy = {—1, +1}¥, with cubic interaction
and spin moments o; = £1,i =1, ..., N, defined as

N N N
HN(O') = — Z Ki,j,koiojok - Z J,"jU,‘O'j - Zhiai'
i=1

i, j k=1 i,j=1
(D

Assuming mean-field interaction, we set K jx = 3NL2 Jij=
ﬁ, and h; = h, where K,J are the cubic and binary spin
coupling and & is the external magnetic field. Hence, the

Hamiltonian per particle is
L J o
Hy(o)=—N 3 N(0)+§m1v(ff)+hmzv(0) . @

where
L
my (o) = ﬁ;a,- 3)

is the magnetization per particle of the configuration o. The
Boltzmann-Gibbs state on a configuration o is given by

—Hy(o)
Zy

where Zy = )", .o e () is the partition function of the
system. As a result, we obtain the Gibbs free energy associated
with the thermodynamic system as

1
PN = N anN. (5)

e

; “4)

Pyxgn(o) =

For a given observable f (o), the Boltzmann-Gibbs expecta-
tion wy (f (o)) is defined as follows:

Y peny f(@)e N

Zy '
Furthermore, the Gibbs free energy (5) can be used to generate
the moments of the system with respect to the Boltzmann-
Gibbs measure. Hence, one obtains the following finite-size
quantities:

wy(f(o)) = (6)

d
LY~ oymy (o). ™
9’ py 2 2
—z = v =Ny (my(@) —eytmy@)],  ®)
and
9°py 2 3 2
T Yn =N [a)N(m}v) — 3wN(mN)a)N(mN)

+ 203 (my)], 9)

where wy(my(0)), xn, and Yy are the finite-size average
magnetization, susceptibility, and third moment, respectively.
The considered model can be solved exactly using the large
deviations technique, which was proposed in [30]. The ther-
modynamic limit of (5) admits the following variational
representation:

sup ¢ (m), (10)
me[—1,1]

where ¢(m) = U (m) — I(m), and

p Nlj;noopN

K J
U(m) = §m3+§m2+hm (11

is the energy contribution and

I(m) = 1_2m1n<1;m>+ l—gmln(l—}z—m) (12)

is the entropy contribution. Notice that p is the Legendre
transform of ¢(m) — hm. The stationarity condition, which
acts as a consistency equation, gives

m = tanh(Km? + Jm + h), (13)

and must be satisfied by the solutions of the variational princi-
ple (10). In order to solve the inverse problem analytically for
a given configuration of spin particles, we first find the relation
between the model parameters and the variational principle
(10). Observe that

0

8—‘2 =m, ie,m=tanh(Km*>+Jm+h), (14)
0%p (1 —m?)
—=x= 5 , (15)
oh 1 =1 —m*){J +2Km)

and

83}7 3 2m
L= 2K — —— ). 16
o VX ( a —m2)2> (10

The peculiar feature of the cubic mean-field model is the
presence of three distinct stable phases in the magnetic order
parameter m. Unlike the usual quadratic model, here an unpo-
larized stable phase close to m = 0 appears beyond the usual
two phases of positive and negative magnetization. From
Fig. 1, one can observe a triple point (K, J, h) = (0, 1, 0)
where all three phases meet [27]. Let us consider the model in
its simplest form with zero quadratic coupling and magnetic
field, i.e., when J = h =0 and only the cubic coupling in
(2) is present. It is worth mentioning that when J =h =0
and K is progressively increased from negative to positive,
one encounters two transitions: from a negatively polarized
phase to an unpolarized one and from an unpolarized phase
to a positively polarized one (see Fig. 1; and Fig. 1 of [27]).
In Fig. 2, we illustrate an example of critical behavior for
our model with the presence of phase transitions occurring
atJ = h = 0 when K is varied.

The quantities, m, x, and i are the infinite-volume limit
average magnetization, susceptibility, and third moment cor-
responding to the finite-size quantities wy, Xy, and Yy,
respectively, in the thermodynamic limit. The system of equa-
tions (14)—(16) has three unknowns K, J, and & for which one
can solve. Having knowledge of m, x, and i, one can com-
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FIG. 1. Phase diagram of the stable solutions of (13) showing the
coexistence curves. For J < 1, three distinct phases are observed: the
negatively polarized phase (yellow), the zero or unpolarized phase
(orange), and the positively polarized phase (brown). As a result,
in that region, a progressive increase in K from negative to positive
values encounters two consecutive jumps.

pute the parameters (i.e., K, J, and &) of the model through the
following equations:

Ke_—"M 4V 17)
(1 =m2)2 " 2x%
1 1
J= — = —2Km, (18)
1-m?2

and the external magnetic field is then obtained from (13) as

h = arctanh(m) — Km® — Jm. (19)
Let us observe that in the region of the parameter space where
the consistency equation (13) has a unique stable solution, the
following holds:

Nlim wy(my (o)) = m. (20)

In analogy to the behavior of the quadratic case [31], the
Boltzmann-Gibbs measure (4) may be multimodal for some
(K, J, h) in the parameter space for both the finite-size system
and in the thermodynamic limit. In this case, Eq. (20) fails
to hold. We will discuss later how to handle such a case,
following the work done in [31,32]. The procedure discussed
so far deals with the analytical inverse problem. The remain-
der of this section will be devoted to the statistical procedure
required to compute the estimators of K, J, and A.

We start by generating M independent configurations
oM, ..., 0™ distributed according to (4) from the model’s
equilibrium configuration. Notice that the analytical inverse
formulas of K, J, and 4 in Egs. (17), (18), and (19), respec-
tively, are valid on the infinite-volume limit of the observables,
ie., m, x, and ¥. Hence, to compute the estimates of the
model parameters K, J, and &, the maximum-likelihood es-
timation procedure will be adopted having knowledge of
real data. This procedure ensures that the estimated model

1
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FIG. 2. J =0, h = 0. First three moments of the model as a
function of K: In (a) the total magnetization shows indications of
phase transitions occurring at a critical point around £2. At the
critical point, the (b) susceptibility and (c) third moment have a jump
to 1 and a jump to around £4, respectively.
parameters maximize the probability of getting the given sam-
ple of spin configurations from the distribution. Furthermore,
the analytical inverse procedure requires statistical approxi-
mation of the infinite-volume limit quantities (i.e., m, x, and
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¥), which are substituted by their finite-size forms wy, xn,
and ¥y. The likelihood function for the measure (4) is defined
as

L(K,J,h) = PyxyplocD, ..., a™}

M
= 1_[ Py x.gnloc)
=1

M —Hy(@?)
—Hy(o) "
=1 Z(IEQN € @)

This procedure will enable defining the finite-size magnetiza-
tion wy(my (o)) in terms of the empirical average (i.e., my)
for each of the M sampled spin configurations. Further, we
have that

M

InL(K,J, h) = Z [—Hy (™)) —In Z @t o)

=1 oeQy

Requiring the derivatives with respect to the parameters K, J,
and £ to vanish amounts to

8 M
S LK, ) =N l;[mzv(a“)) — w(my(0))] =0,
M

9 N
—InL(K. )= ; [my(0?) = w(my ()] =0,

M

E)iK InL(K,J, 1) = = [my (o) = w(m} @) ] = 0.
=1

=

Therefore,

1 M
oy (my(o) =~ Emwr(”),
1 M
on(miy (o) = - my(@?), (22)
=1

1 M
on(my(0) =+ > mye®).
=1

The function L(K, J, h) is at its stationary points when the
first, second, and third moments of the magnetization in
Eq. (22) are obtained. It is worth noticing that

N
1
mN(a(l)):ﬁZUi(Z) for I=1,....M (23)
i=1

are the total magnetizations of the M sample spin config-
urations. Let us note that L(K, J, h) and its derivatives are
only used to solve the forward problem, but not the inverse
problem. Now, the inverse problem can be solved when we
make use of (17)—(19) and (22). The maximum-likelihood
procedure computes the estimators of the infinite-volume
quantities m, x, and ¢ from a sample data set through the

following:
1 M
= > my(a®), (24)
1 Ml:l
yzN[MZm}V(a(”) —m2], (25)
=1
and
~ 1 1 &
V= Nz[ﬁ D@ ) =3 mia )+ m-*}.
=1 =1
(26)

We now define the estimators of the three parameters of
the cubic mean-field model using the statistical estimators for
the magnetization, susceptibility, and third moment (24)—(26)
in the infinite-volume limit relations among those quantities
(17)—(19),

-~

m 14

K=—_ _+ 27
(—mp 2y @D
- 1 1 .
J=—— — = —2Km, (28)
1-m? ¥
and
h = arctanh(ii) — K — Ji. (29)

At the critical point (K, J, k) = (0, 1, 0) where all the three
phases meet, the magnetization is zero and the infinite-volume
magnetic susceptibility y and the third moment ¢ defined by
Egs. (15) and (16), respectively, diverge. Hence, the inversion
formulas (17)—(19) do not hold, as will be illustrated at the end
of the next section. We do not include the inversion formulas
at the critical point in this work, but the problem will be
considered in future work.

III. TEST FOR THE CASE OF UNIQUE SOLUTION

In this section, we are going to examine how the inversion
equations perform for different and increasing choices of N
and M, respectively, the number of particles and sampled
configurations. The specific case we consider is the inversion
problem for those values of the triple (K, J, h) where there is
a unique stable solution of (13). In this case, the Boltzmann-
Gibbs distribution of the total magnetization has a unique
peak always centered around the analytic solution m: some
examples are shown in Fig. 3 for fixed N. The accuracy of the
estimation increases as N and M increase.

The parameters K,J, and h are obtained from the com-
putation of the finite-size quantities my, xn, and ¥y using
configurations extracted from the Boltzmann-Gibbs distribu-
tion of the data. Estimation of my, xn, and ¥y for fixed triples
of the parameters (K, J, h) and varying N € [500, 10000] are
shown in Fig. 4. In the same figure, the thermodynamic limits
of those quantities are also shown.

From Fig. 4, we can observe the monotonic behavior of
my, Xn, and Yy as N increases. In Fig. 5, we study the
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FIG. 3. Boltzmann-Gibbs distribution of the total magnetization
for N = 1000 and different sets of triples (K, J, h).

relationship between the absolute difference of the finite-size
quantities and their corresponding thermodynamic values as a
function of the system size N. We find evidence that the finite-
size quantities my, xy, and Yy converge to their true values
with a power-law behavior as N increases. The obtained re-
sults indicate that using N = 10000, one can estimate the
infinite-volume magnetization, susceptibility, and third mo-
ment with vanishing error. We will proceed to use N = 10 000
as the size for each of the M independent spin configurations
oM, ..., o™ Further numerical tests will be performed to
determine a suitable number of sample configurations M that
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0.29 = 0.9879
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026 *yy, . . 0.9598 | Txy
0.9876
0 5000 10000 0 5000 10000 0 5000 10000
6 0.0274 0.089
X 0.0272 00888
N X
55 ) 0.0886
0.027| * x
5 *x g X 0.0884 X s o
0.0268
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200 < -0.065 — 0215
X
Gy 1801 -0.066 | x
0.214
1601 -0.067 <
140 xXXxx x XX xxx
-0.068 0.213
0 5000 10000 0 5000 10000 0 5000 10000
N N N

FIG. 4. Finite-size average magnetization my, susceptibility yy,
and third moment vy as functions of N for three different sets
of triples (K, J, h). Blue crosses represent the values of my (upper
panels), xy (middle panels), and ¥y (lower panels), for varying N.
As N increases, my, xy, and ¥y approach their true values in the
thermodynamic limit, given as the red horizontal lines for the chosen
values of K, J, and h.

N

FIG. 5. Absolute error of the finite-size quantities my, xy, and
Wy as functions of N together with the best power-law fits. In the
upper panel, |my — m| is shown as a function of N together with
the best fit aN”, where a = 0.28 € (0.06, 0.50) and b = —1.37 €
(—1.49, —1.25) with a goodness of fit R* = 0.9829. The middle
panel displays |xy — x| as a function of N together with its corre-
sponding best fit ¢N¢, with ¢ =0.62 € (0.14,1.09), d = —1.37 ¢
(—1.49, —1.25), and R?> = 0.9830 as goodness of fit. The lower
panel represents |y — | as a function of N together with its cor-
responding best fit gN/, with g = 1.47 € (0.32,2.62), f = —1.37 €
(—1.49, —1.25), and a goodness of fit R? = 0.9826.

can be used for reconstructing the model parameters using the
inversion formulas.

To obtain the statistics associated to the reconstruction
of the estimators, we simulate from the model’s equilibrium
configuration 50 different instances of the M — iid sample
configurations, i.e., (c",..., ™), apply the maximum-
likelihood estimation procedure to each of them separately,
solve the inverse problem using (27)—(29), and then average
the inferred values over the 50 different M samples. The
mean value of the estimators 1, X, ¥, and (K, J, h) over the
50 different M samples of spin configurations is denoted by
m, 7 & , and (I? , f ;z\), respectively. The results are shown in
Figs. 6 and 7.

Figures 6 and 7 illustrate that at M = 20000, we get
smaller error bounds for the reconstruction as compared to
lesser values of M.

In the sequel, we study the behavior of the reconstructed
parameter for fixed values of J and % and varying K (Figs. 8
and 9), and also for fixed values of K and % and varying
J (Figs. 10 and 11). The simulations are performed using
M = 20000, N = 10000, and error bars are standard devi-
ations on 50 different M samples of the same system. We
find all the reconstructed parameter values in good agreement
with the exact ones. We can observe that as the intensity
of the cubic and quadratic coupling increases, the error bars
associated to the reconstructed parameters grow, as we can
expect since in that region of the parameter space the system
is more disordered, due to the presence of multiple local stable
states, and the fluctuations are greater. Furthermore, Fig. 12

054124-5



CONTUCCI, OSABUTEY, AND VERNIA

PHYSICAL REVIEW E 107, 054124 (2023)

K=0.5J=0.3 h=0.1

_0.1595

m I T I 11 1T 1T 111 1+ 71 1T 1T 3 T I %
0.159 I I IR EEEEEEEEEEEEE:
0.1585 ! ! !
0 0.5 1 1.5 2
M x10%
X187 I | O A S P S S 17
(5] I D S S O S B 0 S R
1.7 I | . |
0 0.5 1 1.5 2
M 104
20 T _
¥ 101 IIITTII{TIII}IIIIE’
0OF J_ l l I I 1T 1 T I 11 R A
-10 ¢ . . . b
0 0.5 1 1.5 2
M x10*

FIG. 6. Reconstructed average magnetization 7, susceptibility
%, and third moment 1} (given as blue crosses in each panel) as a
function of M with standard deviation on 50 different M samples
and N = 10000. The continuous red line corresponds to m, x, and
¥ in the thermodynamic limit.

shows the reconstructed parameters as a function of N at
the critical point (K =0,J =1, h = 0). We notice that the
reconstruction at the critical point for K and h agrees with
their exact values with only a small percentage of error and
that of J is underestimated. The monotonic behavior observed
for the reconstruction of J relates to higher-order corrections
of the free energy from the variational principle with respect
to the magnetization.

It is worth observing that when K = h =0 and J > 1, the
consistency equation (13) has two stable solutions. In this
case, for the finite-size system and in the thermodynamic

K=0.5J=0.3 h=0.1

_2f ]
K 1¢ I I 1 111111113 % 1 I 1 1 13
ok I I I I I I I 17T 1 I 1 T I 1T 1 11
1t ‘ ‘ ‘ 1
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h01 I I T 1111113137 3% 171 133
: Tritrirrir+rrt T 1 I I
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FIG. 7. K, 7, and & as a function of M for N = 10000. The blue
crosses are the estimation of K, J, and / with standard deviations on
50 different M samples of configurations of the same system. The

horizontal red line in each panel corresponds to the exact values of
K,J,and h.

J=0.3 h=0.1 J=0.4 h=-0.3
6 : : 5 ‘
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4+ |
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0 L
27 ] -1 ]
2 F
4t J
-3t
-6 . : 4 . .
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FIG. 8. K as a function of K for N = 10000 and M = 20 000.
J = 0.3, h = 0.1 in the left panel and J = 0.4, h = —0.3 in the right
panel. The estimations of K are given as the blue crosses in both
panels, with standard deviations on 50 different M samples of con-
figurations of the same system. The red continuous line represents
K =K.

limit, the Boltzmann-Gibbs distribution of the total magne-
tization presents two peaks, each centered around one of the
stable solutions. In such a case, the inverse problem procedure
discussed in Sec. II cannot be used for the reconstruction of
the model parameters. We refer readers to [28], where this
case has been studied using the spin-flip approach due to

J=0.3 h=0.1 J=0.4 h=-0.3
10 10
= 7\5
J® 7oty i
o [FErrErriiEEs
0 :
-5.
-5 -10
-1 0 1 -1 0 1
K K
5 5
=0 'i =
h h
0 I%"‘" x 3z xx
2 1
-4
-5
-1 0 1 -1 0 1
K K

FIG. 9. 7and 2\ as a function of K for N = 10000 and M =
20000. J = 0.3, h = 0.1 in the left pj,lnels gnd J=04h=-03

in the right panels. The estimates of J and 7 are given as the blue
crosses in all the panels, with standard deviations on 50 different M
samples of configurations of the same system. The red continuous
lines represent the exact values of J and h.
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FIG. 10. J as a function of J for N = 10000 and M = 20 000.
K =0.05, h =0 in the left panel and K = 0.05, 7 = —0.02 in the
right panel. The blue crosses are the reconstructed values of J in both
panels, with standard deviations on 50 different M samples of con-
figurations of the same system. The red continuous line represents

the exact value J = J.

symmetry of the solution in both finite-size and infinite-
volume systems for the quadratic mean-field model. The
clustering algorithm to be outlined in the next section provides
a more general approach to handle the reconstruction of the
model parameters when the phase space has multiple locally
stable solutions.
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FIG. 11. K and Z\ as a function of J for N = 10000 and M =
20000. K = 0.05, & = 0 in the left pﬂlels agd K =0.05,h=0.02

in the right panels. The estimates of K and h are given as the blue
crosses in all the panels, with standard deviations on 50 different M
samples of configurations of the same system. The red continuous
lines represent the exact values of K and h.
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FIG.12. K=0,J=1,h=0. I/(\, f, and % as a function of N for
M = 20 000. The reconstructed estimates of K, J, and & are given as
the blue crosses on statistical error bars of 50 different M samples.
The red continuous line is the exact value of the parameters K, J, and
h in the respective panels.

IV. CLUSTERING ALGORITHM FOR METASTABLE
STATE SOLUTIONS

Here, we focus on cases where Eq. (13) has a metastable
solution. This corresponds to the case where there is more than
one locally stable solution of the consistency equation (13).
For this model, Eq. (13) can have, at most, three solutions and
¢ has, at most, two local maxima for fixed (K, J, #). The ex-
istence of the metastable solution in the infinite-volume limit
is represented at finite N by the occurrence of an extra peak
in the distribution. Therefore, while in the thermodynamic
limit the Boltzmann-Gibbs distribution of the magnetization
is unimodal with the peak corresponding to the stable solu-
tion, in the finite-size case also the peak corresponding to
the metastable one is present and the distribution is bimodal.
Hence, in this case, the inversion problem cannot be studied
globally, as done in the previous section. Instead, the pro-
cedure has to be applied locally, that is, to each subset of
configurations clustered around the two local maxima. Given
M spin configurations, oV, ..., 0™ we perform the recon-
struction by first partitioning the M configurations in clusters
according to their local densities around each local maximum.
More precisely, using the clustering algorithm discussed in
[32-36], we divide the M configurations into different clus-
ters using the mutual distances between their magnetizations
of each configuration. Configurations form a cluster if the
magnetization distances are less than a fixed threshold d..
The choice of the optimal threshold is obviously crucial: a
too small threshold will produce too many clusters, while a
too large one will give only one cluster. Given d,, for each
configuration [/ the algorithm computes two quantities: the
local density p;, defined as the number of magnetizations
within the given distance d, to the magnetization of o), and
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the minimum distance §; between the magnetization of con-
figuration / and any other configuration with a higher density.

The algorithm is based on the assumptions that the cluster
centers are surrounded by points with a lower density and that
the centers are at a relatively large distance from each other.
For each configuration, plotting the minimum distance § as a
function of the local density p provides a decision graph that
gives the cluster centers: the cluster centers are the outliers in
the graph. Finally, each remaining configuration is assigned
to the same cluster of its nearest neighbor of higher density.
In this study, we identify two clusters Cy, k = 1, 2, using the
optimal threshold d. = 0.001. Notice that it is not possible
to observe three clusters in the inverse problem due to the
analytical properties of the consistency equation (13).

Then, for each cluster Gy, k = 1,2, we compute the es-
timates of the finite-size quantities, m, ¥, and w and the
corresponding K.,J,h. More precisely, we can define the
estimators of the finite-size quantities with reference to the
clusters as follows:

w——meh (30)

lECk
m—[ > mye®) - ], 31)
IECA

and

{ﬁ\ck = Zm (a(”)—’jmc—Zm (0(1))+2m ,

lGCk IECk
(32)

where M, is the size of the cluster Cy, k = 1, 2, such that
M, + M, = M. After obtaining lhe QPO\Q quantities, we now
compute the estimated values, Kc,, J¢,, hic,, using Eqs. (27)—
(29) for each cluster, and compute the final estimates of the
parameters K, J, and & as the weighted averages,

2
P 1 -
K=" MK, (33)
k=1
2
P 1 P
J=—=> Mg, (34)
M k=1
and
2
~ 1 ~
h= > Myhe,. (35)

Observe that if a point (K, J, h) in the parameter space cor-
responds to a metastable solution (at finite volume) and it
is sufficiently distant from the coexistence curve, we can
expect a better reconstruction of the parameters by applying
Egs. (27)—(29) to the configurations in the largest cluster.
However, if the point (K, J, h) is close to the coexistence
curve, a better reconstruction can be expected using the den-
sity clustering algorithm, i.e., by using (33)—(35).

Figure 13 illustrates how the Boltzmann-Gibbs measure of
the magnetization is changing with varying K, J, and & in each
column, starting from the left, respectively.
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FIG. 13. Boltzmann-Gibbs distribution of the total magnetiza-
tion with metastable states for fixed K, J, and & at N = 1000. The
peaks of the distribution are centered around the two solutions of the
consistency equation.

Test for metastable state solutions

The inverse problem is solved using the density clustering
algorithm as discussed and identifying a suitable number of
M samples for better reconstruction of the model parameters.
The test is performed with M = 20000 and standard devi-
ations are computed over 50 different M samples from the
same distribution. As an example, consider the reconstruc-
tion of the parameter values (K, J, h) = (1.67,0.01, 0.1) for

K= 1.67 J= 0.01 h=0.1

0.015
—-—-N=1000 )
— — N=3000 Ii
—— N=10000 I
i
i
i
0.01 - i
— I
L Li
2 L
i i
= i
< i
0.005 - : .
|
[
H\li
i
i
i
0 ‘ ‘ IR
-1 -0.5 0.5 1

FIG. 14. Boltzmann-Gibbs distribution of the total magnetiza-
tion at fixed values of N. The peaks of the distribution are centered
around the two solutions of Eq. (13), with m; = 0.1311 being the
stable solution and m, = 0.8973 the metastable solution. We can
observe that the probability of the metastable solution vanishes to
0 as N goes to infinity (black continuous curve). The red dot-dashed
line corresponds to the distribution for N = 1000, the blue dashed
line corresponds to the distribution for N = 3000, and the black
continuous line for the distribution with N = 10 000.
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FIG. 15. K, J, and T as a function of M using the largest cluster
and N = 3000. The reconstructed estimates, K s f, and E are blue
crosses on statistical error bars on 50 different M samples of config-
urations of the same system. The horizontal red lines in each panel
correspond to the exact values of K, J, and h.

M = 20000 and N = 3000. The distribution of the magneti-
zation at this point is given as the blue dashed curve in Fig. 14,
where the two peaks are centered around m; = 0.1311 and
my = 0.8973, the stable solution and the metastable solution
of the consistency equation (13), respectively.

As is evident from Fig. 14, the cluster centered around m
(i.e., C)) has more configurations as compared to the other
cluster centered around my (i.e., C;). We get the following
reconstructed estimates for the parameter values by applying
Egs. (27)—(29) to the setups in both clusters (i.e., C; and )
according to formulas (33)—(35),

(K,J,h) = (1.76 £ 0.67, —0.11 & 1.11, 0.15 £+ 0.49).
Instead, we obtain the following reconstructed parameter val-
ues by applying Egs. (27)—(29) just to the configurations in
the more dense cluster Cj,

(K,J,h) = (1.69 & 0.23,0.01 & 0.06, 0.10 £ 0.004).

Note that the reconstructed parameters using only the con-
figurations in the more dense cluster are in better agreement
with the exact ones when compared to the reconstructed pa-
rameters on both clusters. This is an indication that the point
(K,J,h)=(1.67,0.01,0.1) is sufficiently distant from the

coexistence curve. Observe that if two clusters have the same
density, we do not choose between them and the clustering
algorithm provides an optimal reconstruction.

Now, we perform reconstruction of the parameters using
the cluster with the largest size for fixed values of the model
parameters and observe its performance for varying M in
Fig. 15. It can be observed that the reconstructed parameters
are in good agreement with their corresponding exact values.

As a last remark, note that given a point (K, J, /) in a
neighborhood of the coexistence curve, one can observe a
metastable state when the number of particles, N, is not large
enough. In this case, the clustering algorithm is useful to re-
construct the parameters, but it has a high computational cost.
This is easily overcome by using a large number of particles,
which causes the metastable state to vanish (see Fig. 14) and
the inversion formulas in Egs. (27)—(29) become efficient.

V. CONCLUSION

In this work, we consider a mean-field statistical mechan-
ics model with three-body interaction displaying a first-order
phase transition. The findings of this paper can be used to
infer interaction couplings and fields from real-world datasets,
particularly in network structures where long-range interac-
tions are a realistic description of the phenomenon, such as
the protein structure [37] and human genome [38].

We studied and solved the inverse problem and tested the
statistical robustness of the inversion method. We numerically
tested the inversion method for cases where the consistency
equation (13) has a unique stable solution as well as more than
one locally stable solution. For the case where the consistency
equation (13) has multiple locally stable solution, we used
the clustering algorithm to reconstruct the model parameters.
Robustness was tested for different values of the number of
particles, N, and samples M and reached the precision of a
few percent for M = 2 x 10*.

We plan to investigate, in the future, two extensions of the
inverse problem: first to the critical point where some of the
observables such as y and ¥ diverge, and second to the multi-
populated version of the model that found applications in the
description of human-AlI (Artificial Intelligence) ecosystems
[27].
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