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Quantum criticality of a Z3-symmetric spin chain with long-range interactions
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Based on large-scale density matrix renormalization group techniques, we investigate the critical behaviors
of quantum three-state Potts chains with long-range interactions. Using fidelity susceptibility as an indicator,
we obtain a complete phase diagram of the system. The results show that as the long-range interaction power α

increases, the critical points f ∗
c shift towards lower values. In addition, the critical threshold αc(≈1.43) of the

long-range interaction power is obtained for the first time by a nonperturbative numerical method. This indicates
that the critical behavior of the system can be naturally divided into two distinct universality classes, namely the
long-range (α < αc) and short-range (α > αc) universality classes, qualitatively consistent with the classical φ3

effective field theory. This work provides a useful reference for further research on phase transitions in quantum
spin chains with long-range interaction.
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I. INTRODUCTION

Quantum phase transitions (QPTs) are phase transitions
between quantum matters at zero temperature by tuning ather-
mal parameters, which can be a first-order phase transition
represented by some sudden abrupt jump behavior or a con-
tinuous phase transition described by a critical exponent.
Universality class categorized by critical points or unstable
fixed points in the sense of renormalization group (RG) [1]
is a core concept in QPTs. Using field theory or numerical
exact approaches, conventional or unconventional QPT can be
described by constructing simplified effective lattice models
[2–4]. Therefore, quantum many-body systems with nearest-
neighbor interactions, such as the transverse field Ising model,
Heisenberg model, and Hubbard model, are of fundamental
importance for understanding QPTs and universality classes
[5]. A well-known QPT is the second-order Ising transition
in the one-dimensional transverse field Ising model, and its
critical exponents are perfectly supported by experimental
results [5].

Quantum systems with long-range interactions, such as
Coulomb interaction (1/ri j) [6], dipole-dipole interaction
(1/r3

i j) [7,8], and van der Waals interaction (1/r6
i j) [6], have

attracted widespread attention in recent years, accompanied
by significant advances in experimental techniques for ma-
nipulating quantum simulators, such as atomic, molecular,
and optical systems [6,8–11]. For instance, tunable power-law
interactions 1/rd+α with a power 0 � α + d � 3 are realized
in trapped ions [12–16], which provides a perfect platform
for studying novel physics of quantum many-body systems
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with long-range power-law interaction and stimulated many
subsequent many-body physics studies. One example is the
neutral Rydberg atom trapped in optical tweezers with pro-
grammable van der Waals interactions. It provides promising
tunable platforms to explore various novel physics, such as
gapped Z2 quantum spin liquids [17–23], quantum phase
transitions between different density wave ordered (e.g., Z3

ordered) and disordered phases [24–31]. Specifically, the
Zn-symmetric quantum spin model system [32,33], namely
the “parafermion” model system, favors topological phases
with more efficient non-Abelian anyon bound states [32,33],
providing a possible approach for universal topological quan-
tum computing, thereby attracting extensive attention and
stimulated extensive studies [33–40]. However, despite exten-
sive interest in Zn-symmetric quantum many-body systems
with long-range interactions, it remains challenging to fully
understand their critical behavior both theoretically and nu-
merically.

It is well known that a d dimensional quantum system with
short-range interactions has a well-known equivalent classi-
cal counterpart in d + 1 dimensions. However, the quantum
system with long-range interactions does not have a direct
counterpart due to the subtle relationship between classical
and quantum critical behaviors. For classical O(N) or Zn-
symmetric spin model systems with long-range interactions
[41–50], previous RG calculations show that according to
the interaction power α, the critical behavior falls into three
university classes, namely, (i) the mean-field universality class
when α � d/2, (ii) the long-range universality class when
d/2 < α � αc, and (iii) the short-range universality class for
α > αc. Note that region (ii) is a “nonclassical” region where
the critical behavior is characterized by a peculiar long-range
critical exponent αc(=2 − ηSR), which can be predicted by
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perturbative RG calculations with a short-range anomalous
exponent ηSR [41,45]. The quantum three-state Potts chain is
the simplest example of “parafermion” systems, which shows
a continuous phase transition from “topological phase” (Potts
ordered) to trivial phase (disordered), thereby is of crucial im-
portance for quantum computing [32,33,51,52]. The question
is what is the critical behavior of such quantum Potts chains
with long-range interaction in the “nonclassical” region, and
how to estimate the critical exponent αc if there is a long-range
to short-range universality class crossover.

Fidelity susceptibility is a purely geometric quantity of
quantum states from quantum information world with an ob-
vious advantage that no prior knowledge of order parameters
and symmetry breaking is required. It has been applied to
detect a wide range of QPTs [53–64] induced by a sudden
change in the structure of the wave function. The fidelity
susceptibility, defined as the response of the wave-function
overlap of two neighboring ground states with respect to an
external field, diverges at the critical point and is almost zero
away from the critical point, thus characterizing the QPTs
well. For example, experiments detect the QPTs in terms of
fidelity susceptibility by using the neutron scattering or angle-
resolved photoemission spectroscopy (ARPES) techniques
[65]. However, there is also some work [66–68] showing that
fidelity susceptibility does not diverge for high-order phase
transitions. Here, we investigate the finite-size scaling behav-
ior of the fidelity susceptibility [67,69–71] in the quantum
Potts chain with long-range interactions using the finite-
size density-matrix renormalization-group (DMRG) method
[72–74] based on the matrix product states (MPS) [74,75].
The critical long-range interaction power αc is determined in
a nonperturbative way for the first time, providing important
insight into phase transitions of quantum spin chains with
long-range interaction.

The rest of this paper is organized as follows: Sec. II
contains the lattice model of the quantum Potts chain with
long-range power-law interaction, the numerical method em-
ployed, and the scaling relations of fidelity susceptibility.
Section III shows the phase diagram of the quantum Potts
chain with long-range interaction and the finite-size scaling
of the critical behavior, followed by a brief discussion in com-
parison with previous two-loop RG results. The conclusion
is presented in Sec. IV. Additional data for our numerical
calculations are provided in the Appendixes.

II. MODEL AND METHODS

A. Quantum Potts chain with long-range interaction

The system of our study is a quantum three-state Potts
chain with long-range power-law interactions [see Fig. 1(a)],
described by the following Hamiltonian [76,77]:

HLRP = H0 + f H1

= − J

N (α)

∑
i, j

(σ †
i σ j + σiσ

†
j )

|i − j|d+α
− f

∑
i

(τi + τ
†
i ), (1)

where H1 and H0 are the driving and undriving Hamiltonian,
respectively. J is the interaction strength, and f represents
the external transverse field, parameter α tunes the power of

FIG. 1. Schematic long-range interaction (a) and ground-state
phase diagram with respect to 1/α and external transverse field f of
the quantum Potts chain with long-range interaction (b). In (b), Potts
donates the Potts order phase. PM denotes the paramagnetic disorder
phase (see the main text). The red line is the phase boundary between
the Potts and PM phases, and red star symbols denote the DMRG
results of the critical values f ∗

c . (c) The schematic phase diagram
of the standard quantum Potts chain with the nearest-neighboring
interaction. The critical point between the Potts ordered phase and
disordered phase belongs to Potts universality class, which is de-
scribed by Potts CFT.

long-range interactions ( 1
|i− j|d+α ), and d is the spatial dimen-

sion (equal to 1 in our case). N (α)(= 1
N−1

∑
i, j,i �= j

1
rα

i j
) is the

Kac factor to preserve the Hamiltonian extensive. σ dictates
the direction of the watch hand, and τ rotates the watch
hand clockwise through a discrete angle 2π/3, as shown in
Fig. 1(a). σ and τ satisfy σ 3

i = I , τ 3
i = I , and σiτ j = ωδi jτ jσi,

where ω = e2π i/3. A global Z3 transformation represented by
G = ∏

i τi makes the Hamiltonian invariant. The operators are
defined by

σ =
⎛
⎝

1 0 0
0 ω 0
0 0 ω2

⎞
⎠, τ =

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠. (2)

The system is in an ordered phase which breaks the Z3

symmetry for f � J and in a disordered paramagnetic phase
(PM) for f � J . The phase transition from the Z3-breaking
Potts order to the Z3-symmetric disordered phase is described
by the three-state Potts CFT with correlation length exponent
ν = 5/6. The model becomes an infinite-range Potts chain
(Lipkin-Meshkov-Glick model [78]) when α + d = 0, and a
nearest-neighbor quantum Potts chain when α + d = ∞.

Nonperturbative numerical methods are employed to in-
vestigate critical behaviors of quantum Potts chains with
long-range power-law interaction and estimate the value of αc

in the “nonclassical” region. Since this region has been esti-
mated from two-loop RG calculations [45], we only consider
1.2 � α � 2.0. Considering that the quantum Potts chain with
long-range interaction does not have exact solutions in the
parameter region of interest, a large-scale finite-size DMRG
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method [72–74] based on MPS [74,75], which is one of
the most powerful numerical methods for one-dimensional
strongly correlated many-body systems, is employed. The
MPS bond dimension is set to 300; good convergence of true
energy eigenstates and fidelity susceptibilities are guaranteed
by requiring relative energy errors less than 10−8. The fidelity
susceptibility defined in Eq. (3) is computed with a minimal
step δ f = 10−3. We chose the same initial state in the DMRG
calculations every time, so the ground states in the ordered
phase are the same. The strength of the interaction J = 1 as
an energy unit, and open boundary conditions are applied.

B. Fidelity susceptibility and scaling relations

The system undergoes a continuous phase transition from
an ordered to a disordered phase when tuning the exter-
nal field f to a critical value f ∗

c , at which the structure of
the ground-state wave function changes significantly. The
quantum ground-state fidelity F ( f , f + δ f ), defined as the
overlapping amplitude of the ground-state wave function with
the external field f and the ground-state wave function with
the external field f + δ f [65,67,69–71,79], and its value is
almost zero near f ∗

c , that is, F ( f ∗
c , f ∗

c + δ f ) ∼ 0. In practice,
the more convenient quantity to characterize QPTs is the fi-
delity susceptibility, defined by the leading term of the fidelity,

χF ( f ) = lim
δ f →0

2(1 − F ( f , f + δ f ))

(δ f )2
. (3)

For a continuous quantum phase transition of a finite sys-
tem with size L, fidelity susceptibility exhibits a peak at
pseudocritical point fc(L), and the value of the quantum crit-
ical point f ∗

c can be estimated by polynomial fitting fc(L) =
f ∗
c + aL−1/ν [80]. In the vicinity of fc(L), previous studies

[53–58,62,65,69] have shown that the finite-size scaling be-
haviors of fidelity susceptibility χF ( f ) follows:

χF ( f → fc(L)) ∝ Lμ, (4)

and

L−dχF ( f ) = L(2/ν)−d fχF (L1/ν | f − f ∗
c |), (5)

where μ(=2 + 2z − 2�V ) is the critical adiabatic dimension
[69]. �V is the scaling dimension of the local interaction V (x)
at f ∗

c , ν is the critical exponent of the correlation length, and
it can be easily computed according to the relation: ν = 2/μ.
z is the dynamic exponent, d is the spatial dimension of the
system, and fχF is an unknown scaling function. Based on
Eq. (4), the values of critical exponents ν and μ of the QPT
can be determined, and critical behavior of the long-range
quantum system can be easily determined. Note that in prac-
tice, the critical exponent μ is usually extracted from fidelity
susceptibility per site, χL( f ) = χF ( f )/Ld .

III. PHASE DIAGRAM AND CRITICAL BEHAVIOR

A. Quantum phase diagram

The ground-state phase diagram of the quantum Potts
chain with long-range interactions for α > 0 [Eq. (1)] is
obtained by performing large-scale DMRG simulations with
L = 96, 120, 144, 156, 168, 192, 216, 240 sites. The result is

FIG. 2. (a) Fidelity susceptibility per site χL of the
Potts chain with long-range interaction for α = 1.2 and
L = 96, 120, 144, 156, 168, 192, 216, 240 sites as a function
of external transverse field f ; symbols denote finite-size DMRG
results. (b) Extrapolation of critical point f ∗

c for the Potts chain with
long-range interaction; symbols denote the finite-size DMRG results
for α = 1.2 and L = 96, 120, 144, 156, 168, 192, 216, 240 sites.
We use polynomial fitting fc(L) = f ∗

c + aL−1/ν and extrapolate the
critical point f ∗

c = 1.901±0.002.

presented in Fig. 1(b). For α → ∞, the ground state is a
Potts order phase with three-fold degeneracy for f = 0 and
a paramagnetic disorder phase for f → ∞, consistent with
previous results [37] [also see Fig. 1(c)]. Furthermore, for
finite α, it is found that the quantum Potts chain with long-
range interactions has a stable Potts order and a disordered
phase over the entire range of α we investigate.

The finite-size scaling behavior of fidelity susceptibility
for α = 1.2 with different L is presented in Fig. 2(a), which
obeys χL( fc(L)) ∝ Lμ−1 [Eq. (4)] near the second-order QPT
critical point. As system size L increases, the peak position
fc(L) gets closer and closer to the exact critical point value
f ∗
c . More precisely, for the long-range interaction Potts chain

with α = 1.2, f ∗
c is determined by polynomial fitting fc(L) =

f ∗
c + aL−1/ν , and then extrapolating to L to infinity [Fig. 2(b)].

According to Eq. (5), the fidelity susceptibility follows an
exact scaling relation, and collapses to one master curve
[Fig. 3(b)], confirming that the extrapolation is appropriate.
The finite-size scaling behavior of fidelity susceptibility for
other α is also investigated (see Appendix A), and the results
are presented in Table I. Results show that the quantum critical
point moves to lower f ∗

c values as α increases.

B. Finite-size scaling and critical exponent

The next questions are what is the critical behavior of the
long-range interaction Potts chains with different α values,
and whether there is a critical threshold αc, at which the
critical behavior changes continuously from a long-range uni-
versality class to a short-range one? To this end, we calculate
the critical exponents μ and ν of the fidelity susceptibility in
the region 1.2 � α � 2.0 based on large-scale DMRG simu-
lations for different L. The value of the fidelity susceptibility
per site, χL = χF /L, at the peak position fc(L) for different
L at α = 1.2 is shown in Fig. 3(a). The adiabatic critical
dimension μ can be well fitted by a polynomial fitting of
χL( fc(L)) = Lμ−1(c + dL−1).

According to Eq. (5), the fidelity susceptibility can be
scaled by L−2/νχF as a function of L1/ν ( f − f ∗

c ) in the
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FIG. 3. (a) The maximal of fidelity susceptibility per site χL =
χF /L as a function of system sizes L for α = 1.2. We use polyno-
mial fitting χL ( fc(L)) = Lμ−1(c + dL−1) and extrapolate the critical
adiabatic dimension μ = 2.54 ±0.02. (b) Data collapse of fidelity
susceptibility χF for the Potts chain with long-range interaction;
symbols denote the finite-size DMRG results for α = 1.2 and
L = 96, 120, 144, 156, 168, 192, 216, 240 sites, where ν = 0.791 ±
0.004 and f ∗

c = 1.901 ± 0.002 are used for data collapse plots.

vicinity of the quantum critical point f ∗
c . The critical correla-

tion length exponent ν is then determined by ν = 2/μ. Put the
obtained critical point f ∗

c and critical exponent ν into Eq. (5),
all fidelity susceptibilities for different L collapse into a single
one [Fig. 3(b)], which means the estimated critical point and
critical exponent are accurate. We also noticed that the data
collapse peak is not at 0 because of the finite-size effect for
f (L) = f ∗

c + aL−1/ν (a �= 0). The calculations of the critical
adiabatic dimension μ and the correlation length exponent
ν for other α are presented in Appendix C, and the results
of all α are summarized in Table I. As can be seen from
Fig. 4(a), either ν or μ as a function of 1/α shows a crossover
at 1/α = 1/αc = 0.699(αc = 1.43). When α < αc, μ and ν

are monotonic functions of α. In contrast, when α > αc, they
are more or less constant and approach the critical exponent

TABLE I. Critical exponents of the Potts chain with long-range
interaction for different α. Critical exponents in the standard quan-
tum Potts chain (α = ∞) are also listed for comparison. The critical
threshold of long-range interaction power αc ∼ 1.43.

α f ∗
c ν μ

1.2 1.901(2) 0.791(4) 2.54(2)
1.3 1.7888(8) 0.804(2) 2.488(5)
1.35 1.744(1) 0.813(3) 2.46(1)
1.4 1.699(1) 0.827(4) 2.42(1)
1.41 1.692(2) 0.8292(7) 2.412(2)
1.42 1.683(2) 0.833(2) 2.402(4)
1.43 1.6742(7) 0.8337(7) 2.399(2)
1.44 1.6663(6) 0.837(2) 2.391(4)
1.45 1.659(1) 0.839(3) 2.385(6)
1.5 1.6191(7) 0.841(3) 2.380(8)
1.55 1.588(1) 0.840(2) 2.382(5)
1.6 1.554(2) 0.843(3) 2.374(7)
1.8 1.4416(4) 0.843(1) 2.373(2)
2.0 1.3541(7) 0.840(2) 2.381(6)
∞ 1.00000 0.83333 2.40000

FIG. 4. Critical exponent of the correlation length ν (black dash
line refers to 2D three-state Potts correlation length exponent ν =
5/6 as a comparison) (a) and critical adiabatic dimension μ (black
dash line refers to 2D three-state Potts critical adiabatic dimen-
sion μ = 12/5 as a comparison) (b) with respect to 1/α for the
Potts chain with long-range interaction; the symbols denote the
finite-size DMRG results that are obtained by extrapolating from
the fidelity susceptibility χF ( fc(L)) at the peak position fc(L) of
L = 96, 120, 144, 156, 168, 192, 216, 240 sites.

values of the two-dimensional (2D) three-state Potts model,
ν = 5/6 and μ = 12/5, respectively, within 0.8% error due
to finite-size effect (black dash line in Fig. 4). Therefore,
the critical behavior of the fidelity susceptibility undergoes
a continuous crossover at αc ≈ 1.43, from the long-range
universality class region with varying correlation length ex-
ponent (α < αc) to the short-range universality class region
with constant exponents (α > αc, three-state Potts region).
This tendency is different from Z2-symmetric (Ising) quantum
spin chain with long-range interaction [81,82].

C. Discussion

The application of RG techniques to classical spin systems
with long-range interactions provides a good understanding
of phase transitions that occur within them. Perturbative two-
loop RG calculations show that the three-state Potts chain
with long-range power-law interactions has three parameter
regimes: (i) small α (α < d/2), (ii) intermediate α(d/2 <

α < αc, and (iii) large α(α > αc) regions, similar to the
classical three-state Potts model at low energy and long dis-
tance that can be described by φ3 Landau-Ginzberg-Wilson
effective action [44,45]. Moreover, previous theoretical and
numerical results [41,43,81,82] show that the critical behavior
of O(N ) symmetric quantum model systems with long-range
interactions is consistent with that of classicalO(N ) ones with
effective dimension deff (= 2d

α
+ 1) for d/2 < α < αc. How-

ever, for quantum systems with long-range interactions in the
“nonclassical” region (d/2 < α < αc), the quantum-classical
correspondence is very subtle and there is no analytical ex-
pression for the critical exponents. Particularly, it is unclear
whether the critical behavior of the Z3-symmetric quantum
spin systems with long-range interactions is also consistent
with the two-loop RG results of the classical Potts model with
long-range interactions.

For quantum three-state Potts model systems with long-
range power-law interactions, using nonperturbative DMRG,
we found that there exists a critical value αc in the long-range
power-law interactions. When α < αc, the RG flow ends in a
stable long-range fixed point with varying critical exponents
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ν, and when α > αc, it ends in a short-range fixed point. These
results for quantum three-state Potts model systems with long-
range power-law interactions are in qualitative agreement with
previous two-loop RG results for classical φ3 theory [44].
More importantly, for the first time, we numerically determine
the critical threshold of the long-range interaction power αc ≈
1.43 in a nonperturbative manner, which is more accurate than
previous perturbative two-loop RG results αc ∼ 1.73.

IV. CONCLUSION

To summarize, we investigate the critical behavior of the
quantum Potts chain with long-range interactions through
large-scale DMRG simulations. Using fidelity susceptibility
as a diagnostic, we obtain a ground-state phase diagram
between PM and Potts order phases. As the long-range in-
teraction power increases, the location of the quantum critical
point shifts to weaker external fields. The finite-size scaling
of the fidelity susceptibility χF and the nature of the QPTs
of the quantum Potts chain with long-range interaction are
also investigated. Our numerical results show that there is a
critical threshold αc in the long-range interaction power, long-
range fixed points are stable for α < αc, and short-range fixed
points are stable for α > αc. These results are consistent with
previous two-loop RG calculations from classical φ3 theory,
but the evolution of the critical point differs from the quantum
Ising chains with long-range interaction [81]. In addition, for
the first time, we determined the critical long-range interaction
power αc ≈ 1.43 in a nonperturbative way, which is more
precise than the previous perturbative two-loop RG results
αc ∼ 1.73. Interesting future questions include the critical
behavior and finite temperature effect in quantum four-state
Potts chains with long-range interaction. Our work could shed
new light on the interplay between long-range interactions
(frustrated) and many-body physics.
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APPENDIX A: FIDELITY SUSCEPTIBILITY
FOR OTHER INTERACTION POWERS

In this section, we provide additional data to show fidelity
susceptibility for other interaction powers.

As the same in the main text, on the one hand, fidelity
susceptibility per site χL of the Potts chain with long-range
interaction for α = 1.3 (a), α = 1.35 (b), α = 1.4 (c), α = 1.5

(d), α = 1.55 (e), α = 1.6 (f), α = 1.8 (g), α = 2.0 (h), and
L = 96, 120, 144, 156, 168, 192, 216, 240 sites as a function
of external transverse field f , are shown in Fig. 5. On the
other hand, in order to determine critical αc, we also show
fidelity susceptibility per site for α = 1.41 (a), α = 1.42 (b),
α = 1.43 (c), α = 1.44 (d), α = 1.45 (e) in Fig. 6. We find
that quantum critical points are shifted to lower values of f as
long-range interaction power increases.

APPENDIX B: DATA COLLAPSES FOR OTHER
INTERACTION POWERS

In this section, we provide additional data to show that the
varying tendency of long-range correlation length exponents
in the “nonclassical” region is consistent with theoretical
analysis.

As the same in the main text, on the one hand, data collapse
of fidelity susceptibility χF for the Potts chain with long-range
interaction, α = 1.3 (a), α = 1.35(b), α = 1.4 (c), α = 1.5
(d), α = 1.55 (e), α = 1.6 (f), α = 1.8 (g), α = 2.0(h), and
L = 96, 120, 144, 156, 168, 192, 215, 240 sites, are shown in
Fig. 7. On the other hand, in order to determine critical αc,
we also show data collapse for α = 1.41 (a), α = 1.42 (b),
α = 1.43 (c), α = 1.44 (d), and α = 1.45 (e) in Fig. 8. The
correlation length exponents are summarized in Table I. We
clearly see that the varying tendency of correlation length
exponents in the “nonclassical” region is consistent with the
theoretical analysis.

APPENDIX C: QUANTUM ADIABATIC DIMENSION
FITTING FOR OTHER INTERACTION POWERS

In this section, we provide additional data to extrapolate
critical adiabatic dimensions for other long-range interaction
powers.

As the same in the main text, on the one hand, the maximal
of fidelity susceptibility per site χL( fc(L)) = χF ( fc(L))/L as
a function of system sizes L for α = 1.3 (a), α = 1.35 (b), α =
1.4 (c), α = 1.5 (d), α = 1.55 (e), α = 1.6 (f), α = 1.8 (g),
α = 2.0 (h), and L = 96, 120, 144, 156, 168, 192, 216, 240
sites, are shown in Fig. 9. On the other hand, in order to
determine critical αc, we also show the maximal of fidelity
susceptibility per site for α = 1.41 (a), α = 1.42 (b), α =
1.43 (c), α = 1.44 (d), and α = 1.45 (e) in Fig. 10. The
critical adiabatic dimensions are summarized in the Table I.
We clearly see that the varying tendency of critical adiabatic
dimension in the “nonclassical” region is consistent with the
theoretical analysis.

APPENDIX D: QUANTUM CRITICAL POINT FITTING
FOR OTHER INTERACTION POWERS

In this section, we provide additional data to extrapo-
late accuracy critical points for other long-range interaction
powers.

As the same in the main text, on the one hand, the finite-
size scaling of pseudocritical point fc(L) as a function of
inverse system sizes 1/L for α = 1.3 (a), α = 1.35 (b), α =
1.4 (c), α = 1.5 (d), α = 1.55 (e), α = 1.6 (f), α = 1.8 (g),
α = 2.0 (h), and L = 96, 120, 144, 156, 168, 192, 216, 240
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FIG. 5. Fidelity susceptibility per site χL of the Potts chain with long-range interaction for (a) α = 1.3,(b) α = 1.35, (c) α = 1.4, (d)
α = 1.5, (e) α = 1.55, (f) α = 1.6, (g) α = 1.8, (h) α = 2.0, and L = 96, 120, 144, 156, 168, 192, 216, 240 sites as a function of external
transverse field f ; symbols denote finite-size DMRG results.

FIG. 6. Fidelity susceptibility per site χL of the Potts chain with long-range interaction for (a) α = 1.41, (b) α = 1.42, (c) α = 1.43,
(d) α = 1.44, (e) α = 1.45, and L = 96, 120, 144, 156, 168, 192, 216, 240 sites as a function of external transverse field f ; symbols denote
finite-size DMRG results.
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FIG. 7. Data collapse of fidelity susceptibility χF for the Potts chain with long-range interaction; symbols denote the finite-size DMRG
results for (a) α = 1.3, (b) α = 1.35, (c) α = 1.4, (d) α = 1.5, (e) α = 1.55, (f) α = 1.6, (g) α = 1.8, and (h) α = 2.0, where the varying
tendency of correlation length exponents in the “nonclassical” region is consistent with the theoretical analysis.

FIG. 8. Data collapse of fidelity susceptibility χF for the Potts chain with long-range interaction; symbols denote the finite-size DMRG
results for (a) α = 1.41, (b) α = 1.42, (c) α = 1.43, (d) α = 1.44, and (e) α = 1.45, where the varying tendency of correlation length exponents
in the “nonclassical” region is consistent with the theoretical analysis.

054122-7



XUE-JIA YU, CHENGXIANG DING, AND LIMEI XU PHYSICAL REVIEW E 107, 054122 (2023)

FIG. 9. The maximal of fidelity susceptibility per site χL ( fc(L)) = χF ( fc(L))/L as a function of system sizes L for (a) α = 1.3, (b) α =
1.35, (c) α = 1.4, (d) α = 1.5, (e) α = 1.55, (f) α = 1.6, (g) α = 1.8, and (h) α = 2.0. We use polynomial fitting formula χL ( fc(L)) =
Lμ−1(c + dL−1).

FIG. 10. The maximal of fidelity susceptibility per site as a function of system sizes L for (a) α = 1.41, (b) α = 1.42, (c) α = 1.43,
(d) α = 1.43, and (e) α = 1.45. We use polynomial fitting formula χL ( fc(L)) = Lμ−1(c + dL−1).
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FIG. 11. The finite-size scaling of pseudocritical point fc(L) as a function of inverse system sizes 1/L for (a) α = 1.3, (b) α = 1.35,
(c) α = 1.4, (d) α = 1.5, (e) α = 1.55, (f) α = 1.6, (g) α = 1.8, and (h) α = 2.0. We use polynomial fitting formula fc(L) = f ∗

c + aL−1/ν .

sites, are shown in Fig. 11. On the other hand, in or-
der to determine critical αc, we also show the finite-size
scaling of pseudocritical point as a function of inverse sys-
tem sizes for α = 1.41 (a), α = 1.42 (b), α = 1.43 (c),

α = 1.44 (d), α = 1.45 (e) in Fig. 12. The extrapolated
critical points are summarized in Table I. We clearly see
that the critical point f ∗

c shifts to weaker values with
increasing α.

FIG. 12. The finite-size scaling of pseudocritical point fc(L) as a function of inverse system sizes 1/L for (a) α = 1.41, (b) α = 1.42,
(c) α = 1.43, (d) α = 1.44, and (e) α = 1.45. We use polynomial fitting formula fc(L) = f ∗

c + aL−1/ν .
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