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Exact results for the residual entropy of ice hexagonal monolayer
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Since the problem of the residual entropy of square ice was exactly solved, exact solutions for two-dimensional
realistic ice models have been of interest. In this work, we study the exact residual entropy of ice hexagonal
monolayer in two cases. In the case that the external electric field along the z-axis exists, we map the
hydrogen configurations into the spin configurations of the Ising model on the kagome lattice. By taking the
low temperature limit of the Ising model, we derive the exact residual entropy, which agrees with the result
determined previously from the dimer model on the honeycomb lattice. In another case that the ice hexagonal
monolayer is under the periodic boundary conditions in the cubic ice lattice, the residual entropy has not been
studied exactly. For this case, we employ the six-vertex model on the square lattice to represent the hydrogen
configurations obeying the ice rules. The exact residual entropy is obtained from the solution of the equivalent
six-vertex model. Our work provides more examples of the exactly soluble two-dimensional statistical models.
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I. INTRODUCTION

Research of the ice system has been an important theme
in the fields of physics and chemistry for a long time. Since
the 1930s, the ice rules [1,2] were proposed to explain the
nonzero entropy of ice at low temperatures [3,4]. The solution
of this residual entropy in various ice systems has been an
important and interesting problem in statistical physics and
mathematics. The residual entropy arises from the hydrogen
configurations obeying the ice rules as S/kB = 1

NH2O
ln W =

ln w, where W is the number of hydrogen configurations,
NH2O is the number of H2O molecules, and w = W 1/NH2O .

We list some famous early studies of this problem: Pauling’s
[2] mean field approximation w = 3

2 for four-coordinated
ice system; DiMarzio and Stillinger’s [5] matrix method for
square ice and three-dimensional ice; Nagle’s [6–8] series
expansion for square ice, hexagonal ice (ice Ih), and cubic
ice (ice Ic); and Lieb’s [9,10] exact result from transfer matrix

method for square ice w = ( 4
3 )

3
2 . Along with developments

in high-performance computational technology, there have
been various numerical simulations [11–22] and theoretical
evaluations based on computers [23–26] for this problem.

Among the research of the residual entropy problem
of ice systems, our interest is the exact solution of the
two-dimensional ice models in this work. Since the simple
one-dimensional Ising model was solved in the 1920s [27], the
studies of exact solutions for various statistical models have
been of interest [28,29]. Most of the exactly solved statistical
models are in one dimension and two dimensions. For the two-
dimensional Ising model on the square lattice, Onsager [30]
derived the solution for the case without an external field, and
Lee and Yang [31] gave the solution for the case in an imag-
inary field. Solutions of the Ising models on the honeycomb
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lattice [32–35], the triangular lattice [36–39], and the kagome
lattice [40,41] were also obtained. In particular, the residual
entropies from the frustration of the triangular model [36]
and the kagome model [41] were exactly solved. It is clear
that the residual entropy of ice systems and that of the Ising
models on the frustrated lattice have a close relation [42–44].
In 1967, Lieb [9,10] published the famous solution of square
ice, which motivated a lot of studies of vertex models such
as the six-vertex [45–53], eight-vertex [54–64], and 16-vertex
models [65–73]. Square ice can be seen as a special case of
the six-vertex model, and the exact residual entropy can be
rederived from the low temperature limit of the Ising model
with crossing and four-spin interactions on the checkerboard
lattice [74–76]. These two-dimensional statistical models, as
well as a few others such as the dimer model [77–86], the
monomer-dimer model [87–92], and the hard hexagon model
[93–95], either solved or unsolved, are briefly reviewed in the
introduction of Ref. [73].

In this work, we focus on a two-dimensional ice model—
namely, the ice hexagonal monolayer. Two-dimensional ice
models have attracted much attention [24,25,96,97] since the
research of square ice. Unlike square ice, the ice hexagonal
monolayer is a realistic structure in three-dimensional ice,
such as ice Ih and ice Ic. Although the exactly solved three-
dimensional models are rare [98–101], research of the realistic
two-dimensional structure may provide new insights into the
physics of real ice. The exact result of the residual entropy
of the ice hexagonal monolayer is obtained in two cases. In
Sec. II, we consider the case of the presence of an external
electric field along the z-axis. The exact residual entropy is
derived from the low temperature limit of an equivalent Ising
model on the kagome lattice, and is shown to be in agreement
with the solution of dimer covering on the honeycomb lattice.
In Sec. III, the case of an ice hexagonal monolayer under the
periodic boundary conditions in ice Ic is studied, which has
not been solved exactly before. In this case, we employ the
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FIG. 1. The standard direction (+1) of the bonds in an ice hexag-
onal monolayer. The oxygens are marked in red.

mapping of the hydrogen configurations into an exactly solved
six-vertex model, and present the exact solution for residual
entropy. Discussions and conclusion are presented in Sec. IV.

II. ICE HEXAGONAL MONOLAYER IN AN EXTERNAL
FIELD ALONG THE Z-AXIS

The ice hexagonal monolayer consists of the armchair
(H2O)6 rings. All the oxygens are three-coordinated, hence
there are three hydrogen bonds and one dangling bond along
the z-axis for each oxygen in the layer. 3

2 NH2O hydrogens are in
the hydrogen bond network, and 1

2 NH2O hydrogens are in the
dangling bonds. In each hydrogen bond, there are two possible
positions for a hydrogen, and in each dangling bond there are
also two possibilities: one hydrogen or none. It is natural to
introduce the mapping of these two possibilities of each bond
into the value +1/–1 of an Ising spin. To do this, we should
first define the standard direction (+1) of the bonds, which is
shown in Fig. 1. The bond configurations can then be mapped
into the spin configurations of the equivalent Ising model, with
the value +1/–1 of each spin representing the direction of the
corresponding bond. We show the equivalent Ising model in
Fig. 2.

One can see from Fig. 2 that the Ising lattice is in a form of
ABC, where A and C are two sparse triangular layers and B is
the kagome layer. The B layer corresponds to the hydrogen
bond network, and the A and C layers correspond to the
dangling bonds. Clearly, the configurations with two +1 and
two –1 bonds around every oxygen are obeying the ice rules.
These configurations correspond to that in the Ising lattice
with two +1 and two –1 spins around every tetrahedron. Next
let us consider the spins on the kagome, or B, layer. When
there are two +1 and two –1 spins around every tetrahedron,

A

B

C

FIG. 2. The equivalent Ising model of the ice hexagonal
monolayer.

there must be two +1 and one –1 or two –1 and one +1
spins in every triangle of the kagome layer. These are exactly
the ground states of the antiferromagnetic Ising model with
nearest-neighbor interactions on the kagome lattice. That is,
there is a one-to-one mapping of the configurations obeying
the ice rules (in a zero field) to the ground states of the
antiferromagnetic Ising model on the kagome lattice. Notice
that NH2O = 2

3 NK, where NK is the number of spins on the
kagome lattice. Then the residual entropy of the ice hexagonal
monolayer in a zero field is simply obtained from that of the
antiferromagnetic Ising model on the kagome lattice [41]:

S/kB = 3

2
SK/kB = 3

2
× 1

24π2

∫ 2π

0
dθ

∫ 2π

0
dφ

× ln {21 − 4[cos θ + cos φ + cos (θ + φ)]}
= 0.752745. (1)

In the presence of an external electric field along the z-axis,
the hydrogens in the dangling bonds are pinned parallel to
the field. Then, the configurations of the dangling bonds are
constrained, i.e., all the spins in the A and C layers are +1. In
this case, obviously the residual entropy is reduced. The ice
rules force the configurations to those with two –1 and one
+1 spins in every triangle of the B layer. The system under
this condition is called “kagome ice” [102]. The reduced but
still extensive ground state degeneracy was exactly solved by
Moessner and Sondhi [103] by mapping the ground states
to the configurations of the dimer model on the honeycomb
lattice [80,82]. They showed that the residual entropy is one
half that of the antiferromagnetic Ising model on the triangular
lattice [36] S = 1

2 Stri. Later, Matsuhira et al. [102] measured
this residual entropy in a pyrochlore spin ice material. Uda-
gawa et al. [104] rediscovered the mapping to the dimer model
on the honeycomb lattice and rederived the solution using the
Pfaffian method. This residual entropy is also discussed by a
few other studies, both in the spin ice system [11,17,20,105]
and in real ice [106].

Here we will propose an alternative approach to this solu-
tion. Noticing the ground states in this case are those with two
–1 and one +1 spins in every triangle of the kagome lattice, we
consider the low temperature limit of the antiferromagnetic
Ising model with nearest-neighbor and three-spin interactions
on the kagome lattice. The interaction energy within each
triangle surrounded by three spins (s1, s2, s3) is

E (s1, s2, s3) = J (s1s2 + s2s3 + s1s3) + �(s1s2s3 − 1), (2)

where J > 0 is the nearest-neighbor interaction and � is the
three-spin interaction. The Hamiltonian of this Ising model
can then be expressed as

H =
∑

tri

E (s1, s2, s3), (3)

with the summation taken over all triangles. To solve the par-
tition function Z exactly, we follow Refs. [107,108] and map
this Ising model into an eight-vertex model on the honeycomb
lattice [109]. The vertex weights of this eight-vertex model are
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given by

a = exp [−βE (1, 1, 1)] = exp [−3βJ],

b = exp [−βE (1, 1,−1)] = exp [−β(−J − 2�)],

c = exp [−βE (1,−1,−1)] = exp [βJ],

d = exp [−βE (−1,−1,−1)] = exp [−β(3J − 2�)], (4)

where β = 1/kBT . It is straightforward to verify that,
in choosing � = −∞, the energy within a triangle
is in the order E (1,−1,−1) < E (1, 1, 1) < E (1, 1,−1) =
E (−1,−1,−1) = +∞. The ground states are exactly the
configurations with two –1 and one +1 spins in every triangle.
By taking the low temperature limit, the residual entropy can
then be obtained from the ground state degeneracy as

S/kB = lim
Ntri→∞

1

Ntri
ln [g(E0)]

= lim
β→∞

{
lim

Ntri→∞
1

Ntri
(ln Z + βE0)

}
(5)

with the ground-state energy E0 = Ntri × E (1,−1,−1) =
−NtriJ. Here, Ntri is the number of triangles and is also the

number of vertices on the honeycomb lattice. It is easy to find
NH2O = Ntri. Now we may make use of the equivalence with
the eight-vertex model on the honeycomb lattice,

Z = Z8v (a, b, c, d ), (6)

in the case of a = e−3βJ , c = eβJ , b = d = 0. Fortunately, the
eight-vertex model in this case is exactly solved in Ref. [109].
We recall Eq. (17) of Ref. [109], and substitute it into Eq. (5):

lim
Ntri→∞

1

Ntri
(ln Z + βE0)

= lim
Ntri→∞

1

Ntri
ln Z8v (a, b, c, d ) − βJ

= 1

16π2

∫ 2π

0
dθ

∫ 2π

0
dφ ln{[a4 + 3c4

+ 2c2(c2 − a2)(cos θ + cos φ

+ cos(θ + φ))]e−4βJ}. (7)

Inserting a = e−3βJ and c = eβJ into Eq. (7) gives the low
temperature limit

lim
β→∞

[
lim

Ntri→∞
1

Ntri
(ln Z + βE0)

]
= 1

16π2

∫ 2π

0
dθ

∫ 2π

0
dφ ln [3 + 2(cos θ + cos φ + cos (θ + φ))]

= 1

16π2

∫ 2π

0
dθ

∫ 2π

0
dφ ln

[
1 + 4 cos

(
θ + φ

2

)
cos

(
θ − φ

2

)
+ 4cos2

(
θ + φ

2

)]

σ1= θ+φ

2 ,σ2= θ−φ

2= 1

16π2
× 2 ×

∫
�

dσ1dσ2 ln[1 + 4 cos σ1 cos σ2 + 4cos2σ1]. (8)

Here, the integral domain � is {(σ1, σ2) : 0 � σ1 + σ2 � 2π and 0 � σ1 − σ2 � 2π}. It is trivial to verify∫
�

dσ1dσ2 ln[1 + 4 cos σ1 cos σ2 + 4cos2σ1] = 1

2

∫ 2π

0
dσ1

∫ 2π

0
dσ2 ln[1 + 4 cos σ1 cos σ2 + 4cos2σ1]. (9)

Then Eq. (8) becomes

lim
β→∞

[
lim

Ntri→∞
1

Ntri
(ln Z + βE0)

]
= 1

16π2

∫ 2π

0
dσ1

∫ 2π

0
dσ2 ln[1 + 4 cos σ1 cos σ2 + 4cos2σ1]. (10)

Now we examine the residual entropy of the antiferromag-
netic Ising model on the triangular lattice. On page 364 of
Ref. [36], this entropy was shown in the form of

Stri/kB = 1

8π2

∫ 2π

0
dω

∫ 2π

0
dω′

× ln[1 − 4 cos ω cos ω′ + 4cos2ω′] (11)

before the final expression. One can easily see that the integral
in Eq. (10) is equal to that in Eq. (11). Hence, the exact
solution of the residual entropy in this case is exactly one
half that of the antiferromagnetic Ising model on the triangular
lattice:

S/kB = 1
2 Stri/kB = 0.161533. (12)

Then we rederive the result of Refs. [103] and [104] using a
different approach of taking the low temperature limit of an
Ising model on the kagome lattice.

We remark that, if we consider the Ising model on the
kagome lattice with nearest-neighbor interactions J > 0 and
an external magnetic field Hex = 4J, the ground states will be
the configurations with two –1 and one +1 spins or three –1
spins in every triangle. Even in the ground states, the triangles
with three –1 spins will disobey the ice rules. This model is
equivalent to the monomer-dimer model on the honeycomb
lattice [11,20,92], where the triangles with two –1 and one
+1 spins can be seen as the sites covered by a dimer, and
those with three –1 spins can be seen as monomers. Solving
the monomer-dimer model is much more difficult than the
dimer covering problem. Nagle [88] obtained the Bethe ap-
proximation for the monomer-dimer model on the honeycomb
lattice, which was rederived by Isakov et al. [11]. Numerical
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FIG. 3. The diagrammatic representation of the ice hexagonal
monolayer in the lattice of ice Ic. The oxygen atoms are marked
in red. Five pairs of dangling bonds under the periodic boundary
conditions are marked.

results by Wang-Landau Monte Carlo simulation [20] were
also studied. The exact solution of the residual entropy in this
case has yet to be obtained.

III. ICE HEXAGONAL MONOLAYER UNDER PERIODIC
BOUNDARY CONDITIONS

We consider in this case the ice hexagonal monolayer in
the lattice of ice Ic. The three-dimensional model of ice Ic
is equivalent to the pyrochlore antiferromagnetic Ising model
[42]. The residual entropy of this model has been evalu-
ated from various approaches [11,16–20,23,26,110]. Here,
we study the ice hexagonal monolayer as a two-dimensional
structure from this model.

For the ice hexagonal monolayer in ice Ic, the periodic
boundary conditions are taken on the dangling bonds of the
layer. In Fig. 3, we show the example of five pairs of dangling
bonds under the periodic boundary conditions. It is clear to
verify that the dangling bonds of each pair are located on one
pair of nearest-neighbor oxygens, and convert into one hydro-
gen bond under the periodic boundary conditions. Actually,
there are double bonds connecting these pairs of nearest-
neighbor oxygens. We show the two-dimensional hydrogen
bond network in this case in Fig. 4.

The residual entropy of this model can be exactly solved by
employing the mapping into a six-vertex model on the square
lattice. Consider the direction of each hydrogen bond in the
network as an arrow. According to the ice rules, four arrows
around each oxygen should be two-in/two-out respective to
this oxygen. In Fig. 4, one can easily see that each pair of
nearest-neighbor oxygens connected by double bonds can be
seen as a single site on the square lattice. It is trivial to find
that the double bonds already contribute two-in/two-out of

FIG. 4. The hydrogen bond network of the ice hexagonal mono-
layer under the periodic boundary conditions in ice Ic.

the total four-in/four-out to these two oxygens; then, the four
arrows around this site should be two-in/two-out respective
to this site. That is, the arrow configurations on the square
lattice should be two-in/two-out respective to every site. We
then obtain a six-vertex model on the square lattice equivalent
to the hydrogen bond network, as shown in Fig. 5.

As shown in Fig. 5, the configuration of vertex (1) allows
one hydrogen configuration in the double bonds of this site,
and so does vertex (2). Hence, the weights of (1) and (2)
should be one. Similarly, the weights of (3), (4), (5), and (6)
should be two, as there are two possibilities for the configura-
tion of the double bonds. We list all the vertex weights:

ω1 = ω2 = 1, ω3 = ω4 = ω5 = ω6 = 2. (13)

The residual entropy is then determined directly by the
partition function of this model S/kB = 1

2 × lim
N6v→∞

1
N6v

ln Z,

where N6v is the number of vertices on the square lattice and
NH2O = 2N6v. Remark that the six-vertex model in the case
ω1 = · · · = ω6 = 1 is the square ice model. To solve our six-
vertex model, we should first recall the exactly solved cases
in the previous studies. In Refs. [48–50], the solution of a
six-vertex model—with the vertex weights and the associated
energies

ε1 = ε2 = − 1
2δ, ω̃1 = ω̃2 = e

1
2 βδ,

ε3 = ε4 = 1
2δ, ω̃3 = ω̃4 = e− 1

2 βδ,

ε5 = ε6 = −ε, ω̃5 = ω̃6 = eβε, (14)

(1) (2) (3) (4) (5) (6)

FIG. 5. The arrow configurations of the six-vertex model.
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and, in the case δ > 0—was examined. Notice that the so-
lution is invariant under a C2 symmetry operation along the
vertical axis, i.e., under the transformation ω̃1 ↔ ω̃4, ω̃2 ↔
ω̃3 (see Fig. 5). We may set the vertex energies as βδ = ln 2
and ε = 1

2δ, and redefine the vertex weights as

ω̃1 = ω̃2 = e− 1
2 βδ = 1√

2
, ω̃3 = ω̃4 = ω̃5 = ω̃6 = e

1
2 βδ =

√
2.

(15)
Then the relation of the partition function of our model with
that of the model defined in Eq. (15) is straightforward:

Z =
√

2
N6v × Z̃. (16)

To evaluate the solution of Z̃, we follow the work of
Refs. [49,50,111] and determine the quantities

η = eβδ = 2, ξ = e2βε = 2

and

� = 1
2 (η + η−1 − ξ ) = 1

4 . (17)

Then, we define μ and �0 by

cos μ = −�

and

ei�0 = 1 + ηeiμ

η + eiμ
. (18)

It is simple to give

μ = arccos
(− 1

4

)
, �0 = arccos

(
11
16

)
. (19)

Now we recall Eq. (15) of Ref. [50], which is the exact
solution of the partition function Z̃, in the case when vertical
polarization and horizontal polarization are zero. The vertical
and horizontal polarizations are associated with the external
electric fields in the vertical and horizontal directions, respec-
tively. In our case, no electric field is employed, and Eq. (15)
of Ref. [50] is the expression for Z̃. Then we have

lim
N6v→∞

1

N6v

ln Z = 1

2
ln 2 + lim

N6v→∞
1

N6v

ln Z̃

= 1

2
ln 2 + 1

2
βδ + 1

8μ

∫ ∞

−∞

dα

cosh(πα/2μ)

× ln

[
cosh α − cos (2μ − �0)

cosh α − cos �0

]

= 1

2
ln 2 + 1

2
βδ + 1

4

∫ ∞

−∞

dα

cosh (πα)

× ln

[
cosh (2μα) − cos (2μ − �0)

cosh (2μα) − cos �0

]

= 0.946954. (20)

The exact residual entropy is

S/kB = 1

2
× lim

N6v→∞
1

N6v

ln Z = 0.473477. (21)

We remark that the partition function Z of our model can
also be obtained from Ref. [53]. One can easily examine that
the same result is achieved from Eq. (6) in Ref. [53] by a
different analytic expression from Eq. (20) presented here.

Interestingly, Kirov [24] constructed a digonal hexago-
nal ice model, in which the hydrogen bond network is very
similar to that of our model (see Fig. 5(b) in Ref. [24]).
Kirov [24,25] developed a numerical transfer matrix method
to enumerate the hydrogen bond configurations completely in
finite fragments of various models. For the digonal hexago-
nal ice model, his result of the largest fragment (140 H2O
molecules) is 0.474497, which is very close to the solution of
our model. It is not clear whether the exact residual entropies
in the large lattice limit of these two models are consistent
though.

IV. DISCUSSIONS AND CONCLUSION

In this work we study the exact residual entropy of the
ice hexagonal monolayer, a two-dimensional structure from
real ice. We have examined two soluble cases. The case in
the presence of an external electric field along the z-axis,
also called kagome ice, has been exactly solved in previous
studies [103–105]. The model in this case is equivalent to
the dimer model on the honeycomb lattice, and the resid-
ual entropy is equal to the solution of the dimer covering
problem, which is one half the residual entropy of the anti-
ferromagnetic Ising model on the triangular lattice. We give
an alternative approach to this solution by mapping the model
into an Ising model with nearest-neighbor and three-spin in-
teractions on the kagome lattice. The ground states of this
Ising model are exactly the configurations in kagome ice;
hence, we take the low temperature limit of this Ising model
and obtain the residual entropy. We show that this result is
exactly one half that of the antiferromagnetic Ising model
on the triangular lattice, thus finishing the rederivation. The
advantage of making use of the equivalence of the ice-type
model with the Ising spin model is demonstrated in our
method.

The second case we consider is the ice hexagonal mono-
layer under the periodic boundary conditions in ice Ic. In
this case, each pair of dangling bonds located on one pair
of nearest-neighbor oxygens converts to a hydrogen bond,
and then these pairs of nearest-neighbor oxygens are con-
nected by double bonds. The hydrogen bond network can
then be mapped into a six-vertex model on the square lat-
tice, with each pair of nearest-neighbor oxygens connected
by double bonds seen as a single site. The number of
hydrogen configurations in this case has not been studied
exactly. For this new system, we transform this six-vertex
model to an exactly solved case [48–50] and obtain the
solution of residual entropy. Hence, we have presented a
new soluble two-dimensional ice model. It is worth com-
paring this solution with the result of three-dimensional ice
Ic. We recall the estimates of the residual entropy of ice
Ic in Refs. [16,19,23,26], which are advanced results from
thermodynamic integration, Wang-Landau simulation, clus-
ter expansion, and theoretical approximation, respectively.
All these estimates—namely, 0.410430 from thermody-
namic integration, 0.410081 from Wang-Landau simulation,
0.411014 from cluster expansion, and 0.410423 from theoret-
ical approximation—are significantly smaller than the exact
result of the hexagonal monolayer 0.473477 [see Eq. (21)].
This fact confirms that the correlation between layers in
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three-dimensional ice restricts the hydrogen bond configu-
rations. Anyway, our solution for the hexagonal monolayer
under the periodic boundary conditions provides the result of
a very simplified version of real ice. Effects of the correla-
tion between layers in three-dimensional ice deserve further
study.

In conclusion, for the ice hexagonal monolayer, we red-
erive the result in a solved case and give the solution
in a new soluble case. In this work, we provide more
examples of the research of the residual entropy prob-
lem in various ice systems. Our work enlarges the set

of exactly soluble two-dimensional models in statistical
physics.
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