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Universal singularities of anomalous diffusion in the Richardson class
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Inhomogeneous environments are rather ubiquitous in nature, often implying anomalies resulting in deviation
from Gaussianity of diffusion processes. While sub- and superdiffusion are usually due to contrasting envi-
ronmental features (hindering or favoring the motion, respectively), they are both observed in systems ranging
from the micro- to the cosmological scale. Here we show how a model encompassing sub- and superdiffusion
in an inhomogeneous environment exhibits a critical singularity in the normalized generator of the cumulants.
The singularity originates directly and exclusively from the asymptotics of the non-Gaussian scaling function of
displacement, and the independence from other details confers it a universal character. Our analysis, based on
the method first applied by Stella et al. [Phys. Rev. Lett. 130, 207104 (2023)], shows that the relation connecting
the scaling function asymptotics to the diffusion exponent characteristic of processes in the Richardson class
implies a nonstandard extensivity in time of the cumulant generator. Numerical tests fully confirm the results.
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Anomalous spatial diffusion occurs when the mean
squared displacement 〈x2〉 ∼ t2ν grows nonlinearly in time t ,
yielding by definition subdiffusion for ν < 1/2 and superdif-
fusion when ν > 1/2 [1]. Deviations from normal diffusion
(ν = 1/2) are often found in nature in systems ranging from
microscopic to cosmological scales [2]. Subdiffusion (ν <

1/2) is commonly observed in the biological contexts of par-
ticles moving inside living cells nuclei, cytoplasm, and across
membranes [1,3–13]. Superdiffusion (ν > 1/2) is also rather
ubiquitous. It is found in active intracellular transport [14–17],
migration processes of cells [18] and more complex organisms
and animals [13,19–22], as well as in the contexts of target
search processes [23], particle dispersion in turbulent fluids
[24–26], and cosmic rays transport [27,28].

In many experimental scenarios exhibiting anomalous dif-
fusion [1], the probability density function (PDF) p(x, t ) of
displacement x satisfies, at long times t ,

p(x, t ) ∼ t−ν f (x/tν ), (1)

where the scaling function f (·) has a non-Gaussian shape
for ν �= 1/2 [2]. This type of behavior has also been
analytically established and numerically conjectured in var-
ious models [29–31] and implies an anomalous scaling of
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displacement in time [32]. This means that as a consequence
of non-Gaussianity, with f (·) integrable on the real axis R and
decaying to zero sufficiently fast for large absolute argument,
the nth-order cumulant of displacement diverges as t nν for
t → ∞. Indeed, this cumulant can be obtained by nth-order
differentiation with respect to λ at λ = 0 of

log G(λ, t ) = log

[∫
R

dxeλxP(x, t )

]

∼ log

[∫
R

dzeλtνz f (z)

]
, (2)

where G is a moment generating function, and we put z =
x/tν . In Ref. [33], it was shown that for a variety of models
with non-Gaussian scaling, f can be proven [34] to have the
asymptotic (large |z|) shape,

f (z) ∼ |z|ψe−c|z|δ+1
, (3)

for some positive constant c and exponents δ and ψ , which
for the paradigmatic continuous time random walk (CTRW)
model [35] was verified exactly.

Two known classes of anomalous diffusion processes, de-
termined through specific relations between the exponents
δ and ν, are expected to exhibit the stretched exponential
decay in Eq. (3) [32,33]. The Fisher class is characterized by
the relation δ = ν/(1 − ν), first established in the context of
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polymers with excluded volume in equilibrium [36], while
the Richardson class relation, δ = (1 − ν)/ν, stems from a
seminal paper dealing with particles dispersion in turbulent
fluids [37]. The latter is expected to apply when diffusion
steps have certain dependencies on space position [38].

Anomalous scaling is also directly responsible for uni-
versal features of diffusion processes [33]. By the Laplace
estimate, the generating function G(λ, t ) can be shown to
grow asymptotically as ∼ exp[t ζ ε(λ)] for some ζ > 0, defin-
ing a scaled cumulant generating function (SCGF),

ε(λ) = lim
t→∞

1

t ζ
log G(λ, t ), (4)

which exhibits a power-law singularity ∝ |λ| 1+δ
δ around λ = 0

[33]. Universality of the singular behavior is expected since
the derivation shows that the singularity is determined by the
asymptotic large |z| behavior of the scaling function, which
can be common to different processes. Of such universality,
the model we are going to consider below [Eq. (5)] provides
an explicit example. The exponent ζ in Eq. (4) determines the
extensivity in time of the logarithm of the generating function.
The Fisher class is consistent with a standard definition of
the SCGF, in which log(G) is simply divided by t in Eq. (4)
(hence, ζ = 1). This extensivity in time reminds one of the
extensivity in size encountered when dealing with equilibrium
critical phenomena, so that the t → ∞ limit yields the analog
of a difference of equilibrium free energy densities, with time
playing the role of size [39,40]. Indeed, the whole discussion
of the consequences of anomalous scaling presented in the
case of diffusion in the Fisher class [33] can also be applied
to critical systems in equilibrium. Consider, for example, a
finite Ising model on a regular lattice box (in two or more
dimensions) with N spins at the critical temperature and in
zero magnetic field. The role of displacement is played by
the total magnetization, which, normalized by an appropriate
power of N (acting as time), becomes a continuous variable
analogous to our z in the N → ∞ limit. The probability distri-
bution of the total magnetization obeys a scaling with N of the
form in Eq. (1), and the scaling function is not known exactly,
but a behavior like in Eq. (3) has been conjectured [41,42].
As we show below, for the Richardson class, the method
foresees a nonstandard extensivity in time and the necessity
to divide the generator by a power t ζ , with ζ �= 1 depend-
ing on the diffusion exponent [33]. In spite of the different
extensivity involved, our derivation for Richardson processes
should also be regarded as a way of establishing a parallel
between equilibrium criticality and dynamics [33], according
to a general strategy on which much of our understanding of
nonequilibrium is based [43–45].

The approach of Ref. [33] was explicitly applied and
shown to predict exact results for the continuous time ran-
dom walk (CTRW) model and fractional drift diffusion
equations [4,35,46]. Both free and biased models exhibited
subdiffusion, while only in the biased case could superdiffu-
sion be encompassed. Moreover, all such applications implied
adoption of standard extensivity of the cumulant generator
[ζ = 1 in Eq. (15)], as appropriate for processes in the Fisher
class. It remains an open issue to test the validity of this
analysis for processes belonging to the Richardson class and
possibly displaying both sub- and superdiffusion regimes. The

present work is devoted to the exploration of a specific diffu-
sion model with both such features.

The process we consider in this work was introduced in
Ref. [38] to model a scenario of inhomogeneous diffusion, in
which the diffusion constant has an explicit dependence on
the position [47–50]. We show how this model can exhibit
anomalous scaling at all times, implying that Eq. (1) holds as
an equality. However, unlike in the case of the CTRW model, a
direct analytical evaluation of the SCGF is not feasible for this
process. We show how the method of Ref. [33] allows one to
circumvent this problem and to correctly estimate the leading
singular term of the SCGF, proven to abide by a nontrivial
Richardson-like extensivity. We highlight the existence of a
universal singularity for the SCGF, as in the case of CTRW
and fractional diffusion equations. Through large deviation
theory [43,44], we show how the PDF in the long-time limit
is modulated by a nonstandard singular rate function, related
to the extensivity t ζ of the SCGF [Eq. (4)]. Ultimately, nu-
merical evaluations of the integrals in the asymptotic regime
corroborate the correctness of the predictions of the method
first implemented in Ref. [33].

Following Ref. [38], we start from the Langevin equa-
tion for a particle moving on a one-dimensional axis,

dx

dt
=

√
2D(x)ξ (t ), (5)

where ξ is a δ-correlated white Gaussian noise 〈ξ (t )ξ (t ′)〉 =
δ(t − t ′), while the diffusion coefficient has a power-law spa-
tial dependence D(x) = D0|x|q for some D0 > 0 and any q <

2. Adopting the Stratonovich prescription, the corresponding
Fokker-Plank equation is

∂t p(x, t ) = ∂x{
√

D(x)∂x[
√

D(x)p(x, t )]}. (6)

Given an initial condition p(x, t = 0) = δ(x), the probability
density function regulating the process can be shown to be
[38]

p(x, t ) = |x|−q/2

√
4πD0t

e
− |x|2−q

(2−q)2D0t , (7)

yielding a mean squared displacement,

〈
x2(t )

〉 =
�

(
6−q

2(2−q)

)
π1/2

(2 − q)
4

2−q (D0t )
2

2−q , (8)

where �(·) is the complete Gamma function. It is therefore
clear how this model provides subdiffusion in the case q < 0
and superdiffusion for 0 < q < 2, with the following relation
connecting the spatial dependence of the diffusion constant
with the diffusion exponent ν:

ν = 1

2 − q
. (9)

The PDF of the process can be easily seen to abide by the
scaling form of Eq. (1), with

f (z) = |z| 1−2ν
2ν√

4πD0
e− ν2 |z|1/ν

D0 (10)

as the scaling function, where we remind the reader that
z = x/tν . We stress again that the scaling in Eq. (7) holds
exactly at all times, not only asymptotically as requested by

054118-2



UNIVERSAL SINGULARITIES OF ANOMALOUS … PHYSICAL REVIEW E 107, 054118 (2023)

Eq. (1). Another remarkable fact is that the behavior of the
scaling function in Eq. (3) holds on the whole z axis. It can be
shown that both of these circumstances are determined by the
particular initial condition chosen for the process [51]. Setting
p(x, 0) = δ(x − x0) with some nonzero x0 would lead to the
validity of the scaling form in Eqs. (7) and (10) only for large
t and large |z| [51,52].

For every 0 < ν < 1, the generating function of the mo-
ments can be found through the two-sided Laplace transform
G(λ, t ) = ∫ +∞

−∞ dx eλx p(x, t ) [53], which in terms of the
rescaled displacement z reads

G(λ, t ) = 1√
4πD0

∫ +∞

−∞
dz |z| 1−2ν

2ν eλztν− ν2 |z|1/ν

D0 . (11)

An exact evaluation of this integral for long t is not feasible,
so that application of the Laplace’s maximization method of
Ref. [33] for its estimate, besides being suggested by the form
of the tails, appears mandatory.

As time increases, the integrand in Eq. (11) concentrates
around some specific value z̄ that maximizes the argument
of the exponential. Separating the analysis for positive and
negative values of z, we find

z̄ = sgn(λ)

(
1

ν
D0|λ|tν

) ν
1−ν

, (12)

where sgn(·) represents the sign function, implying that z̄ and
λ have the same sign. Moreover, for long times, z̄ diverges to
+∞ and −∞ as a power of t for λ > 0 and λ < 0, respec-
tively. Substituting such value in the exponential form and
performing the Gaussian integration centered in z̄ allows one
to obtain asymptotically [33]

log G(λ, t ) = λtν z̄− ν2

D0
z̄1/ν+1

2
log

(
1

2(1 − ν)

)
+ O(z̄−1/ν ),

(13)

where a term proportional to log z̄ turns out to have a prefactor
equal to zero. The cancellation of this term ∝ log z̄ is due to
the fact that with reference to the notations adopted in Eq. (3),
the exponents characterizing the tails of f (z) satisfy ψ = (δ −
1)/2, which is also valid for the cases of anomalous diffusion
studied in Ref. [33].

Taking into account Eq. (12), we can eventually write

log G(λ, t ) = (1 − ν)

(
D0

ν
t |λ|1/ν

) ν
1−ν

+ 1

2
log

(
1

2(1 − ν)

)
+ O(t− ν

1−ν ), (14)

implying an extensivity appropriate for the Richardson class
[37] with ζ = ν/(1 − ν). Consequently, a SCGF can be de-
fined as

ε(λ) = lim
t→∞

log G(λ, t )

t
ν

1−ν

= (1 − ν)

(
D0

ν

) ν
1−ν

|λ| 1
1−ν , (15)

which exhibits a power-law singularity of the order of
1/(1 − ν) around λ = 0, as shown above [Fig. 1(a)], implying
a divergence of the nth derivative as soon as n exceeds

FIG. 1. Examples of (a) SCGFs ε(λ) and (b) rate functions I (w)
for different regimes of anomalous diffusion: subdiffusion (dotted
blue shades), superdiffusion (dashed green shades), and normal dif-
fusion (solid red). Both exhibit the expected power-law singularity
predicted in Eqs. (15) and (17) for λ = 0 and w = 0, respectively.

1/(1 − ν). In the case ν = 1/2, the SCGF of the free Brow-
nian diffusion is recovered, finding also consistency with the
SCGF of a free Markovian (memoryless) CTRW [54,55].

Equation (14) includes a constant term C(ν) =
− 1

2 log[2(1 − ν)] independent of time, which is negative
for subdiffusion, positive for superdiffusion, and zero for
normal diffusion. In the context of equilibrium critical
phenomena, estimates of this type of term were obtained
in [41] by applying a Laplace maximization method to an
integral that is analogous to the one we used for Eq. (11).
This integral was expected to express, for an N-spin Ising
model at the critical temperature and zero magnetic field,
the so-called Privman-Fisher anomaly [56,57], i.e., the
N-independent term of the total free energy of interest in the
context of finite-size scaling theory [39]. The analogy of the
calculation follows from the fact that, as mentioned above,
the large argument behavior of the scaling function of the
total magnetization with size was postulated to have the same
form derived in Ref. [33] for the displacement and given
in Eq. (3). The role of λ in Eq. (2) was played there by an
auxiliary nonzero magnetic field. In our context, time takes
the place of size, but it appears remarkable that the constant
term C(ν) is nonzero only in the case where anomalous
scaling holds (ν �= 1/2) and its sign marks a distinction
between super- and subdiffusion. The parallel of the approach
of Ref. [33] with studies of anomalous scaling in equilibrium
critical phenomena certainly acquires motivation for deeper
investigation in light of the presence of this analog of the
Privman-Fisher term.

Integration of our results within the framework of large
deviation theory [43,44] shows how the singularity of the
SCGF translates into a singularity of the rate function I (w)
modulating the probability of observing fluctuations of the
rescaled position w = x/t

ν
1−ν [33]. In the case of normal dif-

fusion (ν = 1/2), w has the meaning of a velocity, while for
ν < 1/2 and ν > 1/2, it can be interpreted as a sub- and
supervelocity, respectively. For simplicity, we will refer to w

as an “anomalous velocity” in this manuscript. The proba-
bility of observing a certain deviation from the typical value
w = 0—expected given the absence of any form of drift in
the model—in the long-time limit follows a large deviation
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FIG. 2. (a) Numerical evaluation of the cumulant generating
function log G(λ = 1, t ) for different values of ν (including sub-,
normal, and superdiffusion). Plotting against the rescaled time t

ν
1−ν

shows an excellent collapse already at times t > 1. (b) Numerical
evaluation of the SCGF through the normalized cumulant generating
function t− ν

1−ν log G(λ, t ) at t = 10, hinting at the presence of a
Richardson kind of scaling for the cumulants. An excellent collapse
for six decades hints that the SCGF ε(λ) ∼ |λ|1/(1−ν ), implying a
power-law singularity of such order around λ = 0.

principle,

p
(
x/t

ν
1−ν = w, t

) ∼ e−t
ν

1−ν I (w). (16)

The convexity and differentiability of the SCGF [Eq. (15)]
ensures the validity of the Gärtner-Ellis theorem [58,59],
which allows one to express the rate function as the Legendre-
Fenchel transform of ε [60,61],

I (w) = sup
λ∈R

[wλ − ε(λ)] = ν2|w|1/ν

D0
. (17)

Thus, the anomalous scaling induces a singular behavior in the
rate function [Fig. 1(b)], as already observed for processes in
the Fisher class [33]. It is worthwhile to stress here that the
above result showing the consequences of anomalous scal-
ing of the displacement distribution on the rate function is
not related to what is referred to, in the recent literature, as
“anomalous scaling of dynamical large deviations” [62–64].
Indeed, by this last expression, the authors refer to situations
in which the exponential decay of the PDF in Eq. (16) occurs
with a power of time different from the one needed to obtain
the normalized observable w.

Finally, let us validate all the above results with numerical
calculations. Contrary to the CTRW and fractional drift dif-
fusion examples presented in Ref. [33], this inhomogeneous
diffusion model does not allow for an exact evaluation of the
cumulant generating function log G. The integral defining the
generating function in Eq. (11) cannot be expressed in terms
of explicit functions for any arbitrary value of the diffusion
exponent 0 < ν < 1. Therefore, we need to proceed with a
numerical estimation of such integral and extrapolate from
the results its asymptotic dependence on time to verify that
the extensivity of the cumulant generating function is the one
predicted for the Richardson class. In Fig. 2(a), we report
the numerical evaluation of log G(λ = 1, t ) as a function of
time, for different diffusion exponents ranging from ν = 0.3
(subdiffusion) to ν = 0.7 (superdiffusion), including the case
of normal diffusion ν = 1/2. Plotting G(λ, t ) against tν/(1−ν)

in log-log scale shows an excellent collapse on the bisector

FIG. 3. (a) Constant term C(ν ) = − 1
2 log[2(1 − ν )] appearing

in log G as a result of the Laplace approximation [Eq. (14)]. The
constant is negative for subdiffusion (ν < 1/2) and positive for su-
perdiffusion (ν > 1/2), while it is zero only for normal diffusion
(ν = 1/2), in agreement with the fact that in the last case, the scal-
ing function f is Gaussian shaped and the Laplace approximation
becomes exact. (b) Numerical integration of Eq. (11) shows a linear
dependence of log G(λ, t ) for large values of (λt ν )

1
1−ν (inset). Exam-

ples for sub- (blue down-pointing triangles), normal (red circles), and
super- (green up-pointing triangles) diffusion are provided. A linear
fitting of the asymptotic part returns an intercept that very accurately
matches the constant C(ν ), showing that our Laplace approximation
is able to exactly capture an analog of the Privman-Fisher term.

line already for t ∼ 1, quickly consolidating as time increases.
This corroborates the validity of the approach in estimating
an extensivity of the Richardson class through the Laplace
method [Eq. (14)].

This result hints that for large enough times, one should
be able to normalize the cumulant generating function over
tν/(1−ν) and obtain a finite SCGF for all values of λ [Eq. (15)].
We do so by evaluating numerically log G(λ, t ) at t = 10
as a function of the Laplace variable λ, again for different
values of ν encompassing sub-, normal, and superdiffusion.
Normalizing such integral over tν/(1−ν) as suggested by the
previous analysis, we obtain an estimation of the SCGF, which
is formally reached only in the t → ∞ limit. Plotting in
log-log scale against λ1/(1−ν) [Fig. 2(b)], we find a perfect
collapse on the bisector line for all values of λ, simultaneously
corroborating the full shape of the SCGF predicted in Eq. (15)
and the existence of power-law singularities in the origin as
those reported in Fig. 1.

It is of particular interest to also check the consistency
of our Laplace estimate of the analog of the Privman-Fisher
term C(ν) in Eq. (14) with the numerical evaluation of G.
In Fig. 3(b), we plot the result of numerical integrations
of the generating function of the cumulants [logarithm of
Eq. (11)] against (λtν )

1
1−ν for values of ν providing different

diffusive regimes. A linear slope is expected for large val-
ues of the ordinate (shown in the inset), as predicted by the
leading order term produced by the Laplace approximation
[Eq. (14)]. Remarkably, the intercept obtained by fitting such
slope matches very accurately the constant term C(ν) obtained
in the approximation, suggesting that our method not only
allows one to correctly capture the leading order singularities
of the SCGF, but also yields an exact estimate of an analog of
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the Privman-Fisher anomaly [56,57]. We also note how, con-
sistent with these results, in Fig. 2(a) we are able to appreciate
how log G for short times approaches the bisector line from
below (negative constant) for subdiffusive motions and from
above (positive constant) for superdiffusive motions, while in
the case of normal diffusion (zero constant), the collapse holds
at any time.

Summarizing, we showed that the method of Ref. [33] ap-
plies to a diffusion process in the Richardson class, correctly
predicting the nonstandard extensivity in time of the cumu-
lants generator log G(λ, t ) and the singularity of the scaled
cumulant generating function ε(λ) in the Laplace variable λ.
The model that is considered is remarkable in several respects.
In the first place, it satisfies scaling for all t and presents the
form in Eq. (1) of the scaling function on the whole z axis. The
fact that these properties become only asymptotic for initial
conditions different from p(x, 0) = δ(x) provides a concrete
example of the way universality mechanisms operate in the
approach. Indeed, the results of Ref. [51] allow one to eas-
ily verify that adoption of p(x, 0) = δ(x − x0) leaves scaling
valid for t → ∞ with the same form of scaling function at
large |z|. Thus, the leading singular behavior does not change

for these modified initial conditions [33]. Another remarkable
feature of the model is the simple ν-dependent form of the
analog of the Privman-Fisher term, which distinguishes with
its sign between sub- and superdiffusion. Once verified that
the approach of Ref. [33] works successfully for processes
in both the Fisher and the Richardson classes, it is legitimate
to ask if, in view of its flexibility, the range of applications
could also encompass diffusions outside of these classes. The
formalism leading to equations such as Eq. (13) in fact leaves
room for different relations linking ν and δ, only at the cost
of adjusting the extensivity in time of log G. The exploration
of such possibilities, or a deeper understanding of the reason
why Fisher and Richardson relations play a special role, is left
for future investigations.
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