
PHYSICAL REVIEW E 107, 054117 (2023)

Evidence of T-type structures of hard square boards in capillary confinement
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We employ Onsager’s second virial density functional theory combined with the Parsons-Lee the-
ory within the restricted orientation (Zwanzig) approximation to examine the phase structure of hard
square boards of dimensions (L × D × D) uniaxially confined in narrow slabs. Depending on the wall-
to-wall separation (H), we predict a number of distinctly different capillary nematic phases, including
a monolayer uniaxial or biaxial planar nematic, homeotropic with a variable number of layers, and a
T-type structure. We determine that the favored phase is homotropic, and we observe first-order tran-
sitions from the homeotropic structure with n layers to n + 1 layers as well as from homeotropic
surface anchoring to a monolayer planar or T-type structure involving both planar and homeotropic an-
choring at the pore surface. By increasing the packing fraction, we further demonstrate a reentrant
homeotropic-planar-homeotropic phase sequence in a particular range (i.e., H

D = 1.1 and 0.25 � L
D < 0.26).

We find that the T-type structure is more stable when the pore is wide enough with respect to the planar phase. The
enhanced stability of the mixed-anchoring T-structure is unique for square boards and becomes manifest at pore
width exceeding L + D. More specifically, the biaxial T-type structure emerges directly from the homeotropic
state without intervention of a planar layer structure as observed for other convex particle shapes.
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I. INTRODUCTION

Particle geometrical anisotropy shape is known to be
a critical parameter in the formation of liquid crystalline
phases such as smectic, nematic, and columnar phases [1].
Thanks to their significance in the construction of transis-
tors and biosensors, and the development of novel materials
with new physical characteristics, anisotropic molecules have
been modeled with simple geometrical shapes such as disks,
cylinders, spherocylinders, lenses, rings, and ellipsoids. Their
phase behavior has been widely studied using simulation as
well as theoretical approaches [2–4].

Hard disk-shape particles are an interesting case in point.
With a rise in packing fraction, thin disks display nematic,
isotropic, and columnar liquid crystalline phases, whereas
thicker disklike particles may form a cubatic rather than a ne-
matic phase [2,5–7]. New phases such as hexatic and smectic
B can also be stabilized through shape biaxiality, polydisper-
sity, gravity, and surface charges [8–11].

Clearly, being able to control the alignment of oblate par-
ticles is crucial in applications that involve disklike liquid
crystalline moieties, such as optical devices and photovoltaics
[12]. In experiments, the number density and temperature of
the particles are common parameters for particle alignment
control [13]. These parameters can be regulated by setting the
temperature and the strength of extrinsic interactions (wall-
particle). According to Pineiro et al., tuning a hard wall
into an adsorbent wall helps switch discotic particles’ surface
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ordering from homeotropic (where the nematic director is
perpendicular to the walls, or the disk diameters are parallel to
the walls) to planar (where the nematic director is parallel to
the walls, or the disk diameters are perpendicular to the walls)
[14]. Whereas hard walls facilitate capillary nematization,
adsorbing walls tend to postpone the formation of nematic
structures [15]. Disk-shaped molecules can be modeled as im-
penetrable objects [14,16,17] or as a soft repulsive body [18]
in terms of Gay-Berne-type oblate ellipsoids [19]. In most
studies, density was the only control parameter, but the impact
of density on the surface ordering was found to be marginal. In
this paper, we show that increasing the overall particle density
can have a serious impact on capillary structures formed by
the disks.

Disk-shaped particles in strong planar confinement ex-
hibit fascinating phases, including planar (P) and homeotropic
(H) structures, as well as interesting characteristics such as
homeotropic anchoring with complete wetting, or a capillary-
induced isotropic-nematic transition that terminates at a pore
width on the order of ∼4D, where D denotes the disk diameter
[14,17,20]. On the other hand, stiff ring polymers exhibit
planar ordering as their preferred anchoring in the vicinity
of a wall, which could be the result of the rings’ penetra-
ble nature [15,21]. Schoen and co-workers have examined
the impacts of various extrinsic interactions on the stratifica-
tion (layering structures) of confined particles with different
molecular fluids using simulation [22,23]. They confirmed
that stratification is not sensitive to the particle-wall interac-
tion; for instance, hard spheres that were confined between
hard walls [23] or soft Lennard-Jones particles that were
constrained between molecularly structured and unstructured
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walls [23,24] all developed layering structures. Furthermore,
Khadilkar and Escobedo observed layered structures of hard
cubes in very narrow slitlike pores at intermediate densi-
ties [25]. Schoen et al. predicted that for structureless walls
the formation of successive layers upon increasing particle
crowding happens gradually without the occurrence of a phase
transition [26,27]. Recent work by some of us demonstrated
the existence of a first-order nematic layering transition for
confined hard parallelepipeds and hard disks with a square
cross-section between two structureless hard walls [28–30]
where the structures of highly confined rods and disks are
examined. Furthermore, nematic layering transitions were ob-
served in narrow enough pores where the structure evolves
from a nematic structure with n layers to a nematic structure
with n + 1 layers.

In the current study, using the Parsons-Lee (PL) theory
within the Zwanzig approximation or the restricted orientation
model (ROM), we study the homeotropic layering transition
from n to n + 1 layers, the transition from homeotropic struc-
ture with n + 1 layers to the planar structure with one layer,
and the formation of a T-type structure (a combined structure
with a planar and a homeotropic layer) of hard board-shaped
particles with a square cross-section confined in very nar-
row pores. Based on previous studies, the ROM describes
the fundamental physics of systems and qualitatively repro-
duces the findings of much more challenging models based on
continuous particle orientations. The studies of Refs. [31,32]
confirmed the qualitative validity of many Zwanzig model
predictions of the phase behavior for numerous colloidal par-
ticles. In addition, Rickayzen [33] noted that the ROM does
not seriously affect the results of confined hard rods. Still, the
ROM may lead to quantitative deviations from continuous ori-
entation models. Also, employing density functional methods
based on the ROM may overestimate phase-transition densi-
ties, indicating the presence of an artificial aligned isotropic
or nematic phase [34]. This problem can be overcome by
adopting a theory to analyze the system in a freely rotating
state. To prevent the creation of complex structures and the
relaxation to the bulk properties in the pore center, we select
the pore width such that the plates can establish homeotropic
alignments with several layers, while only a single layer can
form in the pore in the planar alignment. The exception is
when we examine the formation of the T phase, in which
case the pore can be wider to spontaneously form a planar
and a homeotropic layer. The PL theory cannot consider solid
phases; therefore, we did not examine the possible crystalline
in-plane and out-of-plane phases. As a result, the confined
fluid may freeze first and then transform into a new structure.
This phenomenon is even more probable when the packing
fraction of the particles is greater than 0.75, a case that is
discussed in detail in the Conclusion.

II. THEORY

We study the orientational ordering of the hard square
plates with a length of the short side L and a cross-section
with edge length D constrained between two parallel hard
structureless walls normal to the z-axis with wall-to-wall
separation H (i.e., the walls are at z = 0 and z = H). All
the interactions in the system are strictly hard; therefore,

the molecules are not allowed to penetrate each other, and
the system walls are athermal and all structures are purely
entropy-driven. To determine the examined structures of the
confined hard disks at elevated particle packing fractions,
we applied Parsons-Lee theory [35,36] for strongly confined
system with pore distance L < H � (L + D). Although PL
theory is approximate, it accurately reproduces simulation
results reported for bounded liquid crystalline particles in
the quasi-one-dimensional (Q1D) limit [37,38]. We apply a
three-state Zwanzig approximation [39], in which the main
symmetry axes of the molecules are restricted to align along
the three Cartesian directions (x, y, and z) equivalent to a
ternary mixture of hard rods with no rotational degrees of
freedom.

The external potential is a function of z alone, and we
do not consider possible in-plane positional order. Then, the
local density components (ρi, i = x, y, and z) depend only
on the distance z from the walls. To determine the density
components in inhomogeneous fluids, we define the PL grand-
canonical free energy �[ρ] as follows:

β�[ρ]

A
=

∑
i=x,y,z

[ ∫
dzρi(z)

(
βV i

ext (z) − βμ
)

+
∫

dzρi(z)(ln ρi(z) − 1)

]

+ 1

2
c

∑
i, j=x,y,z

∫
dz1ρi(z1)

∫
dz2Ai j

exc(z1 − z2)

× ρ j (z2), (1)

where βV i
ext denotes the external potential for a disk with ori-

entation i, and μ represents the chemical potential. Moreover,
β = 1/(kBT ) and c = (1−3η/4)/(1−η)2 is the PL prefactor,
whereas Ai j

exc denotes the excluded area in the x − y plane
between two disks with orientations i and j. The excluded
areas between two disks for all possible combinations of ori-
entations in Eq. (1) in the Zwanzig model can be found in
Ref. [40].

The surface-disk interactions are different for particles
aligning parallel (x and y orientations) and perpendicular (z
orientation) to the walls,

βV x
ext (z) = βV y

ext (z) =
{

0, D/2 � z � H − D/2,

∞ otherwise
(2)

and

βV z
ext (z) =

{
0, L/2 � z � H − L/2,

∞ otherwise.
(3)

The packing fraction (η) in the PL prefactor can be ob-
tained from the density components through the following
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equation:

η = v0

V

∑
i=x,y,z

∫
d�rρi(�r) = v0

H

(∫ H−D/2

D/2
ρx(z)dz +

∫ H−D/2

D/2
ρy(z)dz +

∫ H−L/2

L/2
ρz(z)dz

)
, (4)

where v0 = LD2 is the volume of a disk, and V = AH indicates the volume of the pore. Moreover, A is the area of the confining
walls.

To determine the equilibrium local densities, the free energy of Eq. (1) must be minimized with respect to all the density
components. Functional differentiation of the free energy leads to the following equation:

ln ρk (z) − βμ + βV k
ext (z) + 1

2

dc

dη

δη

δρk (z)

∑
i, j=x,y,z

∫
dz1ρi(z1)

∫
dz2Ai j

exc(z1 − z2)ρ j (z2) + (1 − 3η/4)

(1 − η)2

×
∑

i=x,y,z

∫
dz1Aik

exc(z − z1)ρi(z1) = 0, (5)

where k = x, y, z, dc/dη = (5−3η)/4(1−η)3, and δη/δρk (z) = v0/H . The local density components can be rearranged into

ρk (z) = exp

⎡
⎣βμ − v0(5 − 3η)

8H (1 − η)3

∑
i, j=x,y,z

∫
dz1ρi(z1)

∫
dz2Ai j

exc(z1 − z2)ρ j (z2)

⎤
⎦

× exp

⎡
⎣−

(
1 − 3η

4

)
(1 − η)2

∑
i=x,y,z

∫
dz1Aik

exc(z − z1)ρi(z1) − βV k
ext (z)

⎤
⎦, k = x, y, z. (6)

Equation (6) has to be solved numerically using iterative methods at the given values of L/D, H/D, and βμ. Since we prefer to
work at a fixed packing fraction instead of chemical potential, the local density equations are defined in terms of η by substituting
Eq. (6) into Eq. (4), extracting exp[βμ], replacing it in Eq. (6), and finally inserting it into Eq. (4):

ρk (z) =
Hη exp

[
−βV k

ext (z) − (1− 3η

4 )
(1−η)2

∑
i=x,y,z

∫
dz1Aik

exc(z − z1)ρi(z1)
]

v0
∑

q=x,y,z

∫
dz1 exp

[
−βV q

ext (z1) − (1− 3η

4 )
(1−η)2

∑
i=x,y,z

∫
dz2Aiq

exc(z1 − z2)ρi(z2)
] , k = x, y, x. (7)

Equation (7) can be solved numerically for given val-
ues of L/D, η, and H/D by discretizing the z-interval on
equidistant grid points (�z = H

n , zi = i�z, i = 0, ..., n) and
using Picard’s iteration methods based on a linear combina-
tion rule that mixes the results of successive iterations. We
apply the criterion 1

n+1

∑n
i=0

∑
k=x,y,z |ρq+1

k (zi ) − ρ
q
k (zi)| <

10−10 to ensure convergence of the iteration after the qth itera-
tion step. A discussion about the reliability of the convergence
of successive iteration methods and discretization applied
for the Euler-Lagrange integral equations can be found in
Ref. [41].

A grid size of �z = 0.005 is used whenever phase separa-
tion is expected to be strong. Smaller step sizes used ( = 0.001
or 0.0001) in case the coexisting densities are very close. In
the iterative numerical procedure, selecting a suitable initial
value is important to guarantee reliable solutions for each
phase. For example, ρx = ρy = 0 and ρz > 0 are chosen for
the H structure. For the planar phase, ρx > ρy > 0 and ρz = 0
are selected. Although there is no difference between the x
and y orientations, local trial densities are chosen so that they
can result in ρx � ρy to capture the biaxial structure in the
system (ρx �= ρy). To allow for T-type structures, we start
from the planar configuration at one wall and the homeotropic
configuration at another wall. To calculate the integrals, the
trapezoidal quadrature method is used. It is possible to find
more than one phase at a certain packing fraction; however,

the stable phase in the system is the one with the lowest free
energy. For determining the coexistence region of a first-order
phase transition, we should cross two different solutions of
the free-energy equation in the plane βμ− βF

A , then find the
corresponding packing fractions. Furthermore, at a certain
packing fraction, the stable phase is the one with the lowest
free energy.

In the next section, we will show the obtained phase di-
agrams and density profiles for a number of different pore
widths. All results are presented in dimensionless units, where
D is the unit of distance, i.e., ρ∗ = ρD3 and z∗ = z/D.

III. RESULTS AND DISCUSSION

We examine the nematic structures of hard square disks
confined between two structureless parallel hard walls in
which the wall-to-wall separation is constant, while L/D is
variable. The following cases will be studied specifically:

(i) H < D: Here, we examine the structures of H
D = 0.95,

where the planar (P) and T structures are not formed due
to strong confinement; the prevalent ones are H structures
with different numbers of layers.

(ii) D < H < D + L and L > H/2: We examine the phase
structures of H

D = 1.2 and L
D > 0.6, where only a

homeotropic or a planar layer is formed.
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FIG. 1. Schematic representation of studied phase structures: (a) a homeotropic system with two layers denoted 2HL, (b) a single planar
layer (1PL), and (c) the T-type structure.

(iii) D < H < D + L and L < H/2: We investigate the
phase structures of H

D = 1.1 and L
D < 0.55, where both

a planar layer and a homeotropic state with n + 1 lay-
ers (at maximum) are possibly stable. Thus, contrary
to case (ii), in this case the competing structures are
(n)H − (n + 1)H and (n + 1)H − 1P.

(iv) H > D + L: We study the phase structures of H
D = 1.4,

where a planar layer, homeotropic with (n + 1) layers,
and T phase can form in the pore. In this case, all phases
are competing for stability.

Figure 1 schematically depicts the structures considered
in our study. All the structures are entropy-driven only to
maximize the particle translational entropy and the available
space. As such, the packing entropy term of the free energy
Eq. (1) prefers to form phase structures with a lower excluded
volume when the overall packing fraction exceeds a certain
critical value.

We may compute maximum allowed packing fraction η for
each examined structure to estimate its mechanical stability.
Recalling the definition of the packing fraction (η = Nv0

V ), for
example, if the phase consists of n + 1 layers in H order, the
packing fraction can be factorized into two-dimensional (2D)
and one-dimensional (1D) packing fractions as follows: η =
η2Dη1D, where η2D = ND2

(n+1)A and η1D = (n+1)L
H , and we will

find ηH = ND2

(n+1)A
(n+1)L

H , where ηH is the packing fraction of H
state and n + 1 denotes the maximum number of H layers that
can be accommodated in the pore. To calculate the maximum
packing fraction for this phase, the wall surface (i.e., A) should
be completely covered with the particle side that is parallel to
the walls. As squares arranged in a square lattice can perfectly
cover a 2D surface (i.e., A), then (η2D)max = 1, consequently,
the close packing fraction value is (ηH )max = (n+1)L

H . Simi-

larly, one can obtain ηP = NLD
A

D
H and ηT = ND2

A
L
H + NLD

A
D
H

for P and T phases, and their close packing fractions are
(ηP )max = D

H and (ηT )max = L
H + D

H , respectively. A compar-
ison of these close packing values allows us to qualitatively
discuss the stability of these phases. For instance, because
(n+1)L

H < D
H , the stable phase is planar at high densities where

only a homeotropic and a planar layer can form. However,
when the pores are wide enough to accommodate the T-type
phase, we find that this phase preempts the planar phase at
high packing fraction. We demonstrate the consistency of the
qualitative predictions by comparing against numerical results
based on the free energy [Eq. (1)].

A. H < D

We now examine the phase structures that emerge when the
wall separation is smaller than D yet larger than 2L (i.e., 2L <

H < 1D); in these cases, the disks can only accommodate H
structures with a maximum of n + 1 layers and a minimum
of two layers due to the strong particle-wall adsorption. The
disks’ preferred anchoring is H with strong adsorption at the
walls because this type of ordering reduces the excluded area
next to the walls. The adsorbed layers at the walls are uniaxial;
as such, a tetratic structure and solid phases can form in
these layers if their densities exceed the transition densities
of two-dimensional (2D) hard squares [42–44]. For instance,
for 0.316 < L

D < 0.475 at the pore width of H
D = 0.95, the

sole nematic structure that can exist is a homeotropic structure
with two layers (2HL) that can undergo in-plane structures
such as tetratic or solid phases by raising the packing fraction
(which we do not discuss here). Results obtained from the
phase equilibrium conditions and the transition densities of
the coexisting phases are depicted in Fig. 2 for H

D = 0.95 and
aspect ratios of L

D < 0.316, in which a pore nHL − (n + 1)HL
transition can occur.

As the aspect ratio drops, the maximum number of
homeotropic layers that can form in the pore increases. To
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FIG. 2. Phase diagrams of H
D = 0.95 for homeotropic structures with different numbers of layers: (a) L

D < 0.316 featuring a 2HL-3HL
transition; (b) L

D < 0.237 with 3HL-4HL; (c) L
D < 0.19 with 4HL-5HL; (d) 0.132 � L

D � 0.154 with a first-order transition, i.e., 5HL-6HL;
(e) density profiles related to filled circle symbol in panel (a), i.e., ( L

D , η) = (0.29, 0.45), where the phase is homeotropic with two thick
adsorbed layers at the walls; and (f) density profiles related to the filled star symbol in panel (a), i.e., ( L

D , η) = (0.29, 0.55), where the phase is
homeotropic with three sharp layers. The black dashed lines in (a), (b), (c), and (d) show the close packing fractions of 2HL, 3HL, 4HL, and
5HL phases, respectively.

form a maximum of three homeotropic layers in the pore,
the aspect ratio must be less than ∼0.316; thus, the first-
order transition from the H structure with two layers to the
H one with three layers (2HL-3HL) is displayed in Fig. 2(a),
colored purple. Based on Fig. 2(a), there is a first-order tran-
sition between 2HL and 3HL for 0.26 < L

D < 0.316 because
the formation of a new H layer coincides with pushing the
existing layers to the direction of the walls, and thus less
space for old layers. This transition terminates at a criti-

cal ( L
D )c ≈ 0.26. For L

D < ( L
D )c, the structure continuously

varies from 2HL to 3HL because the particles can be ac-
commodated into the pore more easily with three layers.
The black dashed line in Fig. 2(a) displays the maximum
packing fraction of the 2HL phase. Evidently, the 3HL state
is stabilized before the packing fraction reaches this line;
this means that 3HL is a highly stable phase. The maximum
packing fraction of 3HL [i.e., (ηH)max = 3L

0.95 > 0.75] falls
out of the given range. To steer clear of in-plane crystal-
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lization, we depict some phase diagrams corresponding to
packing fractions below ∼0.75 . In general, any system at
a packing fraction above 40–50 % has a tendency to dis-
play in-plane crystallization; however, in experimental studies
there is a particle size dispersity that usually strongly sup-
presses the formation of crystal phases [45,46]. Figures 2(e)
and 2(f), respectively, show the density profiles of the two
packing fractions at ( L

D , η) = (0.29, 0.45) and (0.29, 0.55),
which can be identified by different symbols in Fig. 2(a).
Based on Figs. 2(b), 2(c), and 2(d), there are similar ne-
matic homeotropic first-order layering transitions for thinner
disks, colored cyan, green, and yellow green, respectively,
in which the maximum number of layers rises by decreas-
ing L/D . In all these transitions, there is a critical aspect
ratio where the first-order phase transition terminates. Some
critical points take place in the range where one can expect
to observe nHL-(n + 1)HL and (n + 1)HL-(n + 2)HL spon-
taneously. There is a range of L/D i.e., 0.150 � L

D � 0.154,

where a sequence of homeotropic layering transition occurs
where 4HL-5HL and 5HL-6HL first-order transitions take
place by increasing the packing fraction. The dashed lines in
Figs. 2(b), 2(c), and 2(d) denote the close packing fractions
of 3HL, 4HL, and 5HL, in that order. A competition between
nHL and (n + 1)HL may arise when the opposite walls induce
oscillatory layered structures interfering with each other. As
for homeotropic with n layers (nHL), the translational entropy
has an important contribution, while the packing entropy plays
a minor role given that the layers are rather wide. On the other
hand, for the (n + 1)HL structure, excluded volume correla-
tions are very strong and the density profile within the layers
is quite sharp.

B. D < H < L + D and L > H/2

In this section, we examine disks with L
D > 0.6, where

1 < H/D < L/D + 1, in which only one H or one P layer
can form; hence, the local densities do not depend on z.
Here, we can consider three structures: 1HL, 1PL (the disks
in the planar state have ρx = ρy, i.e., the phase is uniaxial),
and 1BPL (the disks with a planar orientation have ρx > ρy,
i.e., the phase is biaxial). The mole fraction curves (Xi =∫

dz ρi (z)∑
j=x,y,z

∫
dz ρ j (z) , i = x, y, and z) are plotted versus the pack-

ing fraction in Figs. 3(a), 3(b), and 3(c), respectively, for
L
D = 0.6, 0.7, and 0.8. At lower densities, the number of par-
ticles in the H state is greater than the number of particles in
planar ordering since the available room along the z direction
is larger in the H state and the particles are easily adsorbed
by the wall in the H phase. By increasing L

D , the value of
Xz declines, yet the values of Xx = Xy increase. There is a
special intermediate packing fraction where the number of the
particles in the planar state overtakes to minimize the excluded
area between the plates. This happens at higher η for larger L

D .
Figures 3(a), 3(b), and 3(c) demonstrate that the biaxiality of
the planar phases (Xx �= Xy) occurs at higher packing fractions
by raising the aspect ratio of the particles. The stability re-
gions of 1HL, 1PL, and 1BPL can be observed in Fig. 3(d)
in the η−L/D plane for H

D = 1.2. The black dashed solid
line denotes a border where the fraction of particles in the
H structure decreases compared to the particles in the P state

(i.e., Xz < 0.5) by increasing the packing fraction since the
particles have more room in the P state. As an example, as-
sume that we have shown point Xz = 0.5 by vertical and hor-
izontal arrows in Fig. 3(a). Since mole fractions and thermo-
dynamic quantities are continuously changing with packing
fraction, this border does not show a real phase transition. 1HL
destabilizes with respect to 1PL by raising the thickness of the
rods since the contribution of the excluded volume entropy
is increasing and the particles have more free volume (lower
excluded area) in the 1PL order and, especially for L

D � 0.8,
the stable phase is 1PL even at very low packing frac-
tions. The solid red line indicates the second-order uniaxial
planar-biaxial planar phase transition that happens at higher
densities when L

D → 1 since the shape anisotropy of the disks
is decreasing.

The 1HL-1PL takes place in the normal fluid density
regime, while the 1PL-1BPL transition occurs at η > 0.75, in
which it is probably preempted by solidification. The black
dashed line shows the close packing fraction of 1HL; evi-
dently, η1HL−1PL does not exceed this line. The black dotted
line indicates the maximum packing fraction of 1PL. The
1PL-1BPL exceeds this line for L/D � 0.7, which means that
this structure is highly unstable for them. The density profiles
of L

D = 0.65 are depicted in Figs. 3(e) and 3(f) at two packing
fractions, i.e., η = 0.1, where the favored structure is 1HL and
η = 0.7 in which the phase is 1PL. These points are denoted
by different symbols in Fig. 3(d).

C. D < H < D + L and L < H/2

To study more complex structures, we investigate the case
H
D = 1.1 with L

D < 0.55, where n + 1 homeotropic layers and
one planar layer can form in the pore. One can expect n −
(n + 1) homeotropic layering transitions, and (n + 1)HL-1PL
and 1PL-1BPL transitions. In Fig. 4(a), the phase structure of
0.32 � L

D < 0.55 is determined using the phase equilibrium
conditions. For 0.37 � L

D � 0.55, only 2HL and 1PL can
form in the pore; therefore, we examine the phase transition
between these two structures.

According to Fig. 4(a), there is an island where a first-order
phase transition takes place from 2HL to 1PL (green region)
for 0.314 � L

D � 0.44. There are two critical points at L
D ≈

0.44 and L
D ≈ 0.314 for this transition.

The blue solid line demonstrates the uniaxial-biaxial tran-
sition of the planar structure that occurs at higher densities
at increasing aspect ratio (or a reduction in shape anisotropy)
since in-plane ordering reduces the amount of volume exclu-
sion. It is, however, more difficult to rationalize 2HL phase
stabilization with respect to 1PL for thicker particles since
the translational entropy is now larger in the planar order.
The 2HL-1PL transition takes place below the blue line and
the close packing densities of 2HL (black dashed line), ex-
hibiting the high stability of the 1PL structure. The green
horizontal dashed-dotted line shows the close packing den-
sities of 1PL (or 1BPL). For more anisotropic hard plates
[Fig. 4(b)], 0.22 � L

D < 0.32, there are two phase regions,
i.e., 0.22 � L

D � 0.25 and 0.25 < L
D < 0.32. In 0.22 � L

D �
0.25 the 3HL-4HL (cyan region) and 4HL-1BPL (pink re-
gion) first-order phase transitions take place by increasing
the packing fraction, both of which terminate at a critical
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FIG. 3. Phase structures of H
D = 1.2 and 0.6 � L

D < 1, where only one H or one P fluid layer is allowed to form (a) the mole fraction
components of L

D = 0.6; (b) the mole fraction components of L
D = 0.7; (c) the mole fraction components of L

D = 0.8; (d) borders of the
observed phases in the η−L/D plane (the following phases are observed: 1HL, 1PL, and 1BPL); (e) the density profiles of L

D = 0.65 at
η = 0.1, where its related point has been shown by a filled square in panel (d); and (f) the density profiles of L

D = 0.65 at η = 0.7, where its
related point has been shown by a filled triangle in panel (d).

aspect ratio L
D ≈ 0.22. The phase sequence is different for

0.25 < L
D < 0.32, i.e., the first-order phase transition 3HL-

1BPL (red region) occurs first, and then 1BPL-4HL (yellow
green region) by increasing the packing fraction. Based on
Fig. 4(b), the transition from n HL to the planar structure
takes place at higher densities for thicker hard plates. Ac-
cording to the close packing argument, if 0.275 � L

D < 0.32,

the plates should be in a planar order at very high densities.
Note that only 3HL and 1BPL can form in the pore for these

particles. This transition develops even for smaller aspect
ratios, i.e., 0.25 � L

D � 0.275, where 4HL can also form in
the pore. There is a critical (L/D)c ≈ 0.31 in which first-order
3HL-1BPL terminates. This transition happens below the
close packing densities of 3HL (black dashed line). The high-
density stable phase is 4HL for 0.25 � L

D < 0.275 because
ηmax(4HL) > ηmax(1BPL). These close packing fractions are
denoted by a dotted black line and horizontal dashed-dotted
line, respectively. Thus, an additional first-order transition
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FIG. 4. Phase diagram of confined hard plates with H
D = 1.1: (a) 0.314 � L/D < 0.55, where 2HL, 1PL, and 1BPL structures are formed;

(b) 0.22 � L/D < 0.32, with 3HL, 4HL, and 1BPL; (c) 0.15 � L/D < 0.22, with 4HL, 5HL, 6HL, and 1BPL.

between 1BPL and 4HL (yellow green region) occurs at high
densities. It means that in the 0.25 � L

D < 0.275 range, the
nematic director changes its direction twice by increasing the
packing fraction, and a reentrant phenomenon occurs. Note
that 1BPL-4HL takes place at very high densities where the
system initially freezes and then changes from 1BPL to 4HL.
This first-order phase transition occurs at a higher packing
fraction by increasing L

D since it is more difficult for thicker
hard plates in the pore to accommodate four homeotropic lay-
ers and it terminates at a critical aspect ratio L/D ≈ 0.26. The
scenario is completely different for thinner disks, i.e., 0.22 <
L
D < 0.25, where ηmax(4HL) < ηmax(1BPL). As mentioned
here, the phase sequence is 3HL-4HL-1BPL by increasing
the packing fraction. We depicted L

D = 0.25 in Fig. 4(b) by
a vertical black solid line.

In Fig. 4(c), the phase structures of 0.15 � L
D � 0.22 are

plotted. Similar to Fig. 4(b), there are two phase regions here,
i.e., 0.15 � L

D � 0.174 and 0.174 � L
D � 0.22. For thicker

plates where 0.174 � L
D � 0.22 there is a first-order layering

transition from 4HL to 5HL (pink region) that takes place at
lower densities by reducing L

D and it stops at L
D ≈ 0.177. In

this range, 5HL is more stable at intermediate densities with
respect to 1BPL as the close packing argument confirms this
stability for L

D < 0.199 because ηmax(5HL) < ηmax(1BPL).
The pink dotted line stands for ηmax(5HL) and the horizontal

yellow green dashed-dotted line indicates ηmax(1BPL). Con-
sequently, there is another first-order transition from 5HL
to 1BPL (orange region) at higher densities. This transi-
tion happens at higher packing fractions by increasing L

D
and it ceases at L

D ≈ 0.199. Similar phase transitions can
be observed for 0.15 � L

D � 0.174 where 5HL-6HL (yellow
region) and 6HL-1BPL (cyan region) occur. According to
the close packing argument, 6HL is also more stable than
1BPL for 0.15 � L

D < 0.167, and this confirms the phase
diagrams. Figure 5 displays the density profiles of the phases
in Figs. 4(a) and 4(b) at four packing fractions denoted by
different symbols. Figure 5(a) shows the density profiles of
H
D = 1.1 and L

D = 0.36 at η = 0.475, where the structure is
homeotropic with two layers with strong adsorption at the
walls. By increasing the packing fraction, the number of par-
ticles in H state starts to drop; the number of particles with a P
alignment increases; and the phase changes from 2HL to 1PL
as evident from Figs. 4(a) and 5(b) at ( L

D , η) = (0.36, 0.54).
With a further increase in the density, a second-order phase
transition takes place and 1PL changes to 1BPL. Therefore,
the phase is 1BPL at ( L

D , η) = (0.36, 0.60), where ρx �= ρy

as evident from Figs. 4(a) and 5(c). Figure 5(d) exhibits the
high-packing fraction phase in 4HL at H

D = 1.1, L
D = 0.255,

and η = 0.80 whose symbol (a filled triangle) can be observed
in Fig. 4(b).
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FIG. 5. Density profiles related to the symbols in Figs. 4(a) and 4(b). (a) L
D = 0.36 and η = 0.475, where the structure is 2HL; (b) L

D = 0.36
and η = 0.54, where the structure is 1PL; (c) L

D = 0.36 and η = 0.6, where the structure is 1BPL; (d) L
D = 0.255 and η = 0.8, where the

structure is 4HL.

D. H > D + L

We have also examined wider pores where (n + 1)HL, pla-
nar structure, and T-type phase can form. The phase structures
of H

D = 1.4 and 0.22 < L
D < 0.35 are investigated in Fig. 6(a)

where there are two phase regions, i.e., 0.22 < L
D � 0.27 and

0.27 < L
D < 0.35. For thicker particles (0.27 < L

D < 0.35)
since the stable phases at intermediate packing fractions are
3HL and 4HL, a first-order layering transition (blue region)
occurs by raising the packing fraction.

The wider part of this transition is in larger L
D since it

is more difficult to accommodate four layers of thicker hard
plates in the pore. This transition ceases at a critical aspect
ratio L

D ≈ 0.295 where the phase change continuously occurs
for smaller aspect ratios from 3HL to 4HL. For greater clarity,
we have plotted the density profile of L

D = 0.3 [the plus sym-
bol in Fig. 6(a) and the curves in Fig. 6(b)] in the range where
there is a first-order phase transition between 3HL and 4HL.
We have also shown the density profiles of L

D = 0.29 [the
asterisk in Fig. 6(a) and its density profiles in panel (c)] where
the phase continuously changes at the same packing fraction.
To form the fourth layer from 3HL, the layer in the middle
of the pore must be divided into two layers. For L

D < ( L
D )c =

0.295, the layer is wide and can easily divide, and thus there
is no phase transition here. Still, for 0.295 � L

D < 0.35 this
layer is not wide but relatively sharp; therefore, its division is

companied by pushing the existing layers to the walls and a
first-order transition occurs.

In Fig. 6(a), the black dashed line, green dashed-dotted
horizontal line, red short-dashed line, pink solid line, and
blue dotted line, respectively, show ηmax(3HL), ηmax(1BPL),
ηmax(4HL), ηmax(5HL), and ηmax(T). The 1BPL and T-type
structures compete at high densities; however, according to
the close packing argument, since ηmax(T ) > ηmax(1BPL),
the T-type structure is more stable with respect to 1BPL at
high densities because the particles can be more packed by
selecting the T structure rather than planar and homeotropic
structures. The free-energy value of 1BPL is also higher than
that of the T phase at high densities. Consequently, the more
stable phase at high densities is T with respect to 1BPL, and
the nHL structure directly changes into a T-type one. The T
structure can be uniaxial or biaxial, yet the favored structure
at high densities is a biaxial T phase (BT) because at such high
densities, biaxiality provides a greater space for the particles
near the wall. The density profiles of L

D = 0.3 at η = 0.55 and
0.725 are plotted in Figs. 6(d) and 6(e), where the phase is
4HL and BT, respectively. Evidently, the homeotropic parti-
cles are depleted from the middle of the pore at η = 0.725
[Fig. 6(e)] by increasing the packing fraction; both planar
and homeotropic particles are adsorbed at the walls; and the
segregation of the homeotropic and planar particles takes
place at the opposite walls. In the 0.27 � L

D < 0.31 range, the
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FIG. 6. (a) Phase diagram of H
D = 1.4 when 0.22 < L

D < 0.35. Density profiles related to the symbols in panel (a) at (b) ( L
D , η) =

(0.3, 0.35), where the phase is 3HL with a relatively sharp layer in the middle of the pore; (c) ( L
D , η) = (0.29, 0.35), where the phase

is 3HL with a wide layer in the middle of the pore; (d) ( L
D , η) = (0.3, 0.55), where the phase is 4HL with very sharp layers; and (e)

( L
D , η) = (0.3, 0.725), where the phase is BT with a biaxial planar layer at a wall and a homeotropic one at the other wall.

structure changes from 4HL to T by a first-order transition [or-
ange region in Fig. 6(a)] that becomes weaker with increasing
L/D and takes place at higher packing fractions since it is
more difficult to accommodate thicker disks in the T phase
in the pore. This transition also stops at critical ( L

D )c ≈ 0.31.
Similar phase transitions occur in 0.22 � L

D < 0.27, where
5HL can form in the pore [Fig. 6(a)] where the first-order
phase transitions 4HL-5HL (cyan region) and 5HL-BT (yel-

low green region) occur and they terminate at L
D ≈ 0.227 and

L
D ≈ 0.23, respectively.

IV. CONCLUSION

The effects of the thickness of square disks and the pore
width on their structural phases when they are constrained
between two parallel hard walls were studied by using the PL
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theory in a restricted orientation approximation. We focused
on the strong confinement regime characterized by strongly
inhomogeneous structures next to the walls, where the struc-
tures did not relax to their bulk structure even in the center of
the system, and thus strong interference between the opposing
walls was in charge of the observed phases. A theoretical
examination of particles in very narrow pores can provide
evidence for structures permissible for the quasi-2D regimes
where the ordering resulting from the capillary characteristics
becomes prominent [47].

We observed a uniaxial nematic order (homeotropic) with
strong adsorption at the walls and different permissible num-
bers of layers, which was the preferred anchoring symmetry at
low and intermediate densities. The strong surface adsorption
decreases the excluded volume cost between the particles
with this kind of ordering as it maximizes the space between
the walls for the plates. As a result, homeotropic fluids that
have n and n + 1 layers can undergo continuous first-order
layering transitions. In several cases, the formation of a new
homeotropic layer for thick-enough hard plates coincides with
a first-order layering phase transition and high translational
entropy costs. Capillary nematization does not influence the
observed layering transitions since the capillary nematization
critical point is observed at pore widths (∼4D ) greater than
the strongly confined cases here. The findings of the current
study indicate that there are always two homeotropic layers
at the walls when the pore is wide enough; nevertheless,
there is a competition between a planar layer in the middle
of the pore and a homeotropic layer. As such, the H phase
changes to a P one for the cases that are not wide enough to
form a T-type structure as the packing fraction rises. Planar
ordering reduces the excluded volume at high packing frac-
tions, thereby explaining the transition. The system triggers a
transition from a uniaxial planar to a biaxial planar structure
at a special packing fraction, resulting from pure repulsive
extrinsic interactions, which is in line with Onsager’s origi-
nal findings [1]. This is generated by an exchange between
excluded volume entropy and orientation entropy. Contrary to
a previous study [29], we demonstrate that the biaxial nematic
ordering (BT or BP) can be observed even in fluids of very
anisotropic hard plates above η > 0.5 when H

D > 1. Note that
the uniaxial planar structure (1PL) is observed only in the case
of H

D = 1.1 and 0.314 � L/D < 0.55 in which the transition
from homeotropic to planar occurs at η < 0.55, where the
second-order uniaxial-biaxial phase transition takes place at
higher packing fractions by reducing the shape anisotropy
due to the decreased packing entropy gain with in-plane or-
dering. In addition, biaxial order was reported for confined
prolate and oblate particles [48]. For the other cases studied
herein, the (n + 1) HL phase replaces 1PL and the transition
directly occurs from homeotropic to 1BPL as it takes place
at η > 0.55. On the other hand, a planar to homeotropic tran-
sition is also reported in certain thermotropic systems [49].
We provide evidence for the formation of a biaxial T structure
emerging from the homeotropic with n + 1 layers of confined
hard square disks for H > L + D, where it overcomes the
planar structure, and thus the phase sequence H-P-T is not
observed in wide-enough pores. Martinez-Raton [50] inves-
tigated the bulk behavior of square disks but predicted no
nematic structures when 0.25 < L

D < 1. The formation of

the T structure is thus a capillary effect. Still, there is no
preference for the particles to align parallel to a specific wall
and perpendicular to the other as the two walls are identical;
thus, in an experiment, one can expect to find domains of T
and inverted T phases separated by domain walls. We also
provide evidence for a concentration-driven reentrant H-P-H
phase sequence when H

D = 1.1 and 0.25 � L
D < 0.26.

We did not analyze potential in-plane and out-of-plane
crystal phases as the PL theory cannot treat solid phases. Very
narrow and sharp peaks through narrow pores can indicate
capillary freezing, i.e., strong layering in confined fluids may
initially freeze and then transform into new structures. At
extreme confinement, when the pore distance is on the scale
of the molecular size, solidlike phases could indeed develop.
However, in experiments, size dispersity of the particles,
which is naturally present in most colloidal system, usu-
ally impedes the formation of fully developed crystal phases
[45,46].

In the future, the proposed model could be theoretically
analyzed via fundamental measure theory (FMT) in the con-
text of freely rotating nonspherical hard particles [51–53] and
hard prolate and oblate parallelepipeds using the Zwanzig
approximation [50]. This can be a major step forward since
FMT has been demonstrated to be accurate for infinitely thin
plates [54]. Structures with planar uniaxial or biaxial nematic
layers and the presence of layering transitions reported in
this study have also been found in theoretical, simulation,
and experimental studies on confined liquid-crystal particles;
as such, our predictions may qualitatively resemble those of
freely oriented particles [26,55–57]. A surface forces appara-
tus was initially employed to observe the layered structure,
and the layering structures were theoretically identified using
the density dependence on position z between the walls. This
phenomenon is a general effect of confinement that depends
on the nature of intrinsic and extrinsic potentials. A detailed
examination of Lennard-Jones molecules by Schoen and co-
workers suggests that the structure and stiffness of walls
considerably affect the layered structure [26,57]. Since the
restricted-orientation model may stabilize the T-configuration
of particles, caution should be taken when removing the re-
strictions in orientations on the stability of the confined T
phase. Nevertheless, we believe that our results are qualita-
tively correct since cholesteric liquid crystal confined between
two parallel walls has been reported to have T-type structure
[58]; it has also been theoretically reported for parallelepipeds
and cylinders [40,59], even at lower packing fractions with
respect to hard square disks. There is no doubt that a special
smectic phase (i.e., discotic smectic) [50,60] can be stabilized
at bulk for certain aspect ratios when using the Zwanzig
approximation; nevertheless, several simulations of hard parti-
cles in freely rotating modes report that this peculiar smectic is
never stable. Hence, the stability of discotic smectic reported
in Refs. [50,60] can be an artifact of the restricted orienta-
tions. A definite answer can be obtained by simulating freely
rotating hard square disks in an extremely confined fluid.

The importance of attractive interactions in the stability
of structures could also be included. For example, the tran-
sition of laponite platelike particles from vapor to liquid
can be accurately modeled by adding special square-well
pair potentials to the hard-body interactions [61,62]. In
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concentrated systems, however, ordering effects are prin-
cipally due to hard-core interactions [1,2] and we believe
our model to be generally applicable to strongly confined
molecules or colloidal particles with an (effective) board
shape. In particular, given the prevalence of reconfigurable
biaxial and T-shaped configurations emerging from the model,

we believe that our findings can be useful for designing
bistable devices or fabricating pressure sensors based on par-
ticles dominated by hard-core exclusion [63]. Note that all
the different phases reported in this paper are a consequence
of H ∼ L and D. For much thicker films, i.e., H 	 L and D,
alignment will be homeotropic; see, e.g., Ref. [17].
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