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Tensor network construction for lattice gas models: Hard-core and triangular lattice models
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The representation of complex lattice models in the form of a tensor network is a promising approach to the
analysis of the thermodynamics of such systems. Once the tensor network is built, various methods can be used
to calculate the partition function of the corresponding model. However, it is possible to build the initial tensor
network in different ways for the same model. In this work, we have proposed two ways of constructing tensor
networks and demonstrated that the construction process affects the accuracy of calculations. For demonstration
purposes, we have done a brief study of the 4 nearest-neighbor (NN) and 5NN models, where adsorbed particles
exclude all sites up to the fourth and fifth nearest neighbors from being occupied by another particle. In addition,
we have studied a 4NN model with finite repulsions with a fifth neighbor. In a sense, this model is intermediate
between 4NN and 5NN models, so algorithms designed for systems with hard-core interactions may experience
difficulties. We have obtained adsorption isotherms, as well as graphs of entropy and heat capacity for all models.
The critical values of the chemical potential were determined from the position of the heat capacity peaks. As
a result, we were able to improve our previous estimate of the position of the phase transition points for the
4NN and 5NN models. And in the model with finite interactions, we found the presence of two first-order phase
transitions and made an estimate of the critical values of the chemical potential for them.
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I. INTRODUCTION

Modern theoretical studies of two-dimensional condensed
systems (for example, adsorption layers on the surface of a
solid body) are developing toward more complex models, and
quite often these are lattice models [1–9]. Usually, the com-
plication is associated with a detailed account of the adsorbed
molecule structure, and takes into account more complex
types of interactions: Directed, long-range, and multiparticle
interactions [2,10–15]. Of great interest is the self-assembly
of adsorption monolayers. This is the process of spontaneous
association of molecules on the surface into ordered structures
due to noncovalent interactions between them [16–18]. Ex-
perimental data indicate a rich variety of such structures and
a wide range of promising applications [19,20]. However, the
self-assembly process and its result depend on many param-
eters, such as temperature, pressure, geometry and nature of
the surface, molecular structure, etc. This significantly com-
plicates the experimental search for systems with the desired
behavior.

Traditional methods of statistical physics, such as Monte
Carlo, transfer-matrix, and cluster approximations, do not al-
ways allow one to achieve the desired result for models of
this type. For example, in the Monte Carlo method, there
are problems with achieving equilibrium, and it is possible
to calculate only indirect characteristics (for example, the
number of certain elements of the structure) [4,10,11,21] or
it is necessary to apply specialized algorithms [22–25]. In
turn, the transfer-matrix method, like cluster methods, faces
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serious limitations on the size of the system [26,27]. The
unit cells of the ordered structures formed in complex models
are quite large, and it is necessary to consider the lattice
size multiplicity. Due to the fact that in the transfer-matrix
method the complexity of calculations grows exponentially
with the size of the system, in some cases the task becomes
almost impossible [27]. In addition, the structure of phases
and, moreover, the size of unit cells are usually unknown.

A promising approach to the analysis of complex lattice
models in the field of statistical physics may be the represen-
tation of the model in the form of a tensor network. Some
algorithms make it possible to exclude the influence of the
finite-size effect, which is difficult to achieve using other
methods of statistical physics. In recent years, this approach
has been actively developed, but in most works quantum and
classical magnetic systems are considered [28–34]. In this
regard, the features specific to the field of surface science
are usually not taken into account: The size and shape of the
molecule, specific types of interactions, etc. Previously, we
showed that the direct use of the simplest algorithms allows
one to achieve fairly good results in the study of models with
exclusions up to kth nearest neighbors (kNN models) [35].
A hard core is the simplest way to account for the size of
adsorbed particles. Here we demonstrate how the accuracy of
the results obtained for models of this type can be improved
without increasing the computational complexity.

The study of lattice models using tensor networks can be
divided into two main stages. First, the tensor network is
built. For lattice models of adsorption systems, this is usually
a two-dimensional tensor network. Next, we need to calcu-
late the partition function, but this cannot be done directly.
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Therefore, the next stage is necessary: Calculations using one
of the existing numerical methods, such as the tensor renor-
malization group [36], second renormalization group [37],
tensor network renormalization [38], high-order tensor renor-
malization group [39], corner transfer-matrix renormalization
[40,41], etc. [42–44]. Each of them has its own advantages
and disadvantages. We will use only the TRG approach since
the focus of the work will be on the process of building a
tensor network and its impact on the accuracy of the obtained
results. The basis of the approach is the iterative contraction
of the tensor network. At each iteration, the tensor is reduced
to a predetermined value χ . This is based on the process
of singular value decomposition, where χ is the number of
singular values left at each iteration. The larger the χ value,
the higher the accuracy of calculations, but the requirements
for computing resources also increase. In Ref. [35] at χ = 150
for 4NN and 5NN models on a triangular lattice, due to lack
of accuracy, we managed to calculate only the adsorption
isotherm. We assume that one of the reasons is an inefficient
algorithm for constructing a tensor network. In this work, we
will propose two independent improvements, each of which
allows us to increase the accuracy of calculations and retain
the same computational complexity, since it does not affect
the TRG algorithm itself. The first is the process of building
a uniform tensor network for a triangular lattice. This lattice
has a more complex structure than the square and hexagonal
ones, so we will mainly talk about it. At the same time, some
elements of the proposed algorithm can be used in the case of
other lattices.

II. CONSTRUCTION OF A TENSOR NETWORK

We will use a graphical representation of operations on
tensors, so some explanation should be made. Most often,
tensors are depicted as circles with a certain number of rays
(often referred to as legs) coming out of them. The number
of rays emerging from them characterizes the tensor order.
That is, a tensor with one ray is a vector; with two, it is a
matrix; and so on. If the tensors have a common ray, then
they are contracted along the corresponding dimension. A
detailed description of the graphical representation of tensors
and operations with them can be found in Ref. [45].

For a more detailed visualization of tensor operations, we
will use special C tensor of the nth order, which look like this:

Cx1,x2,...,xn =
{

1 x1 = x2 = . . . = xn

0 otherwise . (1)

For n = 2, it is the identity matrix, and for n > 2, it is a
tensor with ones on the main diagonal. In what follows, we
will denote such tensors by small black circles and call them
COPY-dots (copydots) [46]. Note that they are convenient for
visualizing and describing tensor contractions, but their actual
presence in the contraction process is not always necessary.

For the same lattice model, there are different ways to rep-
resent the partition function as a tensor network. A simple and
universal way is to build through the interaction-round-a-face
(IRF) model. It is shown schematically in Fig. 1.

We used the IRF model to build a tensor network in
Ref. [35]. The tensor describes the interactions of all neigh-
boring nodes at once and does not take into account the

FIG. 1. Building a tensor network using the IRF model.

detailed structure of interactions between individual nodes.
This can lead to nonoptimality of the initial tensor network.

Another way to build a tensor network is to define a tensor
in a dual space [36,47]. In some cases, this approach gives
a tensor network with a simple structure. For example, a
tensor network consisting of third-order tensors is obtained
for classical models on a triangular lattice. At the same time,
the process of building a tensor network becomes more com-
plicated for more complex models.

The most visual way is to represent explicitly each element
of the lattice structure and connections between nodes in the
form of a tensor network. Such a network consists of nth order
copydots, where n is equal to the coordination number of the
lattice. For example, n = 6 for a triangular lattice. Second-
order tensors (matrices) M are located between the copydots.
These tensors contain the Boltzmann weights for the linked
lattice sites according to the Hamiltonian of a model. Note
that for asymmetric models, there will be different matrices
M for different directions. The number of components in all
dimensions of the tensor will be the same and we will denote
it m. For example, for a classical Ising model with a coupling
constant J, the matrix M will have m = 2, and it looks like
this:

M =
(

exp(βJ ) exp(−βJ )

exp(−βJ ) exp(βJ )

)
, (2)

where β = (kT )–1, k is the Boltzmann constant, and T is the
absolute temperature. For simplicity, we will take β = 1.

One of the standard steps is to get a uniform tensor net-
work. As an example, Fig. 2 graphically shows the process of
building a uniform tensor network for square and triangular
lattices.

Note that the split of the matrix M can be done in dif-
ferent ways. For example, you can calculate its square root
or perform a division using the singular value decomposition
operation. However, a uniform tensor network of a similar
structure can be obtained even by direct contraction of tensors.
For a triangular lattice, direct contraction will be Tabcde f =∑

i, j,k Cabci jkMid M jeMk f .
For a square lattice, a uniform tensor network with fourth-

order tensors is obtained. It is suitable for further use of
standard algorithms. However, this approach is a bad example
for a triangular lattice since the resulting network consists
of sixth-order tensors. This leads to a significant increase in
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FIG. 2. An example of building a uniform tensor network for (a)
square and (b) triangular lattices.

computational complexity in the future. In addition, much
more memory is required to store the intermediate and final
tensors.

We propose a different approach for constructing a uniform
tensor network for a triangular lattice: Tensor contraction with
copydots (TCC). Figure 3 shows the visualization of the pro-
posed algorithm.

Note that the construction of a tensor network is performed
only through the contraction operations. The result is a uni-
form tensor network consisting of tensors of the fourth order.
And the number of elements of all dimensions remains equal
to m. In Ref. [35], we also obtained a fourth-order tensor, but
two of its dimensions had the number of components equal to
m2. This can negatively affect the result. It is also important
to note that in neither case are there any restrictions on the
complexity of the considered models. They can be applied
both to hard-core lattice gas models and to ordinary models
with finite interactions.

FIG. 3. Graphical representation of the proposed algorithm for
constructing a tensor network for triangular lattices.

FIG. 4. Dependence of the error value on χ for various ways of
constructing a tensor network for the Ising model.

Obviously, the structure of the T tensor should affect the
accuracy of the calculations, so we made a comparison with
the previously used approach. First, we traditionally made
a comparison using the Ising model as an example. It is
known that the critical temperature for a triangular lattice
is Tc = 4/ln(3), and the value of the grand potential at the
critical point is �I = 3.2025325196 . . . . Next, we calculated
the values of the grand potential at the critical temperature
by the TRG method for various χ values. By the formula
σ (χ ) = |�I − �TRG(χ )|, we estimated the error at each value
of χ . Figure 4 shows the results.

The proposed transformation leads to an increase in the
accuracy of calculations for almost any value of χ . How-
ever, the Ising model is very simple, and it is possible
that the behavior may be different for more complex mod-
els. An exact solution cannot be used in such a situation,
so we propose to estimate the error using the following
formula:

�(χ ) =
√∑

μ |(�χ − �χ−1)(�χ − �χ+1)|
N

, (3)

where μ is the chemical potential, �χ is the grand potential
obtained by the TRG method for a given χ value, and N
is the number of chemical potential values taken for cal-
culation. In this work, we took N = 121 everywhere. For
example, the μ value was varied from −6 to 6, with a step
of 0.1.

We proposed a similar method for estimating the error in
Ref. [35]. We have shown that the result is less monotonic,
but close to the result of comparison with the exact solution.
We studied in detail the models with exclusions only up to
the third neighbor [35], and for the 4NN and 5NN models,
we managed to calculate only adsorption isotherms. Based
on these data, we estimated the interval and type of phase
transition for them. As shown later in Ref. [25], our esti-
mates turned out to be erroneous. In this regard, we decided
to choose the 4NN and 5NN models on a triangular lattice
as test models for this work. We demonstrate for them the
results achieved by the proposed changes in the algorithm
for constructing a tensor network. In addition, we used an
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FIG. 5. Representation of a hard-core lattice model.

another approach to determine the possible states of a node
for hard-core lattice gas models. It should also improve the
accuracy of calculations.

III. TENSOR NETWORK FOR HARD-CORE MODELS

Models with exclusions of several neighbors naturally arise
in surface science. Physically, these exclusions are charac-
terized by steric restrictions arising from the adsorption of
large molecules. Therefore, it is important to work effectively
with models of this type. For example, the presence of exclu-
sions up to the kth neighbor can be interpreted as long-range
interactions with the kth neighbor. In this formulation, it is
necessary to combine several nodes into one, getting a new
node with an increased number of states. Despite the fact
that the presence of exclusions makes it possible to ignore
some configurations, this leads to a complication of the tensor
structure.

However, in this work, we propose to consider the process
of node occupation from a chemical point of view. That is,
we will not talk about the exclusions, but we will assume
that a molecule of a certain size is adsorbed, and it occupies
several sites at once. As a result, it is possible to break the
adsorbed particle into parts and take them as new states of
the node. In a sense, we get a different model, but in fact the

model remains the same in terms of probability distribution.
Figure 5 visualizes the described process and shows several
combinations with an empty node. Now there are forbidden
combinations even with an empty node.

The demonstrated version is suitable for describing models
with exclusions up to the fifth neighbor. In this case, the new
node can take eight states: One of the seven parts of the
molecule and an empty node. Note that some of the combina-
tions are compatible with only one neighbor state of the node.
For example, to the right of a node in state 5, there can only
be a node in state 4. This leads to a simplification of the tensor
structure.

Let’s call the presented variant of construction a hard-core
break (HCB) and compare the results for tensor networks built
in different ways using Eq. (3). Note that the TCC approach
can be combined with HCB. Thus, we will consider three
cases: IRF with joined nodes (the approach used earlier), IRF
with HCB, and TCC with HCB. Figure 6 shows graphs of the
free-energy error versus χ for the 4NN and 5NN models.

The situation for different models is different, and con-
sidered models no longer behave in the same way as the
Ising model. The error is noticeably smaller for almost the
entire range of considered values of χ for the proposed ap-
proaches in the 4NN model. At the same time, the accuracy
changes slightly and sometimes not in favor of the proposed
approaches for the 5NN model. Despite this, we can conclude
that the proposed approaches make it possible to simplify
the process of constructing a tensor network and reduce the
resulting error even in the case of some complex models.

It is important to note that the proposed approaches can be
applied separately from each other. The TCC approach has
no limitations and can be applied to any model, including
models with finite interactions. The HCB approach requires
a hard core, but it remains effective even if there are finite
interactions between hard-core particles. As a demonstration
of this fact, we will additionally consider a model that can be
called intermediate between 4NN and 5NN models. We will
call it the 4NN+ model. Suppose that there are exclusions up

FIG. 6. Comparison of the free-energy error when applying the TRG method to tensor networks constructed in different ways: (a) 4NN
model and (b) 5NN model.
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FIG. 7. (a) Adsorption isotherms of the 4NN, 4NN+, and 5NN
models and (b) visualization of possible ordered structures. The
yellow dashed line indicates the elementary cell of the phase.

to the fourth neighbor, and with the fifth neighbor there is a
finite interaction ε. For simplicity, we take the value ε = 1.
Physically, this behavior can be characterized as repulsion
between neighboring adsorbed molecules of a certain size.
For example, for the 3–6 combination of nodes states in the
horizontal matrix M (in the HCB approach), there will be
exp(−β ), and not exp(0) (the combination is allowed), as in
the 4NN model or exp(−inf ) (the forbidden combination), as
in the 5NN model.

IV. CALCULATION RESULTS

Previously, we were only able to calculate adsorption
isotherms for the 4NN and 5NN models [35]. As a result, we
made the following assumptions: Only one continuous phase
transition occurs in the 4NN model in the region from 2.65
to 2.7, while in the 5NN model there is one first-order phase
transition in the region from 4.4 to 4.5. Later, it was shown by
the Monte Carlo method using the strip cluster Wang Landau
algorithm that a first-order phase transition is observed in both
models [25]. In the 4NN model at μMC

c = 2.8696(2), and in
the 5NN model at μMC

c = 4.720(1). That is, we incorrectly
estimated the type of phase transition in the 4NN model and
the regions of phase transitions in both models. Next, we will
demonstrate how the application of the proposed approaches
changes the situation. In addition, we will demonstrate the

results for the 4NN+ model. It has not been studied before,
and finite interactions qualitatively distinguish it from the
4NN and 5NN models. Algorithms specialized for investigat-
ing only hard-core models often lose their advantage in such a
situation. But, the standard TRG algorithm does not have any
restrictions on the type of interactions in the system.

Figure 7(a) shows isotherms for all models at once. We will
consider the number of adsorbed particles per one lattice site
as the coverage. Thus, we will only talk about two ordered
structures: �1 with coverage θ = 1/9 and �2 with coverage
θ = 1/12 [see Fig. 7(b)].

Indeed, a first-order phase transition is observed with the
formation of the �1 phase in the 4NN model. This can be seen
from the jump that appears on the adsorption isotherm. Noth-
ing qualitatively changed in the behavior of the 5NN model,
and as before, we clearly see the presence of a first-order
phase transition. We also managed to obtain high-quality
isotherms for the 4NN+ model. First, structure �2 is formed,
and then phase �1. All transitions are first-order phase transi-
tions. Additionally, we calculated the dependence of entropy
and heat capacity on the chemical potential (see Fig. 8).

The entropy behaves in a similar way and reaches close
values in the phase transition region in the 4NN and 5NN
models, as well as in the first transition in the 4NN+ model.
This indicates a similar mechanism for the formation of or-
dered structures. At the same time, the second phase transition
in the 4NN+ model is very different. On the entropy plot, only
a slight increase in entropy occurs in the transition region.

In this work, we estimated the critical value of the chemical
potential μc from the position of the heat capacity peak. Since
the main task was only to make a comparison with our earlier
estimate, we chose the accuracy to the second decimal place.
As can be seen, first-order phase transitions appear on the
heat capacity plot as sharp peaks in the transition region.
Previously, we did not have enough accuracy to obtain data of
sufficient quality, so there was a large spread in the calculated
values. Now for the 4NN model at χ = 150, we managed to
get the value μTRG

c = 2.86. That is, our initial estimate has
changed significantly and is now close to the value obtained
by the Monte Carlo method in Ref. [25]. For the 5NN model,
we had to increase χ to 200 in the phase transition region, as
there were noticeable fluctuations in the heat capacity values.

FIG. 8. Dependence of (a) entropy and (b) heat capacity on the chemical potential for all models.
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As a result, we got the value μTRG
c = 4.66. This is higher

than our earlier estimate, but lower than what was obtained
by the Monte Carlo method. As shown earlier, the proposed
approaches only slightly improve the accuracy for the 5NN
model, and this is not enough for a more accurate estimate.
In the 4NN+ model, the first peak of heat capacity and sus-
ceptibility is observed at the point μTRG

c = 5.58. But since the
entropy changes weakly in the region of the second phase tran-
sition, there are problems with finding the heat capacity peak.
Therefore, we determined the position of the second phase
transition from the susceptibility peak (we do not present the
graph). The peak is observed at the value μTRG

c = 11.97.

V. CONCLUSION

We have proposed two self-contained approaches to build-
ing tensor networks. The first is tensor contraction with
copydots. This approach allows us to simplify the algorithm
for constructing a tensor network and, in some cases, leads
to a more accurate result when calculating by a tensor renor-
malization group. The second approach is a hard-core break.
It allows us to build a tensor network for hard-core systems

without considering long-range interactions. This approach
in some models also leads to an increase in the accuracy of
calculations.

The possibilities of the proposed approaches were demon-
strated on the example of models with exclusions up to the
4NNs and 5NNs. We plotted adsorption isotherms, as well as
the dependence of entropy and heat capacity on the chem-
ical potential. The critical values of the chemical potential
were determined from the position of the heat capacity peaks,
which allowed us to improve our previous estimate of the po-
sition of the phase transition point in each model. In addition,
we explored a 4NN model with finite repulsions with a fifth
neighbor. In a sense, this model is intermediate between 4NN
and 5NN models. We found the presence of two first-order
phase transitions and made an estimate of the critical values
of the chemical potential for each of them.
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