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Sum-of-squares bounds on correlation functions in a minimal model of turbulence
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We suggest a new computer-assisted approach to the development of turbulence theory. It allows one to impose
lower and upper bounds on correlation functions using sum-of-squares polynomials. We demonstrate it on the
minimal cascade model of two resonantly interacting modes when one is pumped and the other dissipates.
We show how to present correlation functions of interest as part of a sum-of-squares polynomial using the
stationarity of the statistics. That allows us to find how the moments of the mode amplitudes depend on the
degree of nonequilibrium (analog of the Reynolds number), which reveals some properties of marginal statistical
distributions. By combining scaling dependence with the results of direct numerical simulations, we obtain the
probability densities of both modes in a highly intermittent inverse cascade. As the Reynolds number tends to
infinity, we show that the relative phase between modes tends to π/2 and −π/2 in the direct and inverse cascades,
respectively, and derive bounds on the phase variance. Our approach combines computer-aided analytical proofs
with a numerical algorithm applied to high-degree polynomials.
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I. INTRODUCTION

Many systems in nature receive and dissipate energy
on very different scales, having conservative dynamics in
between, and the energy is transferred across the scales
through a turbulent cascade. Among the best-known exam-
ples are isotropic fluid turbulence [1] and surface waves in
the ocean [2]. The complexity of such systems makes them
difficult to describe in detail, so it makes sense to consider
simpler dynamical models to deepen our understanding of
the statistical properties and energy transfer in such highly
nonequilibrium systems [3–5].

A minimal model, which still captures the basic prop-
erties of turbulent cascades, is a system of two resonantly
interacting oscillators whose natural frequencies differ by a
factor of two [6]. This system allows studying direct and
inverse cascades with the energy flux directed towards either
higher or lower frequencies. The system has one nondimen-
sional governing parameter χ , which plays the role of the
Reynolds number. In what follows, we are mostly interested
in the regime when this parameter is large, and the probability
distribution tends to be singular. The analytical studies in this
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limit resulted in the steady-state probability density for the
direct cascade, while constructing the probability density for
the inverse cascade turns out to be tricky [6].

Here we apply a complementary approach to study the
mode statistics in this system. We exploit the polynomial
nature of dynamic equations (common for practically all tur-
bulent systems), which allows us to impose inequalities on the
correlation functions. The main idea is to find a non-negative
polynomial expression, φ(x) − L + F (x) � 0, that combines
the correlation function φ(x) to be bounded, the constant value
of the bound L, and an auxiliary polynomial function F (x) that
has zero mean value 〈F (x)〉 = 0 in a statistically steady state,
which entails the inequality 〈φ(x)〉 � L [7,8]. The essence of
the approach is to construct the function F (x) so that the value
of the lower bound L is as large as possible. Although testing
a polynomial expression φ(x) − L + F (x) for non-negativity
is NP-hard algorithmic task [9], there exist numerical pro-
cedures [10–14] that solve the problem with a more strict
requirement on the proposed expression to be sum-of-squares
(SoS) of other polynomials. Moreover, these procedures allow
one to maximize the value L of the bound using some ansatz
for the auxiliary function F (x). If the ansatz is simple enough,
then the bound can be found analytically, while a computer
algorithm can be used in advance to suggest the optimal
form of the SoS polynomial. The upper bound 〈φ(x)〉 � U
can be constructed in a similar way. Recent examples of the
application of SoS programming in nonlinear dynamics, sta-
bility analyses, control theory, and other fields can be found
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in Refs. [7,8,15–24]. A more complete bibliography can be
found in a recent review [25].

The rest of the paper is organized as follows. In Sec. II,
we remind the general theory behind SoS optimization and
then apply the method for the two-mode system. In Sec. III,
we present the results obtained by SoS programming for the
direct cascade and compare them with the analytics and di-
rect numerical simulations (DNS). It turns out that the upper
and lower bounds for the moments of pumped and dissipat-
ing modes are close to each other and differ by less than
a percentage in the limit of a large Reynolds number. This
allows us to determine not only their scaling dependence but
also numerical values with accuracy comparable to DNS. The
method can also be used to study correlations between modes,
and we show that the relative phase between the modes tends
to π/2 and determine upper and lower bounds for its root-
mean-square fluctuations.

After the validation, in Sec. IV, we use the method for the
inverse cascade where the probability density is unknown a
priori. Analytically, we obtained only lower bounds for the
correlation functions, but they demonstrate scaling consistent
with the results of DNS. A numerical algorithmic analysis of
the high moments of the dissipating mode leads to scaling
〈nk

1〉 ∝ χ k−1, which is a fingerprint of intermittency, where n1

is the mode intensity and χ is the Reynolds number. Based on
this observation, we were able to shed light on the structure
of the distribution function of this mode—the DNS results
fall on the universal curve for different values of χ , which
has a form close to a power law with an exponential cutoff.
As for the pumped mode, its statistics are close to Gaussian,
and we analytically found the lower bound for its intensity
〈n2〉 � 5χ/16 that is close to DNS. We also show that the
relative phase between modes tends to −π/2 in the limit
χ � 1 and estimate the rate of this transition. Finally, we
summarize and discuss our findings in Sec. V.

II. THEORETICAL FRAMEWORK

This section briefly explains how sum-of-squares opti-
mization can impose inequalities on correlation functions in
stochastic systems with polynomial dynamics. The presenta-
tion follows Ref. [8], where a more detailed discussion can be
found.

Let us consider a stochastic dynamical system

ẋi = fi(x) + σi j (x)ξ j (t ), x ∈ Rn, ξ ∈ Rm, (1)

where fi(x) and σi j (x) are polynomial, ξi(t ) is a Gaus-
sian noise with zero mean 〈ξi(t )〉 = 0 and the variance
〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′), and here and below we sum over
repeated indices. We assume that the system has reached a sta-
tistical steady state, and then the probability density function
ρ(x) satisfies the stationary Fokker-Planck equation,

1
2∂i[σi j∂k (σk jρ)] − ∂i( fiρ) = 0. (2)

We also assume that the solution to this equation is unknown.
We wish to prove a constant lower bound 〈φ(x)〉 � L for
some polynomial correlation function φ(x), where the angle
brackets mean the averaging over the probability density ρ(x).

For this purpose, we consider an auxiliary function Q(x),
which does not grow fast when |x| → ∞, so that all the mo-

ments considered below are finite. Equivalently, this condition
can be reformulated in terms of the stationary probability
density ρ(x)—it must decrease fast enough to ensure the
convergence of all considered moments. Then, performing
integration by parts and neglecting boundary terms, one can
show that 〈 1

2σk j∂k (σi j∂iQ) + fi∂iQ〉 = 0. The idea is to prop-
erly design Q(x) so that〈

1
2σk j∂k (σi j∂iQ) + fi∂iQ + φ − L

〉
� 0. (3)

Evaluation of the expectation in expression (3) requires know-
ing ρ(x), but it is sufficient for the inequality to hold pointwise
for all x.

Checking a polynomial expression (3) for non-negativity is
NP-hard algorithmic task [9]. To reduce computational com-
plexity, it can be replaced with the semidefinite programming
(SDP) problem of checking the stronger condition that expres-
sion (3) belongs to a set of polynomials that are the SoS of
some other polynomials [7,26]. The main idea is that every
polynomial can be represented as a quadratic form over a set
of monomials with lower degrees; the matrix of this form is
positive semidefinite if and only if the polynomial admits an
SoS decomposition. Constraints involving SoS polynomials
can be posed as conditions on symmetric matrices; to find
the maximum value of the constant L, we solve the following
semidefinite optimization problem [27]:

max
Q(x)

L : 1
2σk j∂k (σi j∂iQ) + fi∂iQ + φ − L ∈ SoS. (4)

Next, one specifies an ansatz for the auxiliary function
Q(x) with undetermined coefficients and then solves the prob-
lem using the software packages such as SOSTOOLS [12],
YALMIP [13], or SumOfSquares.jl [14] with one of the ap-
propriate SDP solvers [28–31]. The upper bounds 〈φ(x)〉 � U
can be obtained in a similar way by considering the optimiza-
tion problem,

min
Q(x)

U : − 1
2σk j∂k (σi j∂iQ) − fi∂iQ − φ + U ∈ SoS. (5)

If the ansatz is simple enough, then the bounds L and U can
be found analytically, and the computer algorithm suggests
the optimal form of the SoS polynomials. The more complex
ansatz leads to more rigorous bounds. However, complex
ansatz requires more computational efforts, and the numeri-
cal algorithm could fail to find an optimal solution, because
the SDP problem may become too ill conditioned. Some-
times, this issue could be resolved by carefully rescaling the
system [8].

SoS technique also allows bounding of correlation function
in the case when F (x) ≡ 1

2σk j∂k (σi j∂iQ) + fi∂iQ in expres-
sion (3) is a rational function with a sign-definite denominator
or there are physically reasoned constraints for dynamic vari-
ables. In the former case, one multiplies the inequality (3) by
the denominator turning the left-hand side into a polynomial.
In the latter case, we assume that the constraint is polynomial,
Z (x) � 0, and then for F (x) + φ − L � 0 when Z (x) � 0
to be true, it suffices that there exist S(x) ∈ SoS such that
F (x) + φ − L − S(x)Z (x) ∈ SoS (compare to the conditional
optimization technique). Now the polynomial ansatz should
be specified for Q(x) and S(x) and their free coefficients
are the decision variables. We employ both tricks, Ref. [32]
provides more technical details.
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III. DIRECT CASCADE

The direct cascade for the two-mode system is governed by
the following nondimensional system of equations [6]:

ḃ1 = −2ib∗
1b2√
χ

+ ξ (t ), (6)

ḃ2 = − ib2
1√
χ

− b2, (7)

where b1 and b2 are complex envelopes of low- and high-
frequency modes, respectively, ξ (t ) is a complex Gaussian
random force with zero mean 〈ξ (t )〉 = 0 and the variance
〈ξ (t )ξ ∗(t ′)〉 = δ(t − t ′), and the asterisk means complex con-
jugate. In other words, real and imaginary parts of ξ (t ) are
independent white noises having zero mean values and inten-
sities 1/2. The parameter χ is the only control parameter in
the system, and it quantifies the dissipation relative to inter-
action strength. In the statistical steady state, the equations on
the second moments n1 ≡ |b2

1| and n2 ≡ |b2
2| read:

〈ṅ1〉 = 2〈J〉 + 1 = 0, (8)

〈ṅ2〉 = −〈J〉 − 2〈n2〉 = 0, (9)

i.e., the energy input rate 〈ξb∗
1 + ξ ∗b1〉 = 1 entering the

first equation determines the energy flux 〈J〉 ≡ 〈ib2
1b∗

2 +
c.c.〉/√χ = −1/2 between modes and the intensity of the
dissipating mode 〈n2〉 = 1/4. This regime corresponds to the
direct cascade, since the energy is pumped into the low-
frequency mode b1 and dissipates through the mode b2, which
has twice the frequency.

In the limit χ  1, the interaction between modes is
strong, and the energy transfer is fast, so one may expect
that the occupation numbers are close to energy equipartition
〈n1〉 = 2〈n2〉 corresponding to thermal equilibrium [6]. The
DNS shows that the marginal distributions of the mode am-
plitudes are indeed close to the Gaussian statistics with the
corresponding occupation numbers. Still, the phase between
the modes θ = arg(b2

1b∗
2) is unevenly distributed, which indi-

cates the presence of correlations between the modes [6].
In the opposite limit of weak interaction and strong noise,

χ � 1, one expects that the driven mode needs much higher
amplitude to provide for the flux: 〈n1〉 � 〈n2〉. In other words,
the energy distribution is far from thermal equipartition, and
the mode statistics is far from Gaussian independent modes.
For this reason, we say that the parameter χ plays the role
of the Reynolds number since it measures the deviation from
thermal equilibrium, despite the fact that as χ increases, the
nonlinear interaction between modes becomes weaker. One
may naively expect that if the interaction between modes is
weak, then the correlation will also be weak. However, just
the opposite is true. The need to transfer the flux 〈J〉, whose
value is determined above from the energy balance, makes
the modes strongly correlated precisely because of their weak
interaction. In this case, the asymptotic analytical solution for
the whole distribution function was argued to be singular [6]:

P (b1, b2) = 23/2

π3/2χ1/2
exp

(
− 2

χ
|b1|4

)
δ

(
b2 + ib2

1√
χ

)
. (10)

We will use this result later for comparison with the results of
our approach, which provides mutual validation.

Let us now apply the SoS optimization method described
in the previous section. To proceed, we need to specify an
ansatz for the auxiliary function Q. Note that the choice of
ansatz, taking into account the features of the system, for
example, the symmetries of dynamic equations, can reduce
computational cost and numerical imprecision [33–35]. We
have found that in our case the numerical procedure works
better if Q is a polynomial with respect to n1, n2, and J and
takes the monomials ni

1n j
2Jk with the total degree of mode

amplitudes less than d � 2i + 2 j + 3k. A more general ansatz
does not improve estimates for the correlation functions, but
the algorithm is less stable due to the expansion of the opti-
mization space. Let us emphasize that for small values of d ,
the bounds for the correlation functions can be obtained ana-
lytically, the computer algorithm operates for higher values of
d and improves the result.

We begin to present our results with the intensity of the
pumped mode. For d = 4 we obtain analytically [32]

χ1/2

2
√

2
� 〈n1〉 � 1

2

(
3 −

√
3 +

√
12 − 6

√
3 + χ

)
, (11)

and in the limit χ � 1, this implies χ1/2/2
√

2 � 〈n1〉 �√
χ/2. Inequality (11) means, in particular, that the intensity

of the pumped mode is much greater than the intensity of the
dissipated mode, and 〈n1〉/〈n2〉 ∝ √

χ . As the parameter d
increases, the numerically found upper and lower bounds for
d = 10 approach very closely the asymptotic 〈n1〉 = √

χ/2π

following from expression (10), see Fig. 1(a). In the opposite
case χ  1, the upper bound 〈n1〉 � 3 − √

3 does not depend
on χ in qualitative agreement with DNS. The lower bound is
not tight, and increasing the parameter d does not qualitatively
change its behavior. This can be explained by the fact that the
term produced by the white noise forcing in the optimization
problem (4) has a relatively small amplitude and, therefore,
the expression that is analyzed practically coincides with the
case of a deterministic problem, which has a trivial solution
b1 = b2 = 0, and for this reason the lower bound does not
exist. Methods for overcoming this issue are discussed in
Ref. [8], but we did not use them since the regime χ  1 is
less interesting for us from the physical point of view.

Similar results are also obtained for higher moments of n1.
For the second moment and d = 4 we analytically find [32]

χ2rl (χ ) �
〈
n2

1

〉
� χ

4
+ χ2ru(χ ), (12)

where rl (χ ) is the largest real root of the equation 1 − χ2r +
8χ3r2 − 16χ4r3 = 0 and ru(χ ) is the smallest positive real
root of the equation 1 + 16χ + (4χ + 152χ2)r + (348χ3 −
32χ4)r2 − 216χ5r3 + 16χ7r4 = 0. In the limit χ � 1, the
upper and lower bounds coincide with each other and there-
fore 〈n2

1〉 → χ/4, while in the opposite case χ  1, one
obtains 2−4/3χ2/3 � 〈n2

1〉 � 1.88, where the upper bound re-
flects scaling consistent with DNS, see Fig. 1(b). For even
higher moments of n1, the values in the limit χ � 1 can be
determined numerically with good accuracy since the upper
and lower bounds tend to each other as d increases (d = 10
gives the relative difference between upper and lower bounds
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FIG. 1. Average values of mode intensities (a), their fourth (b), and higher moments (c) for the direct cascade. Solid and dashed lines show
numerical (d = 10) and analytical (d = 4) results for the upper (red) and lower (blue) bounds. The square markers present results of DNS, and
dash-dotted lines correspond to asymptotics following from relation (10). Expressions for the asymptotic dependence are shown in the panels.

below 1% for χ > 102.) Analyzing the values of the moments,
one can conclude that the statistics of the mode b1 are essen-
tially non-Gaussian in agreement with expression (10), see
Fig. 1(c). This kind of analysis can help one to guess the
marginal distribution function if it is not known a priori, see
also Ref. [20].

Next, we turn to the dissipating mode. Its mean intensity is
determined exactly from the energy balance condition, 〈n2〉 =
1/4, and the upper and lower bounds for 〈n2

2〉 are shown
in Fig. 1(b). In the limit χ � 1, the reasonable bounds are
obtained for relatively large values of d � 6, so we do not
present analytical results. In the opposite case χ  1, the
bounds demonstrate scaling consistent with DNS, but they
are not close to each other. Analytically we obtain 1/16 �
〈n2

2〉 � 3/16 for d = 4 and χ  1 [32]. The analysis of higher
moments for χ � 1 is presented in Fig. 1(c), and the re-
sults are in agreement with the marginal distribution P(b2) =

21/2

π3/2|b2|e
−2|b2|2 following from expression (10).

The SoS programming method can also be used to analyze
correlations between modes. To estimate the relative phase
between modes, we rewrite the initial equations (6) and (7)
in terms of real variables ρ1 = |b1|, ρ2 = |b2|, θ = arg(b2

1b∗
2):

ρ̇1 = −2ρ1ρ2 sin θ√
χ

+ 1

4ρ1
+ ζ1(t )√

2
, (13)

ρ̇2 = ρ2
1 sin θ√

χ
− ρ2, (14)

θ̇ = ρ2
1 − 4ρ2

2

ρ2
√

χ
cos θ +

√
2ζ2(t )

ρ1
, (15)

where the overall phase drops out, and ζi(t ) are real Gaus-
sian noises with zero means and the pair correlation function
〈ζi(t )ζ j (t ′)〉 = δi jδ(t − t ′) [32]. Despite the right-hand sides
of these equations are not polynomial, for any functions Q
and φ that are polynomial with respect to ρ1, ρ2, and sin θ

the expressions in left-hand sides of Eqs. (4) and (5) are poly-
nomials divided by ρ2

1ρ2 > 0. Thus, to apply the algorithm,
it is sufficient to multiply the expression in the optimization
problems (4) and (5) by ρ2

1ρ2 > 0 to return it into the class
of polynomial functions, see details in Ref. [32]. Now the
ansatz for the function Q is a polynomial of ρ1, ρ2, and
sin θ of the power of d . Note that we are using sin θ instead

of θ as a variable. We have also found that the numerical
procedure gives better results if we solve the optimization
problem with the additional constraint 1 − sin2 θ � 0 [32].
The non-negativity of ρ1 and ρ2 can be taken into account
in the algorithm by substituting ρ1 = η2

1 and ρ2 = η2
2 for new

independent variables η1 and η2.
Figure 2 shows the upper and lower bounds on 〈cos2 θ〉.

The value of 〈cos2 θ〉 → 0 as χ → ∞, which means that the
phase θ → π/2 (the point θ = −π/2 is not suitable because
〈J〉 ≡ 〈−2ρ2

1ρ2 sin θ〉/√χ = −1/2 < 0). The power-law fit
〈cos2 θ〉 ∝ χ−q results in q = 1/3 and q = 2/5 for the up-
per and lower bounds, respectively. We could not determine
the bounds analytically since the algorithm gives nontrivial
estimates only for large values of d � 6. The overall picture
is that the distribution function of the phase between the
modes has a peak at θ = π/2, and its width decreases in a
power-law manner with the parameter χ . These results com-
plement Ref. [6], in which the narrowing of the phase
distribution was not quantified.

FIG. 2. Relative phase between modes for the direct cascade:
numerically obtained upper (red) and lower (blue) bounds (circles,
triangles, and diamonds are for d = 10, 12, 14); the square markers
present results of DNS.
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IV. INVERSE CASCADE

Now we turn to the inverse cascade where the high-
frequency mode is pumped, and the low-frequency mode
dissipates

ḃ1 = −2ib∗
1b2√
χ

− b1, (16)

ḃ2 = − ib2
1√
χ

+ ξ (t ). (17)

In the statistical steady state, the equations on the second
moments n1 ≡ |b2

1| and n2 ≡ |b2
2| read:

〈ṅ1〉 = 2〈J〉 − 2〈n1〉 = 0, (18)

〈ṅ2〉 = −〈J〉 + 1 = 0, (19)

and we find 〈n1〉 = 1 and 〈J〉 ≡ 〈ib2
1b∗

2 + c.c.〉/√χ = 1,
which is true for any value of χ . The energy flux between
modes 〈J〉 is now positive, which corresponds to the transfer
of energy from the high-frequency mode to the low-frequency
one. As in the case of a direct cascade, in the limit χ  1,
one can expect the occupation numbers to be close to the
energy equipartition 〈n1〉 = 2〈n2〉, although the statistics is
not expected to be close to the product of two Gaussians corre-
sponding to thermal equilibrium. In the opposite case χ � 1,
the system is far from thermal equilibrium, and the pumped
mode is expected to have larger intensity, 〈n2〉 � 〈n1〉. All
these expectations were confirmed by DNS [6].

We found that we can get better bounds for correlation
functions if we rewrite dynamic equations (16) and (17) in
terms of real variables ρ1 = |b1|, ρ2 = |b2|, θ = arg(b2

1b∗
2):

ρ̇1 = −2ρ1ρ2 sin θ√
χ

− ρ1, (20)

ρ̇2 = ρ2
1 sin θ√

χ
+ 1

4ρ2
+ ζ1(t )√

2
, (21)

θ̇ = ρ2
1 − 4ρ2

2

ρ2
√

χ
cos θ + ζ2(t )√

2ρ2

, (22)

where the overall phase drops out [32]. We also found that
in contrast to the direct cascade, it is useful to extend the
ansatz for the function Q by adding the term log ρ1. The term

log ρ2 does not have a noticeable effect on the results. The
left-hand sides of Eqs. (4) and (5) should be multiplied by
ρ2

2 > 0 so that they become polynomial and we can apply the
SDP algorithm to solve the optimization problem [32].

In contrast to the direct cascade, we were able to obtain
only lower bounds for the correlation functions in the case
of the inverse cascade. The algorithm does not find a feasible
solution for the upper bounds, even for a relatively large pa-
rameter value d = 10. Fortunately, the lower bounds are quite
informative precisely in the turbulent limit of large χ which
we focus on. In particular, for the intensity of the pumped
mode, we analytically find [32]

〈n2〉 � χ + 1

4
, (23)

and both asymptotics at χ  1 and χ � 1 give a scaling
that agrees qualitatively with DNS, see Fig. 3(a). Physically,
inequality (23) means that in the limit χ � 1, the intensity
of the pumped mode is much greater than the intensity of
the dissipating mode, 〈n2〉/〈n1〉 � χ/4. We thus have shown
that deviation from the equipartition is much stronger in the
inverse cascade than in the direct one (where the ratio is
∝ √

χ).
Similarly, we find for the amplitude fourth moment [32]

〈
n2

2

〉
� (χ + 1)2

16
,

〈
n2

1

〉
� χ + 4

3
. (24)

The first condition is trivial and follows from the positive
variance of the pumped mode intensity. The second condition
means that in the limit χ � 1, the ratio 〈n2

1〉/〈n1〉2 � χ/3,
i.e., the statistics of the dissipated mode is intermittent. This
agrees with the analysis carried out in Ref. [6], where it was
shown that the ρ1 dynamics is a sequence of burst events, see
also Fig. 4(a). Between bursts, the amplitude ρ1 is close to
zero, and during short bursts with a duration of order unity,
ρ1 reaches large values ∼√

χ . The time interval between
bursts is ∼χ , and the correlation functions of ρ1 saturate
on bursts. In Fig. 3(b), we compare the obtained inequali-
ties with DNS. All asymptotics demonstrate correct scaling
with the parameter χ . Note that analytical inequalities are
improved by the numerical algorithm when we increase the
parameter d .

FIG. 3. Average values of mode intensities (a), their fourth moments (b), and the relative phase (c) for the inverse cascade. Solid and dashed
lines show numerical (d = 10) and analytical results for upper and lower bounds. The square markers present results of DNS, and dash-dotted
lines correspond to asymptotic bounds in the limit χ � 1. Expressions for the analytic results are shown in the panels.
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FIG. 4. (a) DNS fragment of the mode dynamics for the inverse cascade demonstrate intermittency of the dissipated mode, log10 χ = 2.4.
(b) Probability density for the pumped mode in the inverse cascade. The dashed line corresponds to the exponential distribution, P(x) = e−x .
(c) Reduced probability density F (n1/χ ) for the dissipating mode in the inverse cascade, see Eq. (27). The inset shows the same data in the
log-log scale, and the dashed line corresponds to the numerical fit F (x) = 1.7x−1e−1.7x . The bin size is 0.05 for the main panel and 0.001 for
the inset.

Figure 3(c) shows the upper bound for 〈cos2 θ〉 � U ,
which is equivalent to the lower bound for 〈sin2 θ〉 � 1 −
U . In the limit χ � 1, the value of 〈cos2 θ〉 → 0 and it
means that the phase θ → −π/2, since the value of 〈J〉 =
〈−2ρ2

1ρ2 sin θ〉/√χ = 1. The power-law fit 〈cos2 θ〉 ∝ χ−q

results in q = 1/2, although the interval is short and with
increasing χ we have to increase d so that the algorithm
finds a feasible solution. Compared to the direct cascade, the
phase fluctuations in the inverse cascade are smaller for the
same value of χ . Based on this observation, we can simplify
equations (20)–(22) by assuming that the relative phase is
locked on θ = −π/2. Then we obtain

ρ̇1 = 2ρ1ρ2√
χ

− ρ1, (25)

ρ̇2 = − ρ2
1√
χ

+ 1

4ρ2
+ ζ (t )√

2
, (26)

and these equations can be used to improve the above bounds
in the limit χ � 1. In particular, for the intensity of the
pumped mode, we analytically obtain 〈n2〉 � 5χ/16 [32],
which is closer to DNS results, see Fig. 3(a).

The reduction in the number of degrees of freedom allows
us to use larger values of parameter d in the limit χ � 1 since
the size of the optimization space is also reduced. Moreover,
we were able to obtain upper bounds (d = 32) for correlation
functions 〈n2〉 and 〈n2

1〉, which are close to the lower bounds
(the difference is about 5%), see Figs. 3(a) and 3(b). To
estimate the higher moments of both modes, we will further
use the values of lower bounds obtained for d = 32. In this
way, for the pumped mode, we found the usual scaling 〈nk

2〉 ∝
〈n2〉k [32]. In the intervals between bursts, the amplitude ρ1

is close to zero, and, according to Eq. (17), one can expect
that the statistics of the pumped mode is close to Gaussian.
The value 〈n2〉 can be estimated as a diffusion displacement
during the time between bursts, 〈n2〉 ∼ χ , in agreement with
the results reported earlier. The DNS data for the probability
density function confirm this qualitative analysis, although the
agreement is not perfect, see Fig. 4(b).

For the dissipating mode, we found that 〈nk
1〉 ∝ χ k−1 [32],

and such scaling is a fingerprint of intermittence discussed
above. This suggests that in the limit χ � 1, the distribution

function of the dissipating mode has the following form:

P(n1/χ ) = 1

χ
F (n1/χ ). (27)

DNS confirms this hypothesis and Fig. 4(c) shows the reduced
probability density function F (x), which is proportional to
1/x for x  1 and has an exponential cutoff for x � 1.

A simplified model for the dynamics of the dissipating
mode explains the exponent −1 of the power law and resolves
the singularity at x → 0. During the burst, the amplitude
ρ2 of the pumped mode quickly diminishes [see Fig. 4(a)];
therefore the second term in Eq. (16) dominates and the sub-
sequent dynamics of the dissipating mode corresponds to the
exponential decay, ẋ = −2x. For a given x, the probability
density is determined by the time spent in the vicinity of x
and thus proportional to F (x) ∝ 1/|ẋ| ∝ 1/x. The exponential
dynamics is valid until the amplitude of the pumped mode is
below ∼√

χ . In this regime, the pumped mode grows due to
diffusion and reaches the level of

√
χ in time of the order of

χ , so the dependence F (x) ∝ 1/x holds for x � e−2χ . This
value should be taken as the lower limit of integration in the
expression for the total probability to resolve the singularity.
Since the minimum value of x depends on the parameter χ , the
height of the first bin on the histograms is proportional to χ .
Except for this, the shape of the curve F (n1/χ ) is universal,
see Fig. 4(c).

When calculating the positive moments of x, the singu-
larity disappears and the lower limit of integration can be
replaced by zero. From the condition 〈n1〉 = 1 we obtain∫ ∞

0 xF (x)dx = 1, and so the function has the form F (x) �
ax−1e−ax. Numerical fitting leads to a ≈ 1.7, and the corre-
sponding curve is shown in Fig. 4(c) by a dashed line.

V. CONCLUSION

So what have we learned about the statistics of the far
from the equilibrium state of the system using SoS program-
ming? We obtained computer-aided analytical and numerical
bounds for correlation functions in the system of two inter-
acting modes in the regimes corresponding to both direct and
inverse energy cascades. The bounds revealed the scaling of
mode intensities and their higher moments with the Reynolds
number χ , which shows how far the system is from the energy
equipartition corresponding to the thermal equilibrium. By
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combining scaling dependence with DNS, we collapsed the
probability densities of dissipating and pumped modes on the
universal curves in a highly intermittent regime of the inverse
energy cascade and determined their shapes. Analyzing cross-
mode correlations, we showed that the relative phase between
modes tends to π/2 and −π/2 in the direct and inverse en-
ergy cascades, respectively, and estimated the rates of these
transitions.

Let us also note that the direct and inverse cascades are
very different, although the equations at first glance may seem
similar. In the direct cascade, the dissipating mode is excited
by the pumped mode in an additive way. For the inverse
cascade, this process is multiplicative, and the general expe-
rience suggests that this regime is more complicated because
of higher temporal intermittency. Our analysis supports this
intuition: In the inverse cascade we were able to obtain only
lower bounds for the correlation functions, while for the direct
cascade, we obtained both lower and upper bounds, and they
are so close that we can determine the numerical values of the
correlation functions with an accuracy comparable to DNS.

It would be promising to extend the present study to
other shell models of turbulence with longer chains of
resonantly interacting modes [5,36]. The main difficulty is
that for the long chains the extreme modes in the correlation

function of interest will be coupled to the modes adjacent
to them, and therefore the dynamic equations for the subset
of modes involved in the correlation function are not closed.
A similar problem arose when applying the sum-of-squares
method to the Galerkin expansion of the Navier-Stokes
equation in Ref. [7]. Although the generalization is not
straightforward, the development of a complementary
approach for this analysis significantly advances this area of
research.
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extremal invariant measures of nonlinear dynamical systems
and markov processes, J. Nonlin. Sci. 31, 14 (2021).

054114-7

https://doi.org/10.1146/annurev.fluid.35.101101.161122
https://doi.org/10.1103/PhysRevX.11.021063
https://doi.org/10.1103/PhysRevE.104.014129
https://doi.org/10.1098/rsta.2013.0350
https://doi.org/10.1137/15M1053347
https://doi.org/10.1007/s10107-003-0387-5
https://doi.org/10.1016/j.physd.2011.12.008
https://doi.org/10.1137/16M107801X
https://doi.org/10.1007/s00332-020-09658-1


PARFENYEV, MOGILEVSKIY, AND FALKOVICH PHYSICAL REVIEW E 107, 054114 (2023)

[21] M. Tacchi, C. Cardozo, D. Henrion, and J. B. Lasserre, Approx-
imating regions of attraction of a sparse polynomial differential
system, IFAC-PapersOnLine 53, 3266 (2020).

[22] A. Ataei-Esfahani and Q. Wang, Nonlinear control design of a
hypersonic aircraft using sum-of-squares method, Proceedings
of the American Control Conference (IEEE, Los Alamitos, CA,
2007), pp. 5278–5283.

[23] A. Chakraborty, P. Seiler, and G. Balas, Applications of linear
and nonlinear robustness analysis techniques to the f/a-18 flight
control laws, Proceedings of the AIAA Guidance, Navigation,
and Control Conference (AIAA, Reston, CA, 2009), p. 5675.

[24] J. Miller, T. Dai, and M. Sznaier, Data-driven stabilizing and
robust control ofdiscrete-time linear systems with error in vari-
ables, arXiv:2210.13430.

[25] A. Majumdar, G. Hall, and A. A. Ahmadi, Recent scalability
improvements for semidefinite programming with applications
in machine learning, control, and robotics, Annu. Rev. Contr.
Robot. Auton. Syst. 3, 331 (2020).

[26] M. Laurent, Sums of squares, moment matrices and optimiza-
tion over polynomials, Emerging Applications of Algebraic
Geometry, edited by M. Putinar and S. Sullivant (Springer New
York, New York, 2009), pp. 157–270.

[27] J. B. Lasserre, An Introduction to Polynomial and Semi-
Algebraic Optimization, Cambridge Texts in Applied Mathe-
matics (Cambridge University Press, Cambridge, UK, 2015).

[28] E. D. Andersen, B. Jensen, J. Jensen, R. Sandvik, and
U. Worsøe, Mosek version 6, Technical Report TR-2009-3,
MOSEK (2009).

[29] K. Fujisawa, M. Fukuda, K. Kobayashi, M. Kojima, K. Nakata,
M. Nakata, and M. Yamashita, SDPA (SemiDefinite Program-
ming Algorithm) and SDPA-GMP User’s Manual—version
7.1.1, Res. Rep. Math. Comput. Sci. (2008).

[30] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for opti-
mization over symmetric cones, Optim. Methods Softw. 11, 625
(1999).

[31] R. H. Tütüncü, K.-C. Toh, and M. J. Todd, Solving semidefinite-
quadratic-linear programs using SDPT3, Math. Program. 95,
189 (2003).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.107.054114 for technical details on analyt-
ical and numerical computations of bounds for the correlation-
functions.

[33] M. V. Lakshmi, G. Fantuzzi, J. D. Fernández-Caballero, Y.
Hwang, and S. I. Chernyshenko, Finding extremal periodic
orbits with polynomial optimization, with application to a nine-
mode model of shear flow, SIAM J. Appl. Dyn. Syst. 19, 763
(2020).

[34] H. Oeri and D. Goluskin, Convex computation of maximal
lyapunov exponents, arXiv:2212.07565.

[35] D. Goluskin and G. Fantuzzi, Bounds on mean energy
in the kuramoto–sivashinsky equation computed using
semidefinite programming, Nonlinearity 32, 1705
(2019).

[36] M. Shavit, N. Vladimirova, and G. Falkovich, Emerging scale
invariance in a model of turbulence of vortices and waves, Phil.
Trans. R. Soc. A. 380, 20210080 (2022).

054114-8

https://doi.org/10.1016/j.ifacol.2020.12.1488
http://arxiv.org/abs/arXiv:2210.13430
https://doi.org/10.1146/annurev-control-091819-074326
https://doi.org/10.1080/10556789908805766
https://doi.org/10.1007/s10107-002-0347-5
http://link.aps.org/supplemental/10.1103/PhysRevE.107.054114
https://doi.org/10.1137/19M1267647
http://arxiv.org/abs/arXiv:2212.07565
https://doi.org/10.1088/1361-6544/ab018b
https://doi.org/10.1098/rsta.2021.0080

