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Linear diffusions are used to model a large number of stochastic processes in physics, including small
mechanical and electrical systems perturbed by thermal noise, as well as Brownian particles controlled by
electrical and optical forces. Here we use techniques from large deviation theory to study the statistics of
time-integrated functionals of linear diffusions, considering three classes of functionals or observables relevant
for nonequilibrium systems which involve linear or quadratic integrals of the state in time. For these, we derive
exact results for the scaled cumulant generating function and the rate function, characterizing the fluctuations of
observables in the long-time limit, and study in an exact way the set of paths or effective process that underlies
these fluctuations. The results give a complete description of how fluctuations arise in linear diffusions in terms
of effective forces that remain linear in the state or, alternatively, in terms of fluctuating densities and currents
that solve Riccati-type equations. We illustrate these results using two common nonequilibrium models, namely,
transverse diffusions in two dimensions involving a nonconservative rotating force, and two interacting particles

in contact with heat baths at different temperatures.
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I. INTRODUCTION

Stochastic differential equations (SDEs) are widely used
in science and engineering to model the dynamics of systems
driven by both deterministic forces and external noise sources
[1-4]. In many cases, the force acting on a system can be taken
or approximated to be linear in the state, giving rise to linear
SDEs, which are also referred to as linear diffusions, linear
Langevin equations, or Ornstein-Uhlenbeck processes. These
are used in physics to model many different systems evolving
close to fixed points or in weak force regimes, including small
mechanical systems perturbed by thermal noise [5-8], and
Brownian particles manipulated by electrical or laser fields
[8-10]. Because they are exactly solvable, linear SDEs are
also used as basic models of nonequilibrium systems to study
the effect of nonconservative forces, temperature gradients,
and the breaking of time-reversal symmetry, in general, on the
steady state of these systems, determined by their stationary
density and current [11-13].

In this work, we study the statistics of dynamical observ-
ables of linear SDEs, defined as time-integrated functionals
of the paths or trajectories of an SDE. These quantities are
related in physics to thermodynamic quantities, such as the
work done on a system over time or the heat exchanged
with a bath, and thus play a prominent role when investi-
gating the efficiency of control and biological processes that
fluctuate at the micro- and mesoscales [13—15]. The study
of these fluctuations using techniques from large deviation
theory [16—19] has led in recent years to many general results

*johan.dubuisson @ gmail.com
htouchette @sun.ac.za

2470-0045/2023/107(5)/054111(18)

054111-1

and insights about the physics of nonequilibrium systems,
related to fluctuation symmetries [20-23], fluctuation phase
transitions [24-30], and thermodynamic uncertainty relations
or bounds connecting the variance of current fluctuations to
dissipation [31-35].

Another important insight coming from large deviation the-
ory is that fluctuations of observables in nonequilibrium pro-
cesses arise from density and current fluctuations that orga-
nize themselves in an “optimal” way so as to minimize a cer-
tain cost or loss [36—42], similarly to noise-driven transitions
in chemical systems which are known to follow optimal “path-
ways” [43-45]. This observation has proven useful for under-
standing the transport properties of many nonequilibrium sys-
tems, including interacting particle systems driven in nonequi-
librium states by boundary reservoirs [36-38], and generalizes
at the level of fluctuations the idea that the knowledge of
the stationary density and the current of a Markov process is
sufficient to completely characterize its stationary state [11].

This description of nonequilibrium systems in terms of
density and current fluctuations is appealing physically, but
cannot be developed easily in practice because determining
the large deviation functions or potentials that describe these
fluctuations requires that we solve nontrivial spectral or opti-
mization problems [18], whose dimension increases with the
size of the system or model considered. For this reason, there
are only a few models for which these functions can be calcu-
lated exactly, including lattice jump processes [24-26,46—48],
low-dimensional SDEs [49-52], as well as simple interacting
particle systems, such as the one-dimensional exclusion pro-
cess [53-57] or the zero-range process [58—61], which can
also be solved analytically in the macroscopic limit using
field-theory techniques from the macroscopic fluctuation the-
ory [38].
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Here we derive analytical results for the dynamical large
deviations of linear SDEs, showing that this type of process
admits exact solutions for three classes of observables, de-
fined, respectively, as linear integrals of the state in time,
quadratic integrals of the state, and stochastic integrals in-
volving a linear function of the state multiplied by the
increment of the process in time. Each of these arises nat-
urally when dealing with linear SDEs, as shown in the
next sections. The third class of observables, in particular,
arises when defining thermodynamic quantities, such as the
nonequilibrium work or the entropy production, related to the
current.

Large deviations of linear SDEs have been studied for
specific examples of linear SDEs and observables, no-
tably, quadratic observables [62—-69], the entropy production
[69-74], the nonequilibrium work [75-78], energy currents
in spin dynamics [79], and the heat exchanged by harmonic
oscillators with a heat bath [80-85]. Our results unify and
generalize these studies by considering linear SDEs in any
dimension and by extending the class of observables consid-
ered to the three classes mentioned above. For these, we give
explicit expressions, involving Riccati-type equations, for the
scaled cumulant generating function and the rate function,
which characterize the probability distribution of dynamical
observables in the long-time limit. These two functions are
important in physics, since they also determine symmetries
in the distribution of observables, referred to as fluctuation
relations [20-23], and sharp transitions between different fluc-
tuation regimes [24-30].

Compared to previous studies, we also provide a complete
description of the way fluctuations arise in terms of optimal
density and current fluctuations, which modify the stationary
density and current of the diffusion considered or, equiva-
lently, in terms of an effective diffusion process that modifies
the force or drift of the original diffusion [86-89]. This ef-
fective process has been studied extensively in recent years
for many examples of jump processes [90-94] and diffusions
[50-52,95-97] used as models of nonequilibrium systems,
and has been shown in this context to be useful for understand-
ing transitions between different fluctuation regimes, among
other phenomena. One important property of this process
that we uncover is that, for the three types of observables
considered, the effective process is also described by a linear
SDE, which means that it is characterized by a modified
Gaussian stationary density and current corresponding, in the
original SDE, to the optimal density and current fluctuations
that give rise to an observable fluctuation. In this sense these
observables can be considered as “closed” or “sufficient” for
the effective process to remain in the same SDE class as the
original model.

The results that we obtain provide in the end a complete
and exactly solvable framework for studying the large de-
viations of linear diffusions, which can be used to predict
their steady-state and fluctuation properties, to determine from
observed trajectories whether a system is reversible or irre-
versible, and, from a more applied perspective, to understand
the convergence of Monte Carlo simulations [98]. We believe
that they can also be applied, beyond linear systems, to ap-
proximate the large deviation functions of nonlinear SDEs or
nonlinear observables near fixed points of the corresponding

noiseless dynamics, at least in the Gaussian regime of fluctua-
tions, characterized by a mean and variance, which also follow
from our results. This can be applied potentially to study the
large deviations of more complex systems and to develop new
numerical algorithms for computing large deviation functions.
We comment on these issues in the concluding section.

To illustrate our results, we consider two linear mod-
els in two dimensions, commonly used in physics to
describe nonequilibrium processes, namely, transverse diffu-
sions driven by a nonconservative and thus nonequilibrium
force that generates a rotating drift in the plane, and the
so-called Brownian gyrator, which consists of two particles
interacting via a linear (spring) force, put in contact with heat
baths at different temperatures. For each of these models, we
show for specific observables how the stationary density and
current are changed when fluctuations are observed, and how
these changes depend on nonconservative forces being applied
or on external reservoirs. In some cases, the current can vanish
at the fluctuation level, implying that an irreversible system
can “behave” in a reversible way when it is observed to fluc-
tuate in a specific way or direction.

II. MODEL AND LARGE DEVIATIONS
A. Linear SDEs

The systems that we consider are underdamped diffusions
or Langevin-type systems, described by the linear SDE

dX(t) = —MX (t)dt + cdW (1), (1)

where X (r) € R” is the system’s state at time 7, M is the drift
matrix defining the linear force or drift acting on X (¢), and
W() € R" is a vector of independent Brownian or Wiener
motions acting as the noise source, which is multiplied by the
noise matrix o of size n x m. For the remaining, we assume
that the diffusion matrix D = oo, where T stands for the
transpose, is invertible.

Linear SDEs are used in physics to model many differ-
ent systems, including nonequilibrium processes driven by
temperature or chemical gradients [1], small cantilever and
torsion systems perturbed by thermal noise [5—8], Brownian
particles manipulated by laser tweezers [8—10], and electric
circuits perturbed by Nyquist or artificial noise [99—101]. In
control theory, they are also widely used as exact or ap-
proximate models of feedback-controlled systems, forming
the basis of the classical linear-quadratic-Gaussian control
problem [102-104]. Naturally, part of the interest for linear
SDEs comes from the fact that they can be solved exactly
to express X (¢) as an integral of the noise. Moreover, the
probability density p(x,t) can be found exactly by solving
the Fokker-Planck equation, yielding a Gaussian distribution
at all times ¢ > 0 when the system is initialized at X (0) = xy,
characterized by a time-dependent mean and covariance ma-
trix (see [4, Sec. 3.7]).

Here we focus on the long-time behavior of the SDE (1) by
further assuming that the matrix M, which is not necessarily
symmetric, is positive definite, meaning that its eigenvalues
have positive real parts. In this case, it is known that the SDE
is ergodic and, thus, has a unique stationary density, given
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explicitly [4] by

% _ 1 _l -1
p (x)_”—(Zn)ndetCeXp( z(x,C x)), 2)

where C, the covariance matrix, satisfies the Lyapunov
equation

D=MC+CM". (3)

Here we use {(a, b) to represent the standard vector inner prod-
uctin R”. In the long-time limit, the SDE is also characterized
by a stationary current, defined in general by

J*(x) = F(x)p*(x) — iDVp*(x), 4)

where F(x) is the general force or drift entering in an SDE,
which for F(x) = —Mx and p*(x) as given in (2) yields the
current

J*(x) = Hxp*(x), ®)

where
D
H = EC*1 — M. (6)

For the remaining, it is important to note that p* and J*
determine F uniquely for a fixed D via (4), which means
that their knowledge can be used to identify an SDE, whether
linear or not. Moreover, the stationary current determines the
reversibility of an SDE, that is, whether the probability of any
given path over the time is the same as the probability of
that path reversed in time [11]. If J*(x) = 0 for all x, then
the SDE is reversible, describing in the long-time limit an
equilibrium steady state, whereas if J*(x) # 0, then the SDE
is irreversible and describes a nonequilibrium steady state
violating the condition of detailed balance.

For linear SDEs, we can distinguish two sources of
nonequilibrium behavior: a nonsymmetric drift matrix M,
leading to a nonconservative F that does not follow from
the gradient of a potential, and a diffusion matrix D not pro-
portional to the identity matrix I, related to heat baths with
different temperatures or correlated noise sources. We study
examples of these cases in Sec. V. Of course, a nonsymmetric
M and D I can still lead to an equilibrium state if they are
such that H = 0.

B. Observables

For a given linear SDE, we are interested in obtaining in-
formation about the long-time form of the probability density
p(Ar = a) of a dynamical observable Ay, which is a time-
averaged function of the state X (#). We consider, specifically,
three classes of observables:

(1) Linear additive observables of the form

1 T
Ar=r / (0. X(0))dr, )
0

where 7 is an arbitrary vector in R";
(2) Quadratic observables, defined as

1 T
Ar = ?/ (X (1), 0X(1))dt, ®)
0

where Q is assumed, without loss of generality, to be a sym-
metric n X n matrix;

(3) Linear current-type observables, defined in terms of the
increments of the SDE as

T
Ay = l/ IX(t)odX(t), €))
T Jo

where I' is an arbitrary n x n matrix and o denotes the scalar
product taken according to the Stratonovich convention or
calculus.

These observables are important in physics, as they include
many quantities that can be measured in practice, such as the
mechanical work done on a nonequilibrium process, the heat
transferred in time between a system and its environment,
and the entropy production, which is a measure of the irre-
versibility of stochastic processes [13—15]. In control theory,
the quadratic observable is also related to quadratic cost func-
tions or Lagrangians to be minimized to determine the optimal
control inputs in steady-state control systems [102—104]. We
study specific examples in Sec. V, showing how the vector
n and matrices Q and I are to be chosen depending on the
observable considered.

C. Large deviation principle

Finding the probability density of A is difficult in general,
even for linear SDEs. However, it is known from large devi-
ation theory [16—18,105—-107] that this density often scales in
the limit of large integration times 7" according to

p(Ar = a) ~ ¢ 1@, (10)

so the problem of finding p(A7 = a) is simplified to the prob-
lem of finding the exponent I(a), called the rate function.
The meaning of this approximation is that the dominant part
of p(Ar = a) as T becomes large is a decaying exponential
controlled by I(a), so that corrections are subexponential in
T. When this holds, A7 is said to satisfy the large deviation
principle (LDP) with rate function I(a) [106]. Equivalently,
Ar is said to satisfy the LDP if the limit

. 1
Am = Inp(Ar = a) = I(a) Y

exists and yields a nontrivial rate function.

The rate function is generally convex for ergodic Markov
processes and has a unique minimum and zero, denoted here
by a*, which corresponds to the typical value of Ar where
p(Ar = a) concentrates as T — oo [106]. The LDP shows
that this concentration is exponential with 7', so that fluctua-
tions of Ay away from a* are exponentially unlikely with the
integration time.

The typical value a* also corresponds to the stationary
expectation or mean of Ay and so can be calculated from
p* or J*, depending on the observable considered. For linear
additive observables, we trivially have

ot = / (n.x) p*(x)dx = O, (12)
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since p* has zero mean, whereas for quadratic observables, a*
is a modified second moment of p*:

at = / (x, Ox) p*(x)dx = Tr(QC). (13)
Rn

The result in both cases involves only p*, and so Ar is said to
be a density-type observable. For the third class of observable
considered, we have instead

at = / (Tx, J*(x))dx = Tr(TTHO), (14)

which explains why we refer to it as a current-type observable.
In particular, a* = O for this observable if J* = 0.

D. Large deviation functions

To find the rate function of the three classes of observables
defined above, we use the Géartner-Ellis theorem [106], which
expresses /(a) in terms of another function A(k), known as the
scaled cumulant generating function (SCGF) and defined by

1
wk) = lim ?lnE[ekTAT], (15)

where E[-] denotes the expectation. Provided that A(k) exists
and is differentiable, then A satisfies the LDP, and its rate
function is given by the Legendre transform of the SCGF
[106]:

I(a) = kaa — A(ka), (16)
with &, the unique root of
N (k) =a. (17)

The advantage of using the SCGF for obtaining the rate
function is that the generating function of A7 conditioned on
X (0) = x, defined by

Gi(x, 1) = E[¢*|X (0) = x], (18)
satisfies the linear equation
0 Gy(x, 1) = Ly Gy(x, 1), (19)

where £ is a modification of the generator of the SDE, known
as the tilted generator, which depends in our case on M, D
and the observable considered [18]. We give in the next sec-
tion the explicit expression of this operator as we consider the
three observables individually. The linear equation defined by
this operator is the well-known Feynman-Kac (FK) equation,
which can be solved from the initial condition Gi(x,0) =1
to obtain Gy (x, t) and, in turn, A(k) by taking the long-time
limit of this solution, which does not depend in general on the
initial condition because of the ergodicity of the process.

Alternatively, we can use the fact that the FK equation is
linear to expand Gy (x, ) in a complete basis of biorthogonal
eigenfunctions to obtain the SCGF, under mild conditions,
from the dominant eigenvalue of L£;. The SCGF can then
be found by solving the following spectral problem for the
dominant eigenvalue [18]:

Lyri(x) = A(k)r(x). (20)

Since the tilted generator L is not generally Hermitian, this
spectral equation has to be considered in conjunction with the

adjoint equation
L) = k)l (x), (21)

where L’,t is the adjoint of £; and [; is the eigenfunction
of L‘Z associated with its dominant eigenvalue [18]. For
convenience, we take these eigenfunctions to satisfy the nor-
malization conditions

/ () (x)dx =1 (22)
and
/ L(x)dx = 1. (23)

The problem of obtaining the rate function is therefore re-
duced to the problem of solving the FK equation or solving
a particular spectral problem for the process and observable
considered.

E. Effective process

The spectral problem (20) determines not only the SCGF
and, in turn, the rate function characterizing the likelihood of
the fluctuations of A7, but also provides a way to understand
how these fluctuations arise in the long-time limit in terms of
an effective process that describes the subset of trajectories
leading to a given fluctuation A7 = a [86—89]. This effective
process, which is also called the auxiliary, driven or fluc-
tuation process, was studied extensively for jump processes
[90-94] and SDEs [50-52,95-97]. In the latter case, it takes
the form of a modified diffusion X (¢) satisfying the SDE

dX () =F (X (@))dt +odW(t), (24)

which has the same noise matrix o as that of the original
process, but with the effective drift F given by

Fi(x)=F(x)+ DVinr(x) (25)
for the additive observables (here linear and quadratic) and
F;.(x) =F(x)+ DkI'x + VInri(x)] (26)

in the case of linear-current observables [87]. Here F(x) =
—Mx is again the original drift of the linear SDE, while r;(x)
is the eigenfunction related to the dominant eigenvalue and
SCGF A (k). Moreover, the value k is set for a given fluctuation
A7 = ato k,, via the duality relation (17), which plays a role
analogous to the temperature-energy relation in equilibrium
statistical mechanics [87].

The effective process or effective SDE is also ergodic [87]
and, therefore, has a unique stationary density, known to be
given by

prx) = re(e)l(x), 27)
and a stationary current, given in general by
Ji(x) = Fr(x)pi(x) — 3DV pi(x). (28)

We study these modifications of the density and current, as
well as the effective SDE supporting them, in the next sec-
tions for the three observables of interest. Since the effective
process is ergodic, it also has a stationary value of A7, denoted
in the remaining by g}, and given as in Egs. (12)—(14) by
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replacing p* and J* with p} and J}, respectively. Mathemat-
ically, a; is also the inverse function of k,, following the
duality relation (17), so that aj = A"(k).

The effective SDE can be interpreted, as mentioned, as the
SDE describing the subset of trajectories giving rise in the
long-time limit to a fluctuation Ay = a, which has pk as its
stationary density, J; as its stationary current, and a; =aas
its stationary and typlcal value of A7 [87]. In general, p = p*
and J§; = J* for k = 0, since the original process is not mod-
ified when observing its typical value A7 = a*. Alternatively,
it is known that the effective process can be interpreted as an
optimal control process, whose drift minimizes a certain cost
function in the long-time limit, related to the relative entropy
[88]. From this point of view, the modified density and current
can be seen as optimal density and current fluctuations leading
to or creating a given fluctuation Ay = a. We further discuss
these interpretations in Sec. IV and refer to the original works
[86—89,92] on the effective process for more details.

III. MAIN RESULTS

We derive in this section the exact generating function of
Ar for the three classes of observables defined before by solv-
ing the FK equation, and obtain from the result their SCGF
and rate function by investigating the long-time limit of the
generating function. We also obtain explicit expressions for
the dominant eigenfunction ry, which allows us to study the
effective SDE, providing us with a clear understanding of how
fluctuations of these observables arise from modified forces,
densities, and currents in linear diffusions. To be concise, we
provide only the final results for the various functions consid-
ered, which can be checked by direct substitution into the FK
equation or the spectral equations. For more details about the
derivation of these solutions, which follow by discretizing and
iteratively solving the FK equation in time, we refer to [108].

A. Linear additive observables

We begin our analysis with the linear additive observable
A7, defined in (7), which involves the vector » in the linear
contraction with the state X (¢) of the linear SDE (1). For this
observable, the generating function Gy (x, t) satisfies the FK
equation (19) with the tilted generator

Ly =—(Mx, V) + 3(V,DV) + k(y,x), (29)

which is solved, for the initial condition G (x, 0) = 1, by
Gi(x, 1) = el g3 Jo (0i()Dvi(s) ds (30)
where vi(t) is a vector in R” satisfying the differential
equation
dvi (1)
dt

with initial condition v;(0) = 0.
This gives the exact generating function of A7 at all times
> 0. To extract the SCGF from this result, we note that (31)
has a stationary solution v} given explicitly by

=kn— Mo (1) 31)

v =kM") !y, (32)

which is an attractive fixed point for all k € R, since M is
assumed to be positive definite. As a result, we obtain from
the definition (15) of the SCGF,

k) = 5 (v, Dvy), (33)

or, more explicitly,

k2
Ay = - (MT) ", DMTY ). (34)
The fact that the result is quadratic in k£ means that the fluctu-
ations of Ay are Gaussian, as expected for linear integrals of
Gaussian processes, with zero asymptotic mean and asymp-
totic variance

A(0) = (MT) 'y, DM ). (35)

This can be seen more explicitly by taking the Legendre
transform of A(k), which yields the quadratic rate function

aZ

2(MT) "'y, DMT)" 1)

To understand physically how these Gaussian fluctuations
arise, we note that G (x, t) is known [87] to scale in the long-
time limit according to

Gi(x, 1) ~ rp(x)e™®), (37)

I(a) =

(36)

so we can write directly
re(x) = el (38)

It can be verified that this function satisfies the spectral equa-
tion (20) for Ly as given in (29) and A (k) as given in (33), so it
is indeed the dominant eigenfunction of £;. Consequently, we
find from (25) that the modified drift of the effective process
is

Fi(x) =

where x} = M’leZ. Thus, the effective process is also a
linear process with the same drift matrix M as the original pro-
cess, but with a fixed point in the drift pushed from the origin
x = 0 to x} to create the fluctuation Ay = aj. Its stationary
density is therefore simply a translation of the stationary
density of the original process, pj(x) = p*(x — x}), which is
consistent with

a; = / (n, x) pp(x)dx = (n,x5). (40)

—M(x —x3), (39

Similarly, for the current we find
Ji(x) = =J"(x —xp). (41)

These results confirm previous studies considering specific
linear processes and linear observables [98], including the
one-dimensional Ornstein-Uhlenbeck process [87], and also
confirm that the reversibility of the original SDE is not mod-
ified at the level of fluctuations [87], since they only translate
the current in space.

H(x — x;)pj(x)

B. Quadratic observables

For the quadratic observable defined in (8), the tilted gen-
erator governing the evolution of the generating function has
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the form
Ly =—(Mx, V) + 1(V,DV) + k(x, Ox) 42)
and admits the following solution:
Gilx, 1) = ¢WBO® o fy THDB ()] ds (43)

where By (7) is now a symmetric # X n matrix satisfying the
differential Riccati equation

dBy(t)
dt

with initial condition B;(0) = 0. This can be obtained, as
mentioned, by discretizing and iteratively solving the FK
equation in time [108].

As before, the SCGF is determined by the stationary so-
lution B; of this equation satisfying the algebraic Riccati
equation

= 2B (t)DBy(t) — M B(t) — By ()M + kQ  (44)

2B;DB} —M'B} — BiM +kQ = 0. (45)

In general this equation has multiple possible solutions; the
correct one is found by requiring B = 0, since Go(x,t) =1
for all x and ¢. Provided that this solution is a stationary
solution of (44), then the generating function scales in the
long-time limit according to

Gi(x,1) ~ e(x,B;x) etTr(DB,’j)’ (46)
so that the SCGF is found to be
A(k) = Tr(DB;J). 47)

A similar result was found independently by Monthus
and Mazzolo [69] using a more complicated path integral
approach. There are many results also in mathematics on
the SCGF of quadratic observables of Gaussian processes
[62-68], but most are expressed in terms of the spectral den-
sity of these processes. It is an open problem to establish an
equivalence between these results and the trace result above
involving the Riccati matrix.

From the expression of the SCGF, we obtain the rate func-
tion I(a) by Legendre transform. The result is not explicit,
since B} must now be found by solving (45). However, it can
be checked from this equation that the asymptotic mean of Az,
which corresponds to the zero of I(a), is

a* = 2'(0) = Tr(Q0), (48)
consistent with (13). Moreover, the asymptotic variance is
1"(0) = 4Tr(CQCBY), (49)

where B’ is the derivative of B} with respect to k evaluated at
k = 0, which satisfies yet another Lyapunov equation

M'BY +ByM = Q. (50)

The full derivation of these results can be found in [108]. The
variance result is important, as it gives the variance of the
small Gaussian fluctuations of A7 around a*, determined by
expanding /(a) to second order around a*. Large fluctuations
of A7 away from this value are generally not Gaussian, since
I(a) is generally not quadratic for quadratic observables, as
shown in Sec. V.

To understand how these small and large fluctuations are
created, we note again the scaling in (37) to infer from (46):

7 (x) = e{xBix) (51)

It can be checked again that this solves the spectral equa-
tion (20) with the eigenvalue given in (47). From (25), we
then find

Fi(x) = —Mx, (52)
where
My =M — 2DB;. (53)

Hence we see that the effective process associated with
quadratic observables is still a linear diffusion, but now
involves a modified drift matrix, leading to the following
stationary density:

* _ 1 _l —1
Pi(x) = /—(271)” detC, exp( 2(x, C; x)), (54)

where Cj is the modified covariance matrix satisfying the
Lyapunov equation

D = MG + GiM]. (55)
Moreover, the associated current is
Ji(x) = Hxpi(x), (56)

where the matrix H; is obtained from (6) by replacing C and
M by Cy, and M, respectively.

It is interesting to note from these results that, for a re-
versible SDE with M symmetric and D o I, the effective
process remains reversible, so that J; = 0 if J* = 0. In this
case, only the density p* is modified to pj to create fluctua-
tions of A7. This can be checked from (56), but follows more
easily by noting from (25) that F is gradient if F itself is
gradient when D o I. On the other hand, for an irreversible
SDE, the density and the current are generally modified to
accommodate fluctuations, as predicted by (54) and (56), so
the irreversible properties of the effective SDE can differ in
this case from those of the original SDE, as illustrated in
Sec. V.

To close, we should note that the results for pf and Jj
above hold if the effective process is ergodic, that is, if M
is positive definite. Although obvious, this is an important
remark because it provides us with a criterion for determining
whether A(k) exists for a given k, which is easier to check
than the criterion mentioned earlier about the existence of sta-
tionary solutions of the time-dependent Riccati equation (44).
If M is not positive definite for a given k, then the Lyapunov
equation (55) does not have a positive definite solution Cy and,
as such, the eigenfunction ry, formally expressed in (51), does
not constitute a valid eigenfunction of the spectral problem
associated with the SCGF, which implies that the SCGF itself
does not exist.

C. Current-type observables

We conclude by considering linear current-type observ-
ables, as defined in (9), which involve an n x n matrix I". We
first address the case where I' is purely antisymmetric so that
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I' = —T'T. The case where I" also has a nonzero symmetric
part is more involved and is therefore treated separately after.

1. Antisymmetric T

For the observable (9), with I assumed to be purely anti-
symmetric, the associated tilted generator L is given by

Ly = —k{Mx,T'x) + (=M + kDI')x, V)
1 k>
+ E(V, DV) + ?(Fx, DT'x). (57)
This can be written in a slightly more convenient form as

Ly = —%(x, (M'T — TM)x) + ((—M + kDT')x, V)

k2
+-(V,DV) + -, I'"'Drx), (58)

N =

given that
(Mx, Tx) = (x, M"Tx) = 1 (x, M"T + I'"M)x)
= (x,(M'T —TM)x), (59)

where we have used the antisymmetry of I" in the last equality.

The solution of the FK equation with the tilted generator
(58) is the same as that found in (43) for quadratic additive
observables, except that the differential Riccati equation sat-
isfied by By (t) is now

2
dB®) _ K rrpe Ko _ran
dt 2 2
+ (=M + kDT)'By(t) + By (t)(—M + kDT")
+ 2B (1)DB(1), (60)

with initial condition B (0) = 0. A similar equation was ob-
tained using path-integral methods for a particular type of
linear current-type observable, namely, the nonequilibrium
work by Kwon, Noh, and Park [76], who then obtained large
deviation results for this observable via numerical integration.
Here we obtain the SCGF and rate function directly by consid-
ering the stationary solution Bj of the Riccati equation, which
now satisfies the algebraic Riccati equation

k* T k 1 T pk
S TTDF = Z(M'T —TM) + (=M + kDT)'B;

+B;(—M + kDT") + 2B;DB; =0 (61)

with B = 0. Assuming, as before, that the correct solution of
this equation is a stationary solution of (60), we then recover
the same expression of the SCGF as for quadratic observables,
namely,

A(k) = Tr(DB;J), (62)

from which we obtain the rate function /(a) by Legendre
transform. The results again are not explicit, but rely neverthe-
less on the solution of (61). From this equation, it can also be
checked as before that the asymptotic mean of A7 is the one
found in (14), while the asymptotic variance, characterizing
the Gaussian regime of fluctuations near a*, is

2"(0) = Tr[CT DT +2C(TM — M'T)CB/
+2C(I'"DBY + By D), (63)

where Bj}' now satisfies the Lyapunov equation
BYM+M'By = 1(TM —M'T). (64)

We show in the application section that these equations can be
solved exactly in nontrivial cases.

Since the generating function has the same form as that
obtained for quadratic observables, the eigenvector r; has also
the same form as that shown in (51), which means that the
effective process is again a linear SDE with a drift matrix
entering in (52) now given by

M, =M —2DB} — kDT (65)

As before, for those k for which M, is positive definite, the
effective process is ergodic and large deviations exist. In this
case, the stationary density pj has the same form as (54), using
M. as above in the Lyapunov equation for the covariance ma-
trix Cy. Similarly, the modified current J is given as in (56),
using the appropriate C; and M, for the current observable.

Despite the fact that the effective SDEs associated with the
quadratic and current-type observables have the same linear
form, they have different reversibility properties coming from
their different M. In particular, for current-type observables,
the effective process is in general irreversible even if the orig-
inal process is reversible, since a current has to be produced
to sustain a nonzero fluctuation of A7. This follows by noting
that the effective drift for this observable, shown in (26), has
an added part involving I, which is nongradient when DI’
is not symmetric. In a more obvious way, we also know that
a fluctuation of Ay in the original process is realized as the
typical value

ai = /Rn (Tx, J3) pr(x)dx (66)

in the effective process, so that J; # 0 if af # 0. The same
relation applies for irreversible SDEs and implies for those
that the current is modified by fluctuations. In particular, for
a; = 0, we have J; = 0, so an irreversible process can behave
as a reversible process when conditioned on observing the
fluctuation A7 = 0. An example of this unusual fluctuation
behavior is also discussed in Sec. V.

2. General T

We now address the case where the matrix I has a nonzero
symmetric component. To this end, we decompose this matrix
as ' =I'" +I'" in terms of its symmetric and antisymmetric
parts

pe_ L rt

2 K

s0 as to express the observable similarly as Ay = A} + A7,
where

(67)

T
A% = %/0 T*X (1) 0 dX (1). (68)

We have already discussed the antisymmetric part A; before.
As for the symmetric part, we can integrate it directly to obtain

1
(X(0), T*X(0), (69)

Af = -7

_ +
o7 X, T7X(T))
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since the Stratonovich convention used in the definition of the
observable preserves the standard rules of calculus. Thus, this
part only adds boundary terms to A7, which can contribute
to the large deviations of Ay, surprisingly, even though they
are not extensive in time, because they can limit the range of
values of k for which A(k) exists.

This effect was described for particular observables in re-
cent studies [80-82] and can be understood by expressing the
generating function as

Gi(x, 1) =/ dy Gi(x,y,1), (70)

where
Gi(x,y, 1) = E[3(X(t) —y)e™ X (0)=x]  (71)

is the generating function of A7 in which both X (0) and X (¢)
are fixed. Considering the decomposition of Ay above, we
then have

n

Gi(x,1) = ¢ 2% / dye’®TV G (x,y. 1), (72)

G, (x,y,t) being the generating function of A; with fixed
initial and terminal states.

In the long-time limit, it is known [87] that this generating
function scales, similarly to (37), according to

G, (x,y,t) ~ ™ Oro )l (), (73)

where A7 (k) is the dominant eigenvalue and SCGF of A}
with eigenfunctions r,~ and /. This eigenvalue was already
obtained in (62), while r,” was found in (51) with B} satisfying
the algebraic Riccati equation (61) for I'". As for [, , we can
find it using (54) with M} given as in (65), leading to

Gy (x,y.1) ~ ¢ 0 p= (vBiy) =3 (.G y)+(x.Bix) (74)

up to a multiplicative constant, and thus to

Gi(x,1) ~ etr(k)e(x,(BZ—gw)x) / dy e—%(y,Bky>’ (75)

n

where
By =C;' +2Bf —kI'™. (76)

In this last expression, both C; and B} are associated with I~
and are thus obtained by following our previous results for
antisymmetric current observables.

The difference now for general current observables is that,
for Gy (x, t) to exist, the integral over y above needs to be con-
vergent, which holds when B is positive definite. In this case,
we obtain A(k) = A7 (k), assuming that A7 (k) itself exists.
If By is not positive definite, then A(k) = oo, so the domain
where the SCGF exists is effectively cut or limited by T'"
[80-82].

To express this result more precisely, let us denote by K~
the interval of k values for which the SCGF A~ (k) associated
with I'™ exists, which, we recall, is determined by requiring
that Cy, is positive definite. Moreover, let KT denote the inter-
val of values for which B is positive definite. Then

Ak keK nKt

o0 otherwise. (77)

Ak) = {

In general, the intersection of X~ and Kt defines a specific
value of k beyond which the SCGF ceases to exist. For con-
creteness, we can take this cutoff value to be positive, denoting
it by kmax, to rewrite the SCGF as

AT (k) k< kmax

o k> k. (78)

Ak) = {
From the properties of Legendre transforms, it is known that
the existence of the cutoff kn,x has the effect of creating a
linear branch in the rate function /(a) beyond a point a given
by the left derivative of A7 (k) at kyax (see [16, Ex. 3.3]). Asa
result, the rate function of A7 can be written as

I~ (a)

a<a
@)= {kmaxa — A7 (kmax)

aza, (79)
where [ (a) is the rate function associated with A;.. There-
fore, we see that the fluctuations of Ay below a are determined
by the fluctuations of the antisymmetric (time-extensive) part
A7, with the boundary term A} playing no role, whereas the
fluctuations of Ar above a are determined by A;f and, more
specifically, by the term in (69) involving X (T), since X (0)
is fixed here to x. If the initial condition is chosen instead
according to a probability density p(x, 0), then there is usually
another cutoff, ki, < 0, coming from the integration of X (0)
over that density [109]. In this case, I(a) generally has two
linear branches, instead of one, related to the fluctuations of
A coming from the initial and terminal boundary terms. This
type of rate function has been studied before, in particular,
in the context of the so-called extended fluctuation relation
[110].

To close this section, we note that because the effective
process is based on ry, it is defined only in the domain of
the SCGF, here k < knax, describing the fluctuations of Ar
dominated by those of A;. In that region, the result in (75)
implies

re(x) = el® (Bi=2)x) (80)
so that
Fi(x) = —Mx + kDTx + D(2B; — kI"'*)x. (81)
However, since I’ = ' + ', this becomes
Fi(x) = —(M + 2DB; + kDT" " )x, (82)

which is exactly the effective drift associated with I'", as
given by (65), confirming that the boundary terms in the
observable play no role. For the regime of fluctuations of Ay
dominated by these terms, it is not known what the effective
process is or even if such a process exists [52].

IV. OTHER APPROACHES

It is known in large deviation theory that the SCGF can
be obtained from two other approaches related to control
theory and optimization [88]. We briefly discuss them here to
complete our results and to establish a link with the classical
Gaussian control problem. For simplicity, we consider only
the case of additive linear observables. Similar results apply
for the two other observables.
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The first approach is based on the idea of modifying the
drift of the original SDE to obtain a new SDE with drift F,
assumed also to be ergodic. By considering all such modifica-
tions, it is known [88] that the SCGF of Ay with respect to the
original SDE can be expressed in a variational way as

A(k) = lim max E[kAr — Rr], (83)
T—0o0 f
where [E[-] now denotes the expectation with respect to the
modified SDE and
1 7 ~
Rr = — F(X(t)) —F(X@1)),
T2T0<(()) X@®)

DTF(X (1)) — F(X(1)))dt (84)

is a time-averaged “distance” between the modified and orig-
inal SDEs. Equivalently, since the modified SDE is assumed
to be ergodic, we can replace the long-time expectation by an
expectation involving the stationary density of this process,
denoted by p, so as to write

ME) = max(kALp] - RIp, F1, (85)

where
Alp] = /R (n, x) p0x) dx (86)

is, similarly to (12), the typical value of A7 in the modified
SDE and

RIp, Fl= fR P~ F(x), D”'[F(x) — F(x)]) p(x) dx

&7
is the typical distance.

The two maximization problems in (83) and (85) have a
natural interpretation in terms of a controlled SDE whose
drift is modified so as to maximize the cost or loss function
Kr = E[kA7 — Rr] [102-104]. The control is applied over
an infinite time horizon, leading to an ergodic process that
realizes the SCGF as the maximal cost. From recent works
[87-89], it is known that this optimal control process is the
effective process described earlier with drift F'; and stationary
density py, so we can write in fact

A(k) = kA[p;] — R[p, Fil. (88)

The results of the previous section therefore predict that the
optimal SDE that maximizes the cost K7 in the long-time
limit is a linear SDE characterized by a modified fixed-point
or a modified drift matrix M, satisfying an algebraic Riccati
equation.

From a control perspective, these results can be derived

by assuming that the control drift F is linear in the state.
In this case, the cost K7 has a linear part and a quadratic
part in x, which has been studied extensively as the linear-
quadratic-Gaussian (LQG) control problem [102—-104]. It can
be checked that the well-known Riccati equation associated
with this problem recovers the results found here for the three
observables considered, with the following differences:

(1) The LQG problem is formulated by minimizing linear-
quadratic cost functions over the class of ergodic controls that
are linear in the control inputs, leading to an optimal controller
that is linear in x. Here we make no such linearity assumption;

the linearity of the optimal controller follows from the spectral
solution giving A(k) and r¢(x).

(2) The quadratic part of the cost function in LQG control
is assumed to be positive definite to guarantee that the mini-
mization problem has a solution. In our case, that part is not
necessarily positive definite, depending on the observable and
k value considered, because the SCGF is not necessarily pos-
itive. However, the minimization has a solution if the SCGF
exists.

(3) For current-type observables, the functional A[p] in-
volves the stationary current .7 of the controlled SDE,
similarly to (14), instead of its stationary density, giving rise to
a control cost involving the density and current of the control
process or, equivalently, its state and increments [111-113],
which generalizes the classical LQG control problem.

The SCGF can be obtained in a slightly different way by
noting, as done earlier, that the drift of an ergodic SDE is
uniquely determined by its stationary density and current,
so the minimization in (85) over F can be reexpressed as a
minimization over densities p that are normalized in R" and
currents ,7 that satisfy the stationary condition (4). This change
of variables has the effect of transforming the distance R[p, F ]
to

~ 1 ~ ~
15,91 = 3 / (T @) —T50)], [pe)D] ' [T ()T 5)]) d,

(89)

where J7% is an “instantaneous” current obtained from (4) by
replacing p* with p [88]. As a result, the minimization in (85)
giving the SCGF becomes

A(k) = max{kA[p] — I1p, 1} (90)
pJ

This result plays a special role in large deviation theory, as

the functional /[p, J] has the interpretation of a rate function,
characterizing the probability that the original SDE with drift
F gives rise to a density fluctuation p away from iis stationary
density p* concurrently with a current fluctuation J away from
its stationary current J* [39—42]. From this point of view, the
maximization in (90) can be seen as a Lagrange version of the
problem of finding the most likely density and current fluctu-
ations that give rise to a fluctuation A7 = a of the observable,
with k playing the role of the Lagrange parameter [88]. Many
works have appeared recently on this level of fluctuations
[39—42], known technically as the level 2.5 of large deviations,
so we refer to them for more details.

To be consistent with the solution (88), the optimal density
and current fluctuations that are most likely to appear must
correspond to the stationary density and current of the effec-
tive process, so we also have

x(k) = KALp] — 1P, J7). 1)

It can be checked that this result, as well as the one shown in
(88), agree with the explicit expressions that we have found in
the previous section for A(k), F, p; and J},, which means that
these expressions can be derived, in principle, by solving the
ergodic control problem in (85) or the optimization problem
in (90). This also applies for quadratic and current-type
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observables. The only difference for the latter is that A[p] is

not a function of the density but of the current J, similarly
to (14).

V. APPLICATIONS

We illustrate our results in this section with two examples
of SDEs in R?, used in statistical physics as minimal models
of nonequilibrium systems, focusing on quadratic observables
and linear current-type observables, as the case of linear addi-
tive observables is trivial. Some of the SDEs and observables
that we consider have been studied before [69-71,76-78],
using different methods, however, based on path integrals. We
revisit them here to show how the SCGF and rate function can
be obtained in a more direct way using our approach based on
Riccati equations, and extend these results by describing how
different fluctuation regimes arise physically via density and
current fluctuations related to the effective process.

A. Quadratic observable for transverse diffusions

The first system that we consider is the normal or trans-
verse diffusion in R?, defined by the general linear SDE (1)

with
(v &
M = (—5 y) (92)

and o0 =€l with y >0, £ € R, and € > 0. This process
serves as a minimal model of nonequilibrium steady-state
systems [70,71,77,78], since the antisymmetric part of the
drift involving the parameter £ creates a stationary current
given by

—Xx

J%n=s<mﬂﬁux (93)
which involves the Gaussian stationary density

p*(x) — Lze*VHxHZ/ez’ 94)

e

sothatC = €2/(2y ). For £ < 0, the current circulates around
the origin in a clockwise direction, whereas, for & > 0, it cir-
culates in an anticlockwise direction. When & = 0, the current
vanishes, giving rise to an equilibrium system with a gradient

drift, which has the same stationary density as the nonequilib-
rium system, interestingly, since p* does not depend on &.

(a)

0.5

0.0

-05F

A(k)

-10F

-20

B S R

The first observable that we study for this system is the
time-averaged squared distance from the origin:

1 T
m=;/|mem 95)
0

which corresponds to the choice Q =1 in the general
quadratic observable (8). For this observable, the differential
Riccati equation (44) can be solved exactly to obtain By ()
and, in turn, Gi(x, t), which have well-defined limits, giving
the SCGF A(k) [108]. Alternatively, we can solve the algebraic
Riccati equation (45) to obtain the steady-state solution Bj
directly, yielding in both cases the diagonal matrix B} = b1

with
y —y?—2ke?

2¢2

for k € (—oo, y2/(2€?%)). Consequently, we find from (47),

b = (96)

Ak) = 2€’b; = y — \/y? — 2ke? 97)

for the same range of k values. Taking the Legendre transform,
we then obtain the following rate function:

2 2

y-a €

22 T2 7Y
These two functions, plotted in Fig. 1, are similar to those

found for the one-dimensional Ornstein-Uhlenbeck process

[64]. The minimum of I(a), giving the typical value of Ar,

is a* = €*/y, while the asymptotic variance is

I(a) = a > 0. (98)

4

2O =1"a)" = . (99)
Y

This variance describes again the Gaussian fluctuations of Ay
in the vicinity of a*. Away from this value, the fluctuations
are non-Gaussian, as is clear from the form of /(a). In fact, as
a — 0, the term €> /(2a) dominates, so the right tail of p(Ar =
a) follows an inverse exponential distribution, while, for a —
00, the term y2a/(2€?) takes over, predicting an exponential
distribution for the large values of Ay generated by trajectories

of the SDE venturing far away from the origin.
It is remarkable that both the SCGF and rate function are
independent of the nonequilibrium parameter £. Intuitively,
this can be understood by noting that Ay is radially symmetric

(b)

250 ]
20

15

I(a)

1.0

05- ]

00+ .

a

FIG. 1. (a) SCGF and (b) rate function of the squared norm of the transverse diffusion withy =1, £ = 1,ande = 1.
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and, therefore, is not affected by the rotation of X (¢) around
the origin. What matters is the distance of the trajectories
of X (¢) from the origin, which is controlled by the diagonal
(symmetric) part of the drift matrix M. Thus, small values of
Ar below a* must arise from trajectories that remain close
to the origin, irrespective of the manner in which they rotate
around this point, and should therefore be described by an
effective drift that confines the process around the origin.
Similarly, large fluctuations of Ay above a* should arise from
rare trajectories that are less confined around the origin but
rotate freely around the origin as in the original process.

This is confirmed by calculating the effective drift matrix
from (53) to obtain

Mo — (w/yz—Zke2 £ )
=TT e

The diagonal part of this matrix is modified by k, resulting in
an effective density with covariance

€2

EEE—
2/ y? — 2ke?

which is more or less confined around the origin, depending
on the fluctuations considered. The antisymmetric part of the
drift, on the other hand, remains the same, implying that the
current is not modified in form. In fact, from (56) we find

Jix) = s("“z)pz(x),

(100)

C, = (101)

X (102)
so the effective current differs from J* only to the extent that
py differs from p*. The fluctuations of this observable are
thus realized optimally by altering the density, with the only
changes to the current resulting from those density modifica-
tions. In particular, if J* = 0, then J; = 0, so the reversibility
of the original process is not changed for & = 0 when looking
at fluctuations.

Of crucial importance for this to hold is the fact that the
diffusion matrix D is proportional to the identity and that the
diagonal part of M is proportional to the identity. If either
or both of these properties are not satisfied, then B} can be
nondiagonal, implying a nontrivial coupling of the density and
current with £, even though A7 is a density-type observable.

B. Nonequilibrium work and entropy production
for transverse diffusions

The drift acting on an SDE can be seen as a force that
performs work, which can be transformed in time into in-
ternal energy or dissipated as heat into the environment,
depending on the physical system considered. Recently these
quantities have come to be studied as part of the stochastic
thermodynamics (or stochastic energetics) formalism, which
is concerned with extending the notions and laws of ther-
modynamics to stochastic processes [13—15]. In this context,
quantities such as work, heat, and entropy take the form of
time-integrated functionals of the system’s state, which means
that they are dynamical observables, and can be shown to
satisfy conservation laws that generalize the first and second
laws of thermodynamics.

Two of the most important quantities in stochastic thermo-
dynamics are the entropy production, defined for the linear

SDE (1) as
1 T
& = _7/ 2D 'MX (1) 0 dX (1), (103)
0
and the nonequilibrium work
1 T
Wr = _F/ 2(D7'M)"X(1) 0 dX (1), (104)
0

which is the antisymmetric part of &7 not related to a change
of potential energy. The large deviations of these observables
were studied by Noh [78] for transverse diffusions using path
integral methods. We revisit them here to illustrate our simpler
approach, and extend these results by discussing the properties
of the effective process, which provides a physical way of
understanding how large deviations arise in terms of modified
drifts, densities, and currents.

We begin by considering the nonequilibrium work, which
is an antisymmetric current-type observable described for this
SDE by the matrix

_25/62). (105)

0
I= (25 P 0
Similarly to the quadratic observable, the SCGF of Wr can be
obtained by either solving the time-dependent Riccati equa-
tion (60) exactly, and by taking the long-time limit of the
solution, or by solving the time-independent Riccati equa-
tion (61). The result in both cases is

AK) =y — Vy? — 4k(1 + k)E?

for k in the range

o _ (—52 SR A e i +s4> aon
B 282 ’ 282 ‘

We plot this function in Fig. 2, together with the corre-
sponding rate function /(w) obtained by Legendre transform.
The latter function has a minimum located at w* = 1/(0) =
2£2/y and has two branches on either side that become
asymptotically linear in w, because the SCGF is defined on
a bounded interval, which implies that the probability density
pWr = w) has exponential tails for large work values, pos-
itive or negative. From the expression of the SCGF, we also
note that

(106)

Ak) =A(—k —1), (108)

which is an important symmetry of the SCGF, referred to
as the Gallavotti-Cohen fluctuation relation [20-23], which
translates at the level of the rate function to

I(w)=1(—w) —w. (109)

Therefore, we have

pWr=w) _ o,
pOVr = —w)

for large T, which is the more standard expression of the
Gallavotti-Cohen fluctuation relation, showing that positive
work values are exponentially more likely than negative
work values. This reflects the fact that the average work
w* is always positive, since trajectories of the transverse
diffusion travel on average in the direction of the rotating

(110)
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FIG. 2. (a) SCGF and (b) rate function of the nonequilibrium work done by the transverse diffusion for the parameters y = 1, £ = 1, and

e=1.

drift and, therefore, that negative work fluctuations resulting
from trajectories that go against the drift are exponentially
unlikely.

To understand how these fluctuations are created, we cal-
culate the solution (65) for the modified drift matrix using
the solution of the Riccati equation leading to the SCGF,
obtaining

y — A(k)

M= (—sa +2k) (b

£(1 +2Kk)
y —Ak) )’

For the range K~ above, this matrix is positive definite and
so describes an ergodic effective process whose stationary
density is

— Ak
Pix) = y -~ 7-[62( )e—[}’—)»(k)lllxllz/sz’ (112)
while the stationary current is
Jiw) =£(1 + 2k)<jf)p’;<x>. (113)

These are similar to the stationary density p* and cur-
rent J* found before in (94) and (93), respectively, and are
plotted in Fig. 3 for various values of k and parameters values
y =€ = & = 1, giving rise to an anticlockwise J*. From the
plots we can see that positive work fluctuations are created
by trajectories that have an anticlockwise current J3, as ex-
pected, which is greater in magnitude than J* when w > w*,
corresponding to k > 0 [see Fig. 3(a)], and smaller in mag-
nitude when 0 < w < w*, corresponding to —1/2 <k <0
[Fig. 3(b)]. On the other hand, for negative work fluctuations,
associated with k < —1/2, the trajectories reverse direction
[Fig. 3(c)], thereby creating a clockwise current J;, which
increases in magnitude as k decreases. Between these two
regimes, when w = 0 (corresponding to k = —1/2), the cur-
rent J; vanishes, as the trajectories responsible for this work
fluctuation do not rotate on average and behave, therefore, in
areversible way.

These changes in the current are also accompanied by
changes in the density, as seen from (112), which have
the effect of confining the state either closer to the origin
for k € (—1,0) [see Fig. 3(b)] or farther from it otherwise.

X1

X1 X1

FIG. 3. Vector plot of the stationary current J; of the effective process associated with the nonequilibrium work done by the transverse
system for different values of k. The density plots underneath show the modified stationary density p;. Parameters: £ = 1,y = 1,and € = 1.
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FIG. 4. Comparison of the rate functions of the nonequilibrium
work (NEQ) and the entropy production (EP) for the transverse
diffusion. Parameters: y = 1,§ = 1,and e = 1.

Moreover, we can see that, as k approaches the boundaries
of K™, the confinement, determined by diagonal part of M,
vanishes, showing that the extremely large work fluctuations,
either positive or negative, are effectively created by a weakly
confined rotating Brownian motion in the plane.

From these results, we can understand directly the large
deviations of the entropy production by noting again that Wy
is the antisymmetric part of &7, so &r and Wr differ only by
a boundary term, as discussed in the previous section. The
boundary term, coming from the symmetric part of &7, is
described by the matrix

2
rt=-=1,
€

(114)
which we use to determine the cutoff value beyond which the
matrix By, defined in (76), ceases to be positive definite. In
our case, the cutoff is negative because I'"™ is negative definite
and is equal to ki, = —1, which means that the SCGF of &7
matches that obtained for JWr but only for & in the range

|:_1 —52“1‘ /]/2€2+§4>
) 252 .

The effect of ky;, on the rate function is similar to what we
discussed in the previous section for k. and leads here to the
following rate function for £7:

Ite) = {I_e<e>

I~ (e) being the rate function of the nonequilibrium work
evaluated at arguments &7 = e of the entropy production. The
crossover value é is determined from e = A’(—1) and is given
explicitly by & = —2£%/y.

This rate function is compared with the rate function of the
nonequilibrium work in Fig. 4. The difference coming from
the linear branch of I(e) below é is clearly seen and implies
the existence of a dynamical phase transition that separates
two large deviations regimes: one on the right of € where the
large deviations of & are determined by the large deviations
of Wr, with the boundary term playing no role, and the other,
left of e, where the large deviations of &r are only determined
by those of the boundary term. The latter regime or region
cannot be described in terms of an effective process, since

(115)

e<e

ese (116)

9

it is related to the cutoff value k.;,. For e > e, however,
there exists an effective process, which is the same for &7 as
for Wr.

C. Brownian gyrator

We consider as our second application two Brownian par-
ticles with positions X (t) and X, () evolving according to the
overdamped SDE

AX (1) = —<”_ch" yij>X(t) + <€0‘ e(l)dW(t),

(117)

where X () = (X;(¢), X2(t)) and W(z) = (W (¢), Wa(¢)). The
drift in this system includes a friction force with friction
parameter y > 0 and a linear (spring) force between the two
particles with spring constant x > 0. The presence of two
separate noise strengths €; and €, indicates that the two
particles interact with two different heat baths having, in
general, nonidentical temperatures 7j, = 612’2 /2. The same
SDE is also used to describe the charge dynamics of two
resistors kept at different temperatures and coupled by a
capacitance.

This system has been studied extensively in physics as the
Brownian gyrator [114—116], and has a nonequilibrium steady
state when k > 0 and €; # ¢, related to the energy exchanged
between the two thermal baths via the linear coupling. The
stationary density and current characterizing this state can be
calculated exactly, but their expressions are, however, too long
to display here. For our purpose, we only note the stationary
covariance matrix obtained from (3):

1

CAy(y 4 2)
2y e} (y+26)+(e}+€3 )i’ 2 2
| v - 2(61 +622K2 2
2 +26)+(€3+ ’
(F+ede A

(118)

from which the stationary density and current can easily be
found via (2) and (5), respectively. It can be checked from this
result that, if ¥ > 0 and the noise strengths are different, then
a nonzero stationary probability current exists, which rotates
clockwise in the plane when €; < €, and anticlockwise when
€1 > €. On the other hand, if €, = ¢;, then the system has an
equilibrium steady state for arbitrary «. Likewise, for x = 0
the system is in equilibrium even when the noise strengths
are different because the two particles are then decoupled,
representing two isolated systems in contact with separate
heat baths.

For this system, we consider as before the nonequilibrium
work Wr, defined in (104), which was studied implicitly by
Kwon et al. [76] and more recently by Monthus and Mazzolo
[69] using path integrals. This observable is characterized by
the antisymmetric matrix

0 _K(elzz—zszz)
= K(ef—€3) e (119)
a2 0
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FIG. 5. (a) SCGF and (b) rate function of the nonequilibrium work done by Brownian gyrator for y = 1, ¥ = 1, and noise strengths ¢; = 2

and e, = 1.

The SCGF cannot be found now by obtaining the generating
function exactly, since By (¢) in the Riccati equation (60) does
not have a diagonal form here, due to the off-diagonal sym-

metric part of the drift matrix M. However, we can solve the
algebraic Riccati equation (61) so as to find the appropriate
stationary solution B}, leading to

2 _ g2 2 _ 2
Mk)z)”““\/V2+2yic—x2[(1+k)€1 ke2][kel — (1 + k)e?]

for k in the range K~ = (k_, k), where

—Kk€e? +ke; £ \/4)/26126

ky =

This result is shown in Fig. 5 with the associated rate
function, obtained by computing the Legendre transform nu-
merically. The SCGF is symmetric around k = —1/2 and
satisfies again the fluctuation symmetry noted before in (108),
which means that /(w) satisfies the symmetry in (109). The

(a) k=038

120
2 (120)
3+ 8yketes + k(] + 6%)2 a2
2k (ef — €3)
[
minimum of /(w) is now located at
K2 — e2)

2(y +K)eles’

(© k=-075

X1

X1 X1

FIG. 6. Vector plot of the stationary current J}; of the effective process associated with the nonequilibrium work done by the Brownian
gyrator for various values of k. The density plots underneath show the modified stationary density p;. Parameters: y = 1,x =1, €, =2, and

€2=1.

054111-14



DYNAMICAL LARGE DEVIATIONS OF LINEAR ...

PHYSICAL REVIEW E 107, 054111 (2023)

predicting overall that positive work fluctuations are more
likely than negative fluctuations with the same magnitude, in
agreement with (110). Further, it can be checked that A(k) and
I(w) remain invariant under the exchange €, <> ¢, indicating
that only the magnitude of the difference |€; — €;| in noise
strengths and not the sign of the difference €; — €, determines
the large deviations. This is explained by noting that positive
and negative values of WWr are determined by the direction or
chirality of J*, as for the transverse diffusion, which depends
here on the sign of €| — €.

The effective process underlying the fluctuations of Wy is
similar to the one found for transverse diffusions, with €; — €
playing the role of the nonequilibrium parameter £, and so we
do not discuss it in detail here. The main difference to note
is that the stationary density p* of the Brownian gyrator has
a tilt and eccentricity in the plane, related to the coupling «,
which are also seen in the stationary current. This property
persists at the level of p; and J} [117], as shown in Fig. 6,
but does not change otherwise the basic observation that
positive work fluctuations follow the flow of the stationary
current and affect only its magnitude [see Figs. 6(a) and 6(b)],
while negative work fluctuations reverse the direction of the
stationary current and also change its magnitude [Fig. 6(c)].
For Wy = 0, which corresponds to k = —1/2, we also find
Ji{ = 0. In this case, the Brownian particles effectively cease
to interact as they realize this work fluctuation and thus behave
in a reversible way.

VI. CONCLUSIONS

We have studied in this paper the large deviations of lin-
ear SDEs, considering three types of dynamical observables,
defined in terms of linear or quadratic integrals in time of
the state. For these, we have obtained explicit formulas for
the SCGF and rate function characterizing their probability
distribution in the long-time limit. These formulas involve
Riccati equations, which can be solved exactly in some cases,
as illustrated here with two physically motivated models, or
numerically using methods developed in control theory [118].
In addition, we have studied how the fluctuations of these
observables arise via rare trajectories that can be described in
terms of an effective SDE, which includes extra terms in the
drift driving the process in the fluctuation region of interest, or,
equivalently, in terms of density and current fluctuations that
differ from the stationary density and current of the SDE con-
sidered. These two complementary levels of fluctuations give
valuable insights into how large deviations are created physi-
cally and show, for the three types of observables considered,
that those large deviations originate from an effective SDE
that is also linear. Consequently, they can be seen as arising
from Gaussian density fluctuations coupled to current fluctu-
ations that are both driven by linear nonconservative forces.

In future studies, it would be interesting to study nonlinear
SDEs and possibly nonlinear observables of these processes
to see if useful information, exact or approximate, about their
large deviations can be obtained by linearizing them in some
way. For this problem, we see three applications of potential
interest:

(1) Linearize the SDE and, if applicable, the observable
near the fixed point of the noiseless dynamics, if there is one.
Applying our results to the resulting linear model should de-
scribe the small Gaussian fluctuations of the actual nonlinear
system and observable, meaning that the asymptotic mean and
variance should be given by the linear model.

(2) The effective SDE associated with a nonlinear SDE and
observable is, in general, another nonlinear SDE. In the case
of quadratic observables and linear current-type observables,
we expect both SDEs to have the same noiseless fixed point,
if the original SDE has one, following what we have found
for linear SDEs. Consequently, for these observables, we ex-
pect the linearized model to provide approximate information
about the full range of large deviations.

(3) Many numerical and simulation methods rely on the
knowledge of the effective process or attempt to construct that
process in an iterative way in order to compute the SCGF or
the rate function [88,97,119,120]. A linear ansatz could be
included in these methods, either as an approximation of the
effective process or as a seed for an iteration scheme that grad-
ually constructs the correct nonlinear effective process. Both
approaches could lead potentially to improved algorithms,
since the spectral problem underlying the effective process
would be replaced, effectively, by the problem of solving a
Riccati equation.

Other directions of interest include the generalization of
our results to time-dependent linear diffusions, in particular,
periodic linear diffusions, and to linear diffusions evolving
in bounded domains with reflections at the boundaries. A
framework for the large deviations of time-periodic systems
has been developed [121], and application of this framework
following the exact results obtained here for the generating
function could prove fruitful. As for reflected diffusions, we
have shown recently [95] that imposing reflecting boundaries
to the simple one-dimensional Ornstein-Uhlenbeck process
leads in general to a nonlinear effective process, because of
additional boundary conditions imposed on the spectral prob-
lem [122]. It is therefore natural to ask how our results for
unbounded linear diffusions, based on Riccati equations, are
modified by these boundary conditions.

ACKNOWLEDGMENTS

We thank Francesco Coghi and Raphael Chetrite for useful
discussions. J.d.B. is funded by the National Research Foun-
dation, South Africa (Ph.D. scholarship).

[1] C. W. Gardiner, Handbook of Stochastic Methods for Physics,
Chemistry and the Natural Sciences, 2nd ed., Springer Series
in Synergetics (Springer, New York, 1985), Vol. 13.

[2] H. Risken, The Fokker-Planck Equation: Methods of Solution
and Applications, 3rd ed. (Springer, Berlin, 1996).

[3] K. Jacobs, Stochastic Processes for Physicists: Understand-
ing Noisy Systems (Cambridge University Press, Cambridge,
2010).

[4] G. A. Pavliotis, Stochastic Processes and Applications
(Springer, New York, 2014).

054111-15



JOHAN DU BUISSON AND HUGO TOUCHETTE

PHYSICAL REVIEW E 107, 054111 (2023)

[5] G. Volpe and D. Petrov, Torque Detection using Brownian
Fluctuations, Phys. Rev. Lett. 97, 210603 (2006).

[6] M. Geitner, F. Aguilar Sandoval, E. Bertin, and L. Bellon, Low
thermal fluctuations in a system heated out of equilibrium,
Phys. Rev. E 95, 032138 (2017).

[7] J. R. Gomez-Solano, L. Bellon, A. Petrosyan, and S. Ciliberto,
Steady-state fluctuation relations for systems driven by an
external random force, Europhys. Lett. 89, 60003 (2010).

[8] S. Ciliberto, Experiments in Stochastic Thermodynamics:
Short History and Perspectives, Phys. Rev. X 7, 021051
(2017).

[9] A. Ashkin, Optical trapping and manipulation of neutral parti-
cles using lasers, Proc. Natl. Acad. Sci. USA 94, 4853 (1997).

[10] F. Ritort, Nonequilibrium fluctuations in small systems: From
physics to biology, in Advances in Chemical Physics, edited
by S. A. Rice (John Wiley, New York, 2008), Vol. 137, pp.
31-123.

[11] R. K. P. Zia and B. Schmittmann, Probability currents as
principal characteristics in the statistical mechanics of non-
equilibrium steady states, J. Stat. Mech. (2007) P07012.

[12] J. B. Weiss, Fluctuation properties of steady-state Langevin
systems, Phys. Rev. E 76, 061128 (2007).

[13] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).

[14] K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics,
vol. 799 (Springer, New York, 2010).

[15] L. Peliti and S. Pigolotti, Stochastic Thermodynamics: An
Introduction (Princeton University Press, Princeton, 2021).

[16] H. Touchette, The large deviation approach to statistical me-
chanics, Phys. Rep. 478, 1 (2009).

[17] R. J. Harris and H. Touchette, Large deviation approach to
nonequilibrium systems, in Nonequilibrium Statistical Physics
of Small Systems: Fluctuation Relations and Beyond, Reviews
of Nonlinear Dynamics and Complexity, vol. 6, edited by R.
Klages, W. Just, and C. Jarzynski (Wiley-VCH, Weinheim,
2013), pp. 335-360.

[18] H. Touchette, Introduction to dynamical large deviations of
Markov processes, Physica A 504, 5 (2018).

[19] R. L. Jack, Ergodicity and large deviations in physical sys-
tems with stochastic dynamics, Eur. Phys. J. B 93, 74
(2020).

[20] G. Gallavotti and E. G. D. Cohen, Dynamical Ensembles in
Nonequilibrium Statistical Mechanics, Phys. Rev. Lett. 74,
2694 (1995).

[21] J. Kurchan, Fluctuation theorem for stochastic dynamics, J.
Phys. A: Math. Gen. 31, 3719 (1998).

[22] J. L. Lebowitz and H. Spohn, A Gallavotti-Cohen-type
symmetry in the large deviation functional for stochastic dy-
namics, J. Stat. Phys. 95, 333 (1999).

[23] R. J. Harris and G. M. Schiitz, Fluctuation theorems for
stochastic dynamics, J. Stat. Mech. (2007) P07020.

[24] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, and F. van Wijland, Dynamical First-Order Phase
Transition in Kinetically Constrained Models of Glasses,
Phys. Rev. Lett. 98, 195702 (2007).

[25] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, and F. van Wijland, First-order dynamical phase
transition in models of glasses: An approach based on en-
sembles of histories, J. Phys. A: Math. Theor. 42, 075007
(2009).

[26] T. Speck and J. P. Garrahan, Space-time phase transitions in
driven kinetically constrained lattice models, Eur. Phys. J. B
79,1 (2011).

[27] C. P. Espigares, P. L. Garrido, and P. I. Hurtado, Dynamical
phase transition for current statistics in a simple driven diffu-
sive system, Phys. Rev. E 87, 032115 (2013).

[28] G. Bunin, Y. Kafri, and D. Podolsky, Cusp singularities in
boundary-driven diffusive systems, J. Stat. Phys. 152, 112
(2013).

[29] P. Tsobgni Nyawo and H. Touchette, A minimal model
of dynamical phase transition, Europhys. Lett. 116, 50009
(2016).

[30] A. Lazarescu, Generic dynamical phase transition in one-
dimensional bulk-driven lattice gases with exclusion, J. Phys.
A: Math. Theor. 50, 254004 (2017).

[31] A. C. Barato and U. Seifert, Thermodynamic Uncertainty
Relation for Biomolecular Processes, Phys. Rev. Lett. 114,
158101 (2015).

[32] P. Pietzonka, A. C. Barato, and U. Seifert, Universal bounds
on current fluctuations, Phys. Rev. E 93, 052145 (2016).

[33] T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. England,
Dissipation Bounds All Steady-State Current Fluctuations,
Phys. Rev. Lett. 116, 120601 (2016).

[34] T. R. Gingrich, G. M. Rotskoff, and J. M. Horowitz, Inferring
dissipation from current fluctuations, J. Phys. A: Math. Theor.
50, 184004 (2017).

[35] J. Li, J. M. Horowitz, T. R. Gingrich, and N. Fakhri, Quantify-
ing dissipation using fluctuating currents, Nat. Commun. 10,
1666 (2019).

[36] B. Derrida, Non-equilibrium steady states: Fluctuations and
large deviations of the density and of the current, J. Stat. Mech.
(2007) P07023.

[37] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Macroscopic fluctuation theory for stationary non-
equilibrium states, J. Stat. Phys. 107, 635 (2002).

[38] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Macroscopic fluctuation theory, Rev. Mod. Phys. 87,
593 (2015).

[39] C. Maes and K. Netoc¢ny, Canonical structure of dynami-
cal fluctuations in mesoscopic nonequilibrium steady states,
Europhys. Lett. 82, 30003 (2008).

[40] C. Maes, K. Netocny, and B. Wynants, On and beyond entropy
production: The case of Markov jump processes, Markov Proc.
Relat. Fields 14, 445 (2008).

[41] A. Barato and R. Chetrite, A formal view on 2.5 large devia-
tions and fluctuation relations, J. Stat. Phys. 160, 1154 (2015).

[42] J. Hoppenau, D. Nickelsen, and A. Engel, Level 2 and level
2.5 large deviation functionals for systems with and without
detailed balance, New J. Phys. 18, 083010 (2016).

[43] M. L. Freidlin and A. D. Wentzell, Random Perturbations of
Dynamical Systems, Grundlehren der Mathematischen Wis-
senschaften (Springer, New York, 1984), Vol. 260.

[44] D. Wales, Energy Landscapes: Applications to Clusters,
Biomolecules and Glasses (Cambridge University Press, Cam-
bridge, 2004).

[45] W. E. and E. Vanden Eijnden, Towards a theory of transition
paths, J. Stat. Phys. 123, 503 (2006).

[46] V. Lecomte, C. Appert-Rolland, and F. van Wijland, Chaotic
Properties of Systems with Markov Dynamics, Phys. Rev.
Lett. 95, 010601 (2005).

054111-16


https://doi.org/10.1103/PhysRevLett.97.210603
https://doi.org/10.1103/PhysRevE.95.032138
https://doi.org/10.1209/0295-5075/89/60003
https://doi.org/10.1103/PhysRevX.7.021051
https://doi.org/10.1073/pnas.94.10.4853
https://doi.org/10.1088/1742-5468/2007/07/P07012
https://doi.org/10.1103/PhysRevE.76.061128
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physa.2017.10.046
https://doi.org/10.1140/epjb/e2020-100605-3
https://doi.org/10.1103/PhysRevLett.74.2694
https://doi.org/10.1088/0305-4470/31/16/003
https://doi.org/10.1023/A:1004589714161
https://doi.org/10.1088/1742-5468/2007/07/P07020
https://doi.org/10.1103/PhysRevLett.98.195702
https://doi.org/10.1088/1751-8113/42/7/075007
https://doi.org/10.1140/epjb/e2010-10800-x
https://doi.org/10.1103/PhysRevE.87.032115
https://doi.org/10.1007/s10955-013-0752-6
https://doi.org/10.1209/0295-5075/116/50009
https://doi.org/10.1088/1751-8121/aa7175
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1038/s41467-019-09631-x
https://doi.org/10.1088/1742-5468/2007/07/P07023
https://doi.org/10.1023/A:1014525911391
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1209/0295-5075/82/30003
https://doi.org/10.1007/s10955-015-1283-0
https://doi.org/10.1088/1367-2630/18/8/083010
https://doi.org/10.1007/s10955-005-9003-9
https://doi.org/10.1103/PhysRevLett.95.010601

DYNAMICAL LARGE DEVIATIONS OF LINEAR ...

PHYSICAL REVIEW E 107, 054111 (2023)

[47] V. Lecomte, C. Appert-Rolland, and F. van Wijland, Ther-
modynamic formalism for systems with Markov dynamics,
J. Stat. Phys. 127, 51 (2007).

[48] R. L. Jack and P. Sollich, Large deviations of the dynamical
activity in the East model: Analysing structure in biased tra-
jectories, J. Phys. A: Math. Theor. 47, 015003 (2014).

[49] J. Mehl, T. Speck, and U. Seifert, Large deviation function for
entropy production in driven one-dimensional systems, Phys.
Rev. E 78, 011123 (2008).

[50] F. Angeletti and H. Touchette, Diffusions conditioned on oc-
cupation measures, J. Math. Phys. 57, 023303 (2016).

[51] P. Tsobgni Nyawo and H. Touchette, Large deviations of the
current for driven periodic diffusions, Phys. Rev. E 94, 032101
(2016).

[52] P. T. Nyawo and H. Touchette, Dynamical phase transition in
drifted Brownian motion, Phys. Rev. E 98, 052103 (2018).

[53] B. Derrida and J. L. Lebowitz, Exact Large Deviation Function
in the Asymmetric Exclusion Process, Phys. Rev. Lett. 80, 209
(1998).

[54] B. Derrida, J. L. Lebowitz, and E. R. Speer, Large deviation
of the density profile in the steady state of the open symmetric
simple exclusion process, J. Stat. Phys. 107, 599 (2002).

[55] B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact large devia-
tion functional of a stationary open driven diffusive system:
The asymmetric exclusion process, J. Stat. Phys. 110, 775
(2003).

[56] A. Lazarescu and K. Mallick, An exact formula for the statis-
tics of the current in the TASEP with open boundaries, J. Phys.
A: Math. Theor. 44, 315001 (2011).

[57] K. Mallick, The exclusion process: A paradigm for non-
equilibrium behaviour, Physica A 418, 17 (2015).

[58] R. J. Harris, A. Rédkos, and G. M. Schiitz, Current fluctuations
in the zero-range process with open boundaries, J. Stat. Mech.
(2005) P0O8003.

[59] S. Grosskinsky and G. Schiitz, Discontinuous condensation
transition and nonequivalence of ensembles in a zero-range
process, J. Stat. Phys. 132, 77 (2008).

[60] R. Villavicencio-Sanchez, R. J. Harris, and H. Touchette, Cur-
rent loops and fluctuations in the zero-range process on a
diamond lattice, J. Stat. Mech. (2012) P0O7007.

[61] O. Hirschberg, D. Mukamel, and G. M. Schiitz, Density pro-
files, dynamics, and condensation in the ZRP conditioned on
an atypical current, J. Stat. Mech. (2015) P11023.

[62] G. R. Benitz and J. A. Bucklew, Large deviation rate calcu-
lations for nonlinear detectors in Gaussian noise, IEEE Trans.
Inform. Theory 36, 358 (1990).

[63] B. Bercu, F. Gamboa, and A. Rouault, Large deviations for
quadratic forms of stationary Gaussian processes, Stoch. Proc.
Appl. 71, 75 (1997).

[64] W. Bryc and A. Dembo, Large deviations for quadratic func-
tionals of Gaussian processes, J. Theoret. Prob. 10, 307 (1997).

[65] F. Gamboa, A. Rouault, and M. Zani, A functional large de-
viations principle for quadratic forms of Gaussian stationary
processes, Stat. Prob. Lett. 43, 299 (1999).

[66] D. Florens-Landais and H. Pham, Large deviations in estima-
tion of an Ornstein-Uhlenbeck model, J. Appl. Probab. 36, 60
(1999).

[67] B. Bercu, F. Gamboa, and M. Lavielle, Sharp large deviations
for Gaussian quadratic forms with applications, ESAIM: Prob.
Stats 4, 1 (2000).

[68] B. Bercu and A. Rouault, Sharp large deviations for the
Ornstein—Uhlenbeck process, Theory Probab. Appl. 46, 1
(2002).

[69] A. Mazzolo and C. Monthus, Non-equilibrium diffusions
via non-Hermitian electromagnetic quantum mechanics with
application to the statistics of entropy production in the Brow-
nian gyrator, Phys. Rev. E 107, 014101 (2023).

[70] V. Y. Chernyak, M. Chertkov, and C. Jarzynski, Path-integral
analysis of fluctuation theorems for general Langevin pro-
cesses, J. Stat. Mech. (2006) PO8001.

[71] K. Turitsyn, M. Chertkov, V. Y. Chernyak, and A. Puliafito,
Statistics of Entropy Production in Linearized Stochastic Sys-
tems, Phys. Rev. Lett. 98, 180603 (2007).

[72] V. Jaksic¢, C.-A. Pillet, and A. Shirikyan, Entropic fluctuations
in Gaussian dynamical systems, Rep. Math. Phys. 77, 335
(2016).

[73] V.Jaksi¢, C.-A. Pillet, and A. Shirikyan, Entropic fluctuations
in thermally driven harmonic networks, J. Stat. Phys. 166, 926
(2017).

[74] L. Da Costa and G. A. Pavliotis, The entropy production of
stationary diffusions, arXiv:2212.05125 (2022).

[75] P. Visco, Work fluctuations for a Brownian particle between
two thermostats, J. Stat. Mech. (2006) PO6006.

[76] C. Kwon, J. D. Noh, and H. Park, Nonequilibrium fluctuations
for linear diffusion dynamics, Phys. Rev. E 83, 061145 (2011).

[77] J. D. Noh, C. Kwon, and H. Park, Multiple Dynamic Transi-
tions in Nonequilibrium Work Fluctuations, Phys. Rev. Lett.
111, 130601 (2013).

[78] J. D. Noh, Fluctuations and correlations in nonequilibrium
systems, J. Stat. Mech. (2014) PO1013.

[79] V. Lecomte, Z. Ricz, and F. van Wijland, Energy flux distri-
bution in a two-temperature Ising model, J. Stat. Mech. (2005)
P02008.

[80] A. Kundu, S. Sabhapandit, and A. Dhar, Large deviations of
heat flow in harmonic chains, J. Stat. Mech. 2011, P0O3007
(2011).

[81] S. Sabhapandit, Work fluctuations for a harmonic oscillator
driven by an external random force, Europhys. Lett. 96, 20005
(2011).

[82] S. Sabhapandit, Heat and work fluctuations for a harmonic
oscillator, Phys. Rev. E 85, 021108 (2012).

[83] A. Pal and S. Sabhapandit, Work fluctuations for a brownian
particle in a harmonic trap with fluctuating locations, Phys.
Rev. E 87, 022138 (2013).

[84] S. Ciliberto, A. Imparato, A. Naert, and M. Tanase, Heat Flux
and Entropy Produced by Thermal Fluctuations, Phys. Rev.
Lett. 110, 180601 (2013).

[85] S Ciliberto, A Imparato, A Naert, and M Tanase, Statisti-
cal properties of the energy exchanged between two heat
baths coupled by thermal fluctuations, J. Stat. Mech. (2013)
P12014.

[86] R. Chetrite and H. Touchette, Nonequilibrium Microcanonical
and Canonical Ensembles and Their Equivalence, Phys. Rev.
Lett. 111, 120601 (2013).

[87] R. Chetrite and H. Touchette, Nonequilibrium Markov pro-
cesses conditioned on large deviations, Ann. Henri Poincaré
16, 2005 (2015).

[88] R. Chetrite and H. Touchette, Variational and optimal control
representations of conditioned and driven processes, J. Stat.
Mech. (2015) P12001.

054111-17


https://doi.org/10.1007/s10955-006-9254-0
https://doi.org/10.1088/1751-8113/47/1/015003
https://doi.org/10.1103/PhysRevE.78.011123
https://doi.org/10.1063/1.4941384
https://doi.org/10.1103/PhysRevE.94.032101
https://doi.org/10.1103/PhysRevE.98.052103
https://doi.org/10.1103/PhysRevLett.80.209
https://doi.org/10.1023/A:1014555927320
https://doi.org/10.1023/A:1022111919402
https://doi.org/10.1088/1751-8113/44/31/315001
https://doi.org/10.1016/j.physa.2014.07.046
https://doi.org/10.1088/1742-5468/2005/08/P08003
https://doi.org/10.1007/s10955-008-9541-z
https://doi.org/10.1088/1742-5468/2012/07/P07007
https://doi.org/10.1088/1742-5468/2015/11/P11023
https://doi.org/10.1109/18.52482
https://doi.org/10.1016/S0304-4149(97)00071-9
https://doi.org/10.1023/A:1022656331883
https://doi.org/10.1016/S0167-7152(98)00270-3
https://doi.org/10.1239/jap/1029349453
https://doi.org/10.1051/ps:2000101
https://doi.org/10.1137/S0040585X97978737
https://doi.org/10.1103/PhysRevE.107.014101
https://doi.org/10.1088/1742-5468/2006/08/P08001
https://doi.org/10.1103/PhysRevLett.98.180603
https://doi.org/10.1016/S0034-4877(16)30034-9
https://doi.org/10.1007/s10955-016-1625-6
http://arxiv.org/abs/arXiv:2212.05125
https://doi.org/10.1088/1742-5468/2006/06/P06006
https://doi.org/10.1103/PhysRevE.83.061145
https://doi.org/10.1103/PhysRevLett.111.130601
https://doi.org/10.1088/1742-5468/2014/01/P01013
https://doi.org/10.1088/1742-5468/2005/02/P02008
https://doi.org/10.1088/1742-5468/2011/03/P03007
https://doi.org/10.1209/0295-5075/96/20005
https://doi.org/10.1103/PhysRevE.85.021108
https://doi.org/10.1103/PhysRevE.87.022138
https://doi.org/10.1103/PhysRevLett.110.180601
https://doi.org/10.1088/1742-5468/2013/12/P12014
https://doi.org/10.1103/PhysRevLett.111.120601
https://doi.org/10.1007/s00023-014-0375-8
https://doi.org/10.1088/1742-5468/2015/12/P12001

JOHAN DU BUISSON AND HUGO TOUCHETTE

PHYSICAL REVIEW E 107, 054111 (2023)

[89] R. L. Jack and P. Sollich, Effective interactions and large
deviations in stochastic processes, Eur. Phys. J. Spec. Top.
224, 2351 (2015).

[90] D. Simon, Construction of a coordinate Bethe ansatz for the
asymmetric simple exclusion process with open boundaries,
J. Stat. Mech. (2009) PO7017.

[91] V. Popkov, G. M. Schiitz, and D. Simon, ASEP on a ring
conditioned on enhanced flux, J. Stat. Mech. (2010) P10007.

[92] R. L. Jack and P. Sollich, Large deviations and ensembles of
trajectories in stochastic models, Prog. Theor. Phys. Suppl.
184, 304 (2010).

[93] T. GrandPre and D. T. Limmer, Current fluctuations of inter-
acting active Brownian particles, Phys. Rev. E 98, 060601(R)
(2018).

[94] A. Das and D. T. Limmer, Variational control forces for
enhanced sampling of nonequilibrium molecular dynamics
simulations, J. Chem. Phys. 151, 244123 (2019).

[95] J. du Buisson and H. Touchette, Dynamical large devi-
ations of reflected diffusions, Phys. Rev. E 102, 012148
(2020).

[96] N. Tizén-Escamilla, V. Lecomte, and E. Bertin, Effective
driven dynamics for one-dimensional conditioned Langevin
processes in the weak-noise limit, J. Stat. Mech. (2019)
013201.

[97] J. Yan, H. Touchette, and G. M. Rotskoff, Learning nonequi-
librium control forces to characterize dynamical phase transi-
tions, Phys. Rev. E 105, 024115 (2022).

[98] F. Coghi, R. Chetrite, and H. Touchette, Role of current fluc-
tuations in nonreversible samplers, Phys. Rev. E 103, 062142
(2021).

[99] D. G. Luchinsky, P. V. E. McClintock, and M. I. Dykman,
Analogue studies of nonlinear systems, Rep. Prog. Phys. 61,
889 (1998).

[100] R. van Zon, S. Ciliberto, and E. G. D. Cohen, Power and Heat
Fluctuation Theorems for Electric Circuits, Phys. Rev. Lett.
92, 130601 (2004).

[101] N. Garnier and S. Ciliberto, Nonequilibrium fluctuations in a
resistor, Phys. Rev. E 71, 060101(R) (2005).

[102] R. F. Stengel, Optimal Control and Estimation (Dover, New
York, 1994).

[103] M. Schulz, Control Theory in Physics and other Fields of
Science (Springer, New York, 2006).

[104] J. Bechhoefer, Control Theory for Physicists (Cambridge Uni-
versity Press, Cambridge, 2021).

[105] Y. Oono, Large deviation and statistical physics, Prog. Theor.
Phys. Suppl. 99, 165 (1989).

[106] A. Dembo and O. Zeitouni, Large Deviations Techniques and
Applications, 2nd ed. (Springer, New York, 1998).

[107] F. den Hollander, Large Deviations, Fields Institute Mono-
graph (AMS, Providence, RI, 2000).

[108] J. du Buisson, Dynamical large deviations of diffusions, Ph.D.
thesis, Stellenbosch University, Stellenbosch, South Africa
(2022).

[109] K. Kim, C. Kwon, and H. Park, Heat fluctuations and initial
ensembles, Phys. Rev. E 90, 032117 (2014).

[110] R. van Zon and E. G. D. Cohen, Extension of the Fluctuation
Theorem, Phys. Rev. Lett. 91, 110601 (2003).

[111] J. Bierkens and H. J. Kappen, Explicit solution of relative
entropy weighted control, Syst. Cont. Lett. 72, 36 (2014).

[112] V. Y. Chernyak, M. Chertkov, J. Bierkens, and H. J. Kappen,
Stochastic optimal control as non-equilibrium statistical me-
chanics: Calculus of variations over density and current,
J. Phys. A: Math. Theor. 47, 022001 (2014).

[113] J. Bierkens, V. Y. Chernyak, M. Chertkov, and H. J. Kappen,
Linear PDEs and eigenvalue problems corresponding to er-
godic stochastic optimization problems on compact manifolds,
J. Stat. Mech. (2016) 013206.

[114] R. Filliger and P. Reimann, Brownian Gyrator: A Minimal
Heat Engine on the Nanoscale, Phys. Rev. Lett. 99, 230602
(2007).

[115] V. Dotsenko, A. Maciotek, O. Vasilyev, and G. Oshanin, Two-
temperature Langevin dynamics in a parabolic potential, Phys.
Rev. E 87, 062130 (2013).

[116] K.-H. Chiang, C.-L. Lee, P.-Y. Lai, and Y.-F. Chen, Electri-
cal autonomous Brownian gyrator, Phys. Rev. E 96, 032123
(2017).

[117] It can be checked, in particular, that the matrix H; entering in
the expression (56) of J; is proportional to H for the Brownian
gyrator, as is also the case for the transverse system [108]. This
seems to be a general property of linear currents.

[118] D. A. Bini, B. lannazzo, and B. Meini, Numerical Solution of
Algebraic Riccati Equations (SIAM, Philadelphia, 2011).

[119] G. Ferré and H. Touchette, Adaptive sampling of large devia-
tions, J. Stat. Phys. 172, 1525 (2018).

[120] F. Coghi and H. Touchette, Adaptive power method for esti-
mating large deviations in Markov chains, Phys. Rev. E 107,
034137 (2023).

[121] A. C. Barato and R. Chetrite, Current fluctuations in periodi-
cally driven systems, J. Stat. Mech. (2018) 053207.

[122] E. Mallmin, J. du Buisson, and H. Touchette, Large deviations
of currents in diffusions with reflective boundaries, J. Phys. A:
Math. Theor. 54, 295001 (2021).

054111-18


https://doi.org/10.1140/epjst/e2015-02416-9
https://doi.org/10.1088/1742-5468/2009/07/P07017
https://doi.org/10.1088/1742-5468/2010/10/P10007
https://doi.org/10.1143/PTPS.184.304
https://doi.org/10.1103/PhysRevE.98.060601
https://doi.org/10.1063/1.5128956
https://doi.org/10.1103/PhysRevE.102.012148
https://doi.org/10.1088/1742-5468/aaeda3
https://doi.org/10.1103/PhysRevE.105.024115
https://doi.org/10.1103/PhysRevE.103.062142
https://doi.org/10.1088/0034-4885/61/8/001
https://doi.org/10.1103/PhysRevLett.92.130601
https://doi.org/10.1103/PhysRevE.71.060101
https://doi.org/10.1143/PTPS.99.165
https://doi.org/10.1103/PhysRevE.90.032117
https://doi.org/10.1103/PhysRevLett.91.110601
https://doi.org/10.1016/j.sysconle.2014.08.001
https://doi.org/10.1088/1751-8113/47/2/022001
https://doi.org/10.1088/1742-5468/2016/01/013206
https://doi.org/10.1103/PhysRevLett.99.230602
https://doi.org/10.1103/PhysRevE.87.062130
https://doi.org/10.1103/PhysRevE.96.032123
https://doi.org/10.1007/s10955-018-2108-8
https://doi.org/10.1103/PhysRevE.107.034137
https://doi.org/10.1088/1742-5468/aabfc5
https://doi.org/10.1088/1751-8121/ac039a

