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Measurement-based quantum Otto engine with a two-spin system coupled
by anisotropic interaction: Enhanced efficiency at finite times
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We have studied the performance of a measurement-based quantum Otto engine (QOE) in a working system of
two spins coupled by Heisenberg anisotropic interaction. A nonselective quantum measurement fuels the engine.
We have calculated thermodynamic quantities of the cycle in terms of the transition probabilities between the
instantaneous energy eigenstates, and also between the instantaneous energy eigenstates and the basis states
of the measurement, when the unitary stages of the cycle operate for a finite time τ . The efficiency attains a
large value in the limit of τ → 0 and then gradually reaches the adiabatic value in a long-time limit τ → ∞.
For finite values of τ and for anisotropic interaction, an oscillatory behavior of the efficiency of the engine is
observed. This oscillation can be interpreted in terms of interference between the relevant transition amplitudes
in the unitary stages of the engine cycle. Therefore, for a suitable choice of timing of the unitary processes in the
short time regime, the engine can have a higher work output and less heat absorption, such that it works more
efficiently than a quasistatic engine. In the case of an always-on heat bath, in a very short time, the bath has a
negligible effect on its performance.
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I. INTRODUCTION

The laws of classical thermodynamics are known to be
applicable to the thermodynamic limit. It is quite interesting
to study whether these laws are also valid in the quantum
limit. In this regard, thermal machines (e.g., heat engines
and refrigerators) can be considered as a suitable platform to
explore this issue in quantum systems. Deviations from the
classical limit of efficiency of these machines can be an impor-
tant marker to understand the effect of quantum mechanical
properties of the system.

In fact, it is rather crucial to explore whether it is possible
to enhance the efficiency of thermal machines by harnessing
quantum features such as coherence, many-body correlations,
and nonthermal population distributions. There have been sev-
eral studies in different types of quantum heat engine (QHE)
models to show that quantum coherence is indeed beneficial
to achieve an enhanced performance of the QHEs [1–11].
Roles of quantum correlation and entanglement [12–17], the
interaction within a coupled system [18–25], and the non-
thermal heat baths [3,26–31] in the performance of quantum
thermal machines have been investigated. It was shown that
the efficiency of QHEs can be improved beyond the Carnot
limit using squeezed thermal baths [27,28,32]. But, their effi-
ciency is bounded by a generalized efficiency limit for QHEs
energized by nonthermal heat baths [33].

From the time of Maxwell, it was known that work could
be extracted from a single-temperature heat bath using in-
formation gained from measurements. This type of engine
is known as Szilard’s engine, in which results of selective
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measurement are used to provide feedback on engine oper-
ation [34–36]. Recently, it was also shown that projective
measurement of the ground state can be used to mimic the re-
lease of heat from a system to a cold bath during an isochoric
process [37–39] in an ion-based QHE. In later works, quantum
measurement has been used to fuel the working system in
a QHE, in which the isochoric heating stage in a standard
quantum Otto engine (QOE) is replaced by a nonselective
quantum measurement [18,24,36,40]. Therefore, the engine
works with a single heat bath as a heat shrink and nonselective
quantum measurement as a heat source.

A finite-time analysis is also an important aspect of study-
ing QHE; as for practical applications, we need a finite
amount of power. Moreover, a QHE in finite time may show
true quantum nature in its performance which may not be
possible to observe in the quasistatic performance. Standard
QHEs are operated by Hamiltonians who do not commute
at different times [41–50]. Consequently, quantum internal
friction arises when a quantum system is driven unitarily by an
external control parameter in finite time. This induces nona-
diabatic transitions between the instantaneous eigenstates of
the Hamiltonian, and also generates coherence in the energy
eigenbasis. As a result, a larger amount of entropy is produced
and irreversibility is increased in engine operation, which de-
grades the performance of QHEs [46–50]. On the other hand,
in the presence of quantum coherence, QHEs can produce
more power output than the classical ones [7–11,51]. Power
output can be improved by not only the finite-time unitary
stages, but also via the non-Markovian effects during finite-
time bath interaction [52]. In fact, in a very recent study on a
finite-time QOE, it has been shown that coherence can act like
a dynamical quantum lubricant [45]. This can be interpreted
as a dynamical interference effect, which takes place between
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the residual coherence after incomplete thermalization and
the coherence generated in the subsequent finite-time unitary
driving process.

While the measurement processes and finite-time operation
can individually have substantial effects on the performance
of the QHEs, there have been very few studies when both
protocols are used together. It is recently shown that it is
possible to improve the performance of a single-qubit QHE
by suitably choosing the measurement basis such that the
degradation effect due to coherence production in a standard
QOE can be overcome [53]. In this work, we will investigate
the finite-time performance of a two-spin QOE by using a
nonselective quantum measurement to fuel the engine.

In our model, two spins are coupled with each other
by Heisenberg anisotropic XY interaction in the presence
of external time-varying homogeneous magnetic fields. By
changing the anisotropy parameter one can have the Heisen-
berg XX or Ising spin Hamiltonian as a limiting case. The free
part and the driving part of the Hamiltonian do not commute,
leading to the noncommuting nature of the Hamiltonian at two
different times. Consequently, it initiates transitions between
the instantaneous energy eigenstates, and introduces quantum
features into the performance of a QHE through unitary driv-
ing processes in finite time. In this paper, we aim to investigate
if a measurement-based engine operating in finite time per-
forms better than when operated quasistatically and we show
that it is indeed so.

The corresponding enhancement of engine efficiency can
be attributed to the anisotropy in the system and the use of
the measurement protocol. Such an enhancement could not be
achieved if the engine was fueled by a heat bath instead of a
nonselective measurement. We will also show that even if the
spins remain coupled with a heat bath throughout the cycle
(including the stages, when the magnetic fields are varied), it
has a negligible effect on the engine’s performance for faster
unitary stages. However, for a longer duration of these stages,
coupling to the bath dominates and the performance of the
engine degrades.

The paper is organized as follows. In Sec. II, we intro-
duce the two-spin model of the working system. We describe

different stages of the quantum Otto cycle and the relevant
thermodynamic quantities. Next in Sec. III, we describe the
finite time performance of the cycle. We provide a theoretical
analysis of the thermodynamic quantities in terms of the tran-
sition probabilities. We also compare them with the quasistatic
and the sudden limit of work and efficiency. In Sec. IV, we
study the case when the thermal bath continuously interacts
with the spins, even when the magnetic field is changed. We
conclude the paper in Sec. V.

II. QUANTUM HEAT ENGINE MODEL

In this section, we will briefly introduce our model of the
QOE.

A. System model

We consider a system of two spins coupled by Heisen-
berg anisotropic XY interaction in a transverse magnetic field
[B(t ) � 0]. The Hamiltonian is represented by [48,54,55]

ˆH (t ) = Ĥ0(t ) + ĤI , (1)

where

Ĥ0 = B(t )
(
σ̂ z

1 + σ̂ z
2

)
ĤI = J

[
(1 + γ ) σ̂ x

1 σ̂ x
2 + (1 − γ ) σ̂

y
1 σ̂

y
2

]
. (2)

Here Ĥ0 is the free part of the Hamiltonian, and ĤI rep-
resents the interaction between two spins with γ ∈ [−1, 1]
[56,57] as the anisotropy parameter, and J is the coupling
constant between the spins. The operators σ̂

x,y,z
i are the stan-

dard Pauli matrices for the ith (i ∈ 1, 2) spin. If γ = 0, the
Hamiltonian becomes a Heisenberg isotropic XX type, and
for γ = ±1, this becomes the Ising spin Hamiltonian. For
γ �= 0, ĤI and Ĥ0 do not commute, which in turn gives rise
to [Ĥ (t ), Ĥ (t ′)] �= 0. This further indicates that we may see
quantum behavior in finite-time engine operation [50].

The eigenvectors and the corresponding eigenvalues of the
Hamiltonian Ĥ (t ) are given by

|ψ0〉 = 1√
2

(
B − K√
K2 − BK

|11〉 + γ J√
K2 − BK

|00〉
)

, E0 = −2K,

|ψ1〉 = 1√
2

(−|10〉 + |01〉), E1 = −2J,

|ψ2〉 = 1√
2

(|10〉 + |01〉), E2 = 2J,

|ψ3〉 = 1√
2

(
B + K√
K2 + BK

|11〉 + γ J√
K2 + BK

|00〉
)

, E3 = 2K, (3)

where K =
√

B2 + γ 2J2 . These energy eigenstates can be
divided into two categories. The states that are dependent
on the system parameters B(t ) and J , namely |ψ0〉 and |ψ3〉,
evolve with time. The other ones which are independent of the
system parameters, namely |ψ1〉 and |ψ2〉, are the standard

Bell states that remain unchanged with time. We will show
in this work that the former ones play a fundamental role in
the behavior of the measurement-based cycle. Note that in the
limit of γ = 0, the eigenstates |ψ0,3〉 take the form of product
(i.e., disentangled) states, with the respective eigenvalues ∓2B
[see Appendix A].
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FIG. 1. Schematic diagram of the Otto cycle.

B. Quantum Otto cycle and thermodynamic quantities

We consider that the working system undergoes an Otto
cycle. The schematic diagram of the cycle is shown in Fig. 1.
The stages of the cycle are described below.

Unitary expansion (A to B): The working system is
initially prepared in a thermal state ρ̂A = e−βĤ1/Z at in-
verse temperature β = 1/T (kB = 1), with Ĥ1 = Ĥ (0) and
Z = Tr(e−βĤ1 ). During this stage of the cycle, the system
is decoupled from the heat bath and the external magnetic
field is changed from B1 to B2 during a finite timeinterval
τ . We choose a linear ramp for this change: B(t ) = B1 +
(B2 − B1)(t/τ ), where 0 � t � τ . The state of the working
system at the end of this stage changes to ρ̂B = Û (τ )ρ̂AÛ †(τ ),
where Û (τ ) = T exp[−ι

∫ τ

0 dtĤ (t )] is the relevant time evo-
lution operator, with T indicating the timeordering. Also, a
certain amount of work W1 is done by the system, which can
be calculated as W1 = 〈EB〉 − 〈EA〉, where 〈EA〉 = Tr(ρ̂AĤ1)
and 〈EB〉 = Tr(ρ̂BĤ2) indicate the expectation values of the
internal energies of the system at the start and the end of this
stage. Note that Ĥ2 = Ĥ (τ ).

Isochoric heating (B to C): The heating of a system
can be generally understood to be associated with an in-
crease in its entropy. Usually, a system is heated using a
heat bath. This can be alternatively achieved by applying a
nonselective quantum measurement on the working system.
In order to ensure that the energy supplied by this measure-
ment is nonzero, the measurement operator M̂ should not
commute with the Hamiltonian, i.e., [Ĥ (B2), M̂] �= 0. If ρ̂

is the state before the measurement, the post-measurement
state is usually written as

∑
α M̂αρ̂M̂α , where M̂α = |Mα〉〈Mα|

is the projection operator associated to the nondegenerate
eigenvalues of the observable M with eigenstates |Mα〉, sat-
isfying M̂†

α = M̂α and
∑

α M̂2
α = 1. In the present case, we

perform a global measurement of the state of the system;
in the Bell basis {|ψ±〉 = 1√

2
(|00〉 ± |11〉), |φ±〉 = 1√

2
(|01〉 ±

|10〉)}. The leads to a post-measurement state given by
ρ̂C = ∑4

α=1 M̂αρ̂BM̂α , where M̂α describes the relevant pro-
jection operators as follows: M̂1,2 = |ψ±〉〈ψ±| and M̂3,4 =
|φ±〉〈φ±|. During this stage, the entropy of the system in-
creases due to its interaction with the measurement apparatus
and this increase can be considered equivalent to heating. The

FIG. 2. Efficiency as a function of duration τ of the unitary
stages for different values of the anisotropy parameter γ = 0 (dash
dotted red line), γ = 0.3 (point marked magenta line), γ = 0.6 (dot-
ted green line), γ = 1 (solid blue line). The other parameters are
B1 = 1, B2 = 2, T = 1. All the quantities are dimensionless with
respect to J and also we have used kB = h̄ = 1.

corresponding heat “absorbed” can be calculated as QM =
〈EC〉 − 〈EB〉, where the internal energy 〈EC〉 = Tr(ρ̂CĤ2).

Unitary compression (C to D): The working system
remains decoupled from the heat bath in this stage. The mag-
netic field is driven from B2 to B1 in a finite time τ using
the protocol B(τ − t ). The state of the working system at the
end of this stage becomes ρ̂D = V̂ (τ )ρ̂CV̂ †(τ ), where V̂ (τ ) =
T exp[−ι

∫ τ

0 dtĤ (τ − t )] is the time evolution operator. A
certain amount of work, W2, is done on the system, which can
be calculated as W2 = 〈ED〉 − 〈EC〉, where the internal energy
〈ED〉 = Tr(ρ̂DĤ1).

Isochoric cooling (D to A): During this final stage of
the cycle, the system is now coupled with a heat bath at the
temperature T , whereas the magnetic field remains fixed at
B1. The system releases some amount of heat QL to the bath,
which can be calculated as QL = 〈EA〉 − 〈ED〉. We assume
that this process is carried out over a long time so that the
system reaches thermal equilibrium with the bath.

Total work done in a complete cycle can be calculated
as W = (W1 + W2) = −(QM + QL ). If W < 0, then the total
work in a complete cycle is done by the working system.
Also, the working system absorbs some amount of heat in the
measurement process, if QM > 0. Then, the working system
in a complete cycle works as a heat engine. So, the efficiency
of the engine is given by η = |W |/QM .

III. FINITE TIME OPERATION OF THE ENGINE

Usually, quantum heat engines are studied quasistatically.
If we allow different stages of the engine cycle only for finite
times, the performance of the engine is expected to deviate
substantially from the steady state. We show in Fig. 2 how
the efficiency varies with respect to the duration of the unitary
stages. We assume that each of these stages (unitary expansion
and compression) occurs for the same duration τ . All simula-
tions are done using QuTip [58] software package.
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As seen in Fig. 2, the efficiency oscillates at the transient
timescale for γ �= 0. This means that if the unitary stages are
executed for a very short time τ � 0, the efficiency can be
larger or smaller than that obtained for a large value of τ . If the
unitary processes are prolonged, the oscillation in efficiency
disappears. Thus, a finite-time measurement-based engine can
perform better than the same engine operating for a longer
duration for a suitable selection of the duration τ for unitary
processes.

Note that, if one would use a local measurement, instead
of global ones, similar oscillatory behavior in the efficiency
of the engine could be seen for finite-time operation [18,24].
Also in these cases, the engine performs better than its qua-
sistatic counterpart at finite times for specific choices of the
local basis.

A. Thermodynamic quantities in terms
of transition probabilities

The results as mentioned above can further be analyzed
in terms of the transition probabilities between the instanta-
neous eigenstates of the Hamiltonian. The internal energies
(derivations are given in the Appendix B) of the system at
four vertices of the QHE diagram in Fig. 1, are given by

〈EA〉 = −4K1
sinh 2K1β

Z
− 4J

sinh 2Jβ

Z
,

〈EB〉 = −4K2(1 − 2ξ )
sinh 2K1β

Z
− 4J

sinh 2Jβ

Z
,

〈EC〉 = −4K2(1 − 2δ)(1 − 2χ )
sinh 2K1β

Z
− 4J

sinh 2Jβ

Z
,

〈ED〉 = −4K1(1 − 2δ)(1 − 2λ)
sinh 2K1β

Z
− 4J

sinh 2Jβ

Z
,

(4)

where Z = 2 cosh(2K1β ) + 2 cosh(2Jβ ) is the partition
function, and K1 =

√
B2

1 + γ 2J2 , K2 =
√

B2
2 + γ 2J2 ,

ξ = |〈ψ (2)
0 |Û (τ )|ψ (1)

3 〉|2, δ = |〈ψ+|Û (τ )|ψ (1)
0 〉|2, χ =

|〈ψ (2)
0 |ψ+〉|2, and λ = |〈ψ (1)

3 |V̂ (τ )|ψ−〉|2. Clearly, ξ accounts
for the transition probability between two different eigenstates
|ψ3〉 and |ψ0〉 during the unitary expansion. Also, because the
instantaneous energy eigenstates |ψ0,3〉 do not truly coincide
with the measurement basis states |ψ±〉, their nonzero
overlap gives rise to certain transitions between them during
measurement and unitary compression stages of the cycle.
This can be seen by rewriting the states |ψ±〉 in terms of the
instantaneous energy eigenstates as

|ψ+〉 = − c2 − d2

a2d2 − b2c2

∣∣ψ (2)
0

〉 + a2 − b2

a2d2 − b2c2

∣∣ψ (2)
3

〉
,

|ψ−〉 = − c2 + d2

a2d2 − b2c2

∣∣ψ (2)
0

〉 + a2 + b2

a2d2 − b2c2

∣∣ψ (2)
3

〉
, (5)

where

a2 = B2 − K2√
K2

2 − B2K2

, b2 = γ J√
K2

2 − B2K2

,

c2 = B2 + K2√
K2

2 + B2K2

, d2 = γ J√
K2

2 + B2K2

. (6)

Then the relevant transition probabilities can be written as

δ =
∣∣∣∣ − c2 − d2

a2d2 − b2c2

〈
ψ

(2)
0

∣∣U (τ )
∣∣ψ (1)

0

〉

+ a2 − b2

a2d2 − b2c2

〈
ψ

(2)
3

∣∣U (τ )
∣∣ψ (1)

0

〉∣∣∣∣
2

,

λ =
∣∣∣∣ − c2 + d2

a2d2 − b2c2

〈
ψ

(1)
3

∣∣V (τ )
∣∣ψ (2)

0

〉

+ a2 + b2

a2d2 − b2c2

〈
ψ

(1)
3

∣∣V (τ )
∣∣ψ (2)

3

〉∣∣∣∣
2

, (7)

and

χ =
∣∣∣∣ c2 − d2

a2d2 − b2c2

∣∣∣∣
2

. (8)

The expressions of the work can be obtained using Eq. (4)
as

W1 = 4[K1 − K2(1 − 2ξ )]
sinh 2K1β

Z

and

W2 = 4(K2 − K1)(1 − 2δ)(1 − 2λ)
sinh 2K1β

Z
.

Thus, the total work in a complete cycle is given by

W = W1 + W2 = −4[K2{(1 − 2ξ ) − (1 − 2δ)(1 − 2χ )}

− K1{1 − (1 − 2δ)(1 − 2λ)}] sinh 2K1β

Z
. (9)

Also, the heat “absorption” during the measurement stage is
given by

QM = 4K2[(1 − 2ξ ) − (1 − 2δ)(1 − 2χ )]
sinh 2K1β

Z
. (10)

The efficiency of the cycle is therefore given by

η = |W |
QM

= 1 − K1[1 − (1 − 2δ)(1 − 2λ)]

K2[(1 − 2ξ ) − (1 − 2δ)(1 − 2χ )]
. (11)

The plot of the transition probabilities ξ , δ, χ , and λ with
respect to the duration τ of the individual unitary processes are
shown in Fig. 3. Note that δ and λ exhibit oscillatory depen-
dence on τ , χ remains constant, while ξ displays a monotonic
decay, as τ increases. Though the transition probabilities δ and
λ are the same, for our choice of the measurement basis and
the eigenstates of the Hamiltonian, it is, generally speaking,
not a universal feature [53].

The oscillation in the finite time efficiency is primarily due
to the oscillation in the transition probabilities δ and λ. The
oscillation in the transition probabilities δ can be attributed
to the interference between the probability amplitudes for the
transitions |ψ (1)

0 〉 → |ψ (2)
0 〉 and |ψ (1)

0 〉 → |ψ (2)
3 〉 [see Eq. (7)].

Similarly, oscillation in λ is due to the transition |ψ−〉 ↔
|ψ (1)

3 〉. The other transition probability ξ , also known as quan-
tum internal friction [50,59], is negligible with respect to the
δ, χ, and λ in a measurement-based QHE. As the unitary
stages are prolonged, oscillation in the finite time efficiency
disappears and the efficiency approaches to the quasistatic
limit (see Sec. III B).
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FIG. 3. Transition probabilities as a function of the duration τ

of each unitary stage. We have used the left y axis for transition
probabilities δ and λ (solid black line), and χ (dash dotted black
line) and the right y axis for transition probability ξ (point marked
red line). The other parameters are B1 = 1, B2 = 2, and γ = 1.

Note that the two energy eigenstates |ψ1〉 and |ψ2〉 are
the same as two Bell states |φ±〉. As these states have been
used in measurement basis, their occupation probabilities do
not change in the measurement process, and therefore, these
states do not contribute to the calculation of heat [see Eqs. (7),
(8), and (10)]. Moreover, the eigenvalues of these eigenstates
are independent of the external control parameter B(t ), and
thus the contribution of these states to work is also zero
[see Eq. (9)]. The only contribution to the engine performance
arises from the two other eigenstates |ψ0〉 and |ψ3〉.

B. Quasistatic (adiabatic) limit of the thermodynamic quantities

In order to calculate the quasistatic value of the efficiency,
we consider that the unitary processes are performed qua-
sistatically, i.e., for an infinite time interval. Therefore, there
are no nonadiabatic transitions between two instantaneous en-
ergy eigenstates, and the unitary processes become adiabatic.
So, in such a limit, we can write ξ = |〈ψ (2)

0 |Û (τ )|ψ (1)
3 〉|2 τ→∞=

0 (Fig. 3). Also, the transition probabilities between the
instantaneous energy eigenstates and the basis states of mea-
surement take the following forms for very large τ :

δ
τ→∞=

∣∣∣∣ c2 − d2

a2d2 − b2c2

∣∣∣∣
2

, λ
τ→∞=

∣∣∣∣ a2 + b2

a2d2 − b2c2

∣∣∣∣
2

.

Using the expressions of a2, b2, c2, d2 [see Eq. (6)] we can
indeed find that δ = χ = λ = 1

2 − γ J/2K2 at the quasistatic
limit (see also Fig. 3).

Thus, the expressions of the work and heat absorption of
the cycle can be obtained as

Wq = −16(K2 − K1)χ (1 − χ )
sinh 2K1β

Z
,

QMq = 16K2χ (1 − χ )
sinh 2K1β

Z
, (12)

and the quasistatic value of the efficiency is given by

ηq = |Wq|/QMq = 1 − K1

K2
. (13)

Clearly, the expression of this efficiency is independent of
the temperature of the heat bath used in the cold isochoric
process. This indicates that the performance of the engine
does not depend upon the temperature of the heat bath in the
case of global measurement, which we have used in the iso-
choric heating stage. We emphasize that this is unlike the case
for a local measurement where the performance of an engine
depends upon the temperature of the heat bath [18]. Also, it
can be seen from Eq. (13) that for nonzero γ , the expression of
the efficiency is very much similar to the efficiency of a single-
spin QHE with two heat baths [42] or a single heat bath and
a nonselective quantum measurement at the isochoric heating
stage [40]. This similarity arises as only two intermediate en-
ergy levels (|ψ0,3〉, as mentioned in Sec. II A) contribute to the
engine performance due to our specific choice of the measure-
ment basis. Therefore, a measurement-based heat engine with
a coupled two-spin working system for global measurement
acts like a two-level (single-spin) heat engine, which is evident
in the expression of the efficiency [Eq. (13)]. Interestingly,
even a two-stroke QHE made up of two different working
systems with two different frequencies can lead to the same
form of efficiency [60]. However, the expression of efficiency
will differ if one uses a coupled two-spin working system
along with two heat baths or with a single bath plus local
measurement instead of global measurement.

C. Sudden (quench) limit of the thermodynamic quantities

In order to calculate the sudden limit of the thermodynamic
quantities, we consider that the external magnetic field is
changed suddenly (τ → 0) from B1 to B2 or vice versa. In
this case Û (τ ), V̂ (τ ) → 1, therefore the state of the system
does not change over unitary processes. So, in this limit, the
transition probabilities can be written as

δ
τ→0=

∣∣∣∣− c2 − d2

a2d2 − b2c2

〈
ψ

(2)
0

∣∣ψ (1)
0

〉+ a2 − b2

a2d2 − b2c2

〈
ψ

(2)
3

∣∣ψ (1)
0

〉∣∣∣∣
2

= − (B1 − K1 + γ J )2

4K1(B1 − K1)
,

λ
τ→0=

∣∣∣∣− c2 + d2

a2d2 − b2c2

〈
ψ

(1)
3

∣∣ψ (2)
0

〉+ a2 + b2

a2d2 − b2c2

〈
ψ

(1)
3

∣∣ψ (2)
3

〉∣∣∣∣
2

= (B1 + K1 − γ J )2

4K1(B1 + K1)
,

ξ
τ→0= ∣∣〈ψ (2)

0 |ψ (1)
3

〉∣∣2 = −γ 2J2 + (B1 + K1)(B2 − K2)

4K1K2(B2 − B1)(B1 + K1)
. (14)

Also from Eq. (8), we get

χ = (B2 − K2)(B2 + K2 − γ J )2

4γ J2K2
. (15)

Using (14) and (15) in the expressions of work [Eq. (9)]
and heat absorption [Eq. (10)], we obtain the sudden limits of
work and heat absorption which are given by

Ws = −4
B1(B2 − B1)

K1

sinh 2K1β

Z
,

QMs = 4
B1B2

K1

sinh 2K1β

Z
. (16)
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FIG. 4. Variation of the absolute value of the work done Wt (solid
black line, labeled on the left y axis) and heat absorbed QMt (point
marked red line, labeled on the right y axis) as a function of duration
τ of the unitary stage. The other parameters are B1 = 1, B2 = 2,
T = 1, and γ = 1.

Therefore, the efficiency at this limit is given by

ηs = |Ws|
QMs

= 1 − B1

B2
. (17)

Interestingly, the efficiency does not depend on the
anisotropy parameter in the sudden limit. This means that
the QOE has the same efficiency for all γ when τ → 0.
This can be seen in Fig. 2 that, for our choices of B1 = 1
and B2 = 2, this is equal to 0.5, irrespective of the values
of γ , whereas for large τ , the efficiency saturates to a lower
value. Therefore, with two spins coupled by anisotropic in-
teraction as the working system, a measurement-based QHE
operating in the sudden limit performs better than an engine
operating in the adiabatic limit.

D. Analysis of the heat engine performance

For the quasistatic operation of the cycle, we show the
variation of the efficiency as a function of work in Fig. 5. It is
clear from this plot that the engine performance degrades with
the increase of the anisotropy parameter γ . This is because as
γ increases, the heat absorption in the measurement process
increases and the work output decreases after a slow increase
in the lower range of γ . We also observed that there exists
a certain value of γ ∼ 0.46 for which the work output gets
maximized.

The variation of the work and heat absorption with respect
to the duration τ of the unitary processes are shown in Fig. 4.
Also, the plots of the efficiency with respect to work are shown
in Fig. 5. From these plots, we can see that a finite-time engine
can deliver more work than the same engine operating in the
quasistatic limit with a proper choice of the time interval τ of
the unitary processes. In addition to that, the finite-time engine
absorbs less amount of heat in the measurement process than
the same engine operating in the quasistatic limit. Conse-
quently, when operated for finite times, the engine requires
less energy resource, and still can perform better than its
quasistatic counterpart.

Interestingly, this outperforming is further improved for
the larger anisotropy parameter γ . When γ = 0, no transition

FIG. 5. The parametric plot of the variable γ on the work-
efficiency plane. We have taken the absolute value of the work.
Here the point-marked red line represents the finite-time value (for
τ = 0.1) and the solid black line represents the quasistatic value.
The anisotropy parameter γ varies from 0 to 1. The point 0.5 on
the solid black line corresponds to γ = 0, while the left end of the
plot corresponds to γ = 1. The other parameters are B1 = 1, B2 = 2,
and T = 1.

takes place between two instantaneous energy eigenstates,
and the unitary stages remain adiabatic, irrespective of their
duration. Also, there is no interference-like effect between
two transition probability amplitudes for the isotropic case
[see Appendix A], unlike in the anisotropic case. Thus, the
efficiency does not change with respect to τ , as displayed
in Fig. 2. Therefore, operating the engine even for a finite
time would lead to the same efficiency as for the case when
operated quasistatically.

IV. ALWAYS-ON COUPLING TO THE HEAT BATH

It may not always be possible to decouple a quantum
system from its bath, which acts as a heat bath for the HE
operation, depending upon the architecture of the working
system and the bath. Also, there is a cost associated with
coupling and decoupling the working system from a heat
bath [61,62]. In the previous section, we assumed that the
working system is completely isolated from its bath during
the work-delivering stages so that the stages, AB and CD,
remain unitary. We consider here that the HE operation is
implemented in a type of realistic architecture in which the
working system cannot be decoupled from its bath [61]. It
is therefore necessary to take into account the dissipation of
energy from the working system to the bath during stages
AB and CD. This requires solving the master equation, which
is given below, with a time-dependent Hamiltonian under a
dissipative bath. Here, we assume that the remaining two
isochoric stages of the cycle are identical to those mentioned
in Sec. II B. Furthermore, since the measurement process is
assumed to be instantaneous, the bath will not have any effect
on the system during measurement.

We consider that the temperature of the heat bath is T and
a single spin decays to the bath. Then the master equation in
the interaction picture for two spins can therefore be written
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as [27]

∂ρ̂

∂t
= ι[ρ̂, Ĥ ] +

∑
i=1,2

[
�i(t ){n(ωi(t )) + 1}

×
(

X̂iρ̂X̂ †
i − 1

2
X̂ †

i X̂iρ̂ − 1

2
ρ̂X̂ †

i X̂i

)

+ �i(t )n(ωi(t ))

(
X̂ †

i ρ̂X̂i − 1

2
X̂iX̂

†
i ρ̂ − 1

2
ρ̂X̂iX̂

†
i

)]
,

(18)

where �i(t ){n(ωi(t )) + 1} and �i(t )n(ωi(t )) are time-
dependent dissipation rates, n(ωi(t )) = [exp( h̄ωi (t )

kT ) − 1]−1 is
the average number of photons in the bath at the tran-
sition frequencies ωi(t ), �i(t ) = 0.1ωi(t )e−ωi (t )/ωc is the
time-dependent dissipation rate of the spin to an Ohmic type
bath [63,64], and ωc is the cut-off frequency of the bath

spectral density. These rates are time-dependent because of
the timedependence of the Hamiltonian Ĥ (t ) [63,65]. Note
that we are assuming that Eq. (18) remains valid for the time
scales involved with the system and the bath dynamics. This
is possible if the bath time scale 1/ωc is much smaller than the
system time-scale 1/min j (Ej ) [where Ej is given by Eq. (3)]
and the duration τ during which the magnetic field is changed
[63].

Note that the jump operators associated to a system opera-
tor X̂ are given by [66]

X̂ (ω) =
∑

ε′−ε=ω

|ε〉〈ε|X̂ |ε′〉〈ε′|,

where {|ε〉} is the basis of the eigenvectors of the system
Hamiltonian Ĥ . In the present case, the first spin is assumed to
interact with the heat bath via σ̂ x operator, and the correspond-
ing jump operators X̂i and the respective transition frequencies
are given by

X̂1 = 1

2

(
B + K − γ J√

K2 + BK
|ψ1〉〈ψ3| + B − K + γ J√

K2 − BK
|ψ0〉〈ψ2|

)
, h̄ω1 = 2K + 2J,

X̂2 = 1

2

(
B + K + γ J√

K2 + BK
|ψ2〉〈ψ3| + B − K − γ J√

K2 − BK
|ψ0〉〈ψ1|

)
, h̄ω2 = 2K − 2J. (19)

These operators satisfy the relations [Ĥ , X̂i] = −ωiX̂i and
[Ĥ, X̂ †

i ] = ωiX̂
†
i . Note that K and |ψ0,3〉 are functions of B(t ),

and are therefore timedependent, which also gives rise to the
time dependence of the jump operators in Eq. (19).

The heat and work in an open quantum system in the
presence of an external drive are defined as [61]

Q(t ) =
∫ t

0
Tr[ ˙̂ρ(t ′)Ĥ (t ′)]dt ′,

W (t ) =
∫ t

0
Tr[ρ̂(t ′) ˙̂H (t ′)]dt ′. (20)

The total change in the average energy of the system in
a process is given by �E (t ) = E (t ) − E (0), where E (t ) =
Tr[ρ̂(t )Ĥ (t )] is the average energy at a time t . This change
in energy can be written as contributions from two separate
thermodynamic quantities as

�E (t ) = W (t ) + Q(t ). (21)

The work in the AB and CD processes can then be repre-
sented as follows:

W1(τ ) =
∫ τ

0
Tr[ρ̂A→B(t ′) ˙̂HA→B(t ′)]dt ′

W2(τ ) =
∫ τ

0
Tr[ρ̂C→D(t ′) ˙̂HC→D(t ′)]dt ′. (22)

So, the total work is given by W = W1 + W2. We calcu-
lated the heat transfer between the system and the heat
bath using Eq. (21). The numerical solution of the mas-
ter equation has been done using the fourthorder adaptive
Runge-Kutta method and the numerical integration to calcu-
late the work is done using the Trapezoidal rule. The heat

absorption in the measurement process is calculated as dis-
cussed in Sec. II B.

We show in Fig. 6 how the efficiency varies with the du-
ration τ of the unitary stages. It is clear from this plot that
the presence of the bath has a negligible effect on its perfor-
mance in a very short time. Therefore, we can employ such a
measurement-based heat engine model whenever one requires
a finite amount of power. One does not have to decouple the
working system ever to obtain a finite amount of power, if
the engine runs for a finite duration. However, the longer the
duration τ , the more the engine efficiency decreases due to
the dominant effects of the bath over the external control pa-
rameter. The dissipative part of the master equation dominates
over the unitary part and therefore, the system releases more
energy to the bath as heat than it releases as the work. Also,
the spins absorb more energy during the measurement stage
as τ increases. We must emphasize that if both the spins are

0 1 2 5 10 15
Unitary process time 

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy
 

FIG. 6. Efficiency η as a function of duration τ of the unitary
stages for �i(t ) = 0 (for the isolated system: solid blue line) and
�i(t ) = 0.1ωi(t )e−ωi (t )/ωc (for open system: dashed red line). The
other parameters are B1 = 1, B2 = 2, T = 1, ωc = 1000, and γ = 1.
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FIG. 7. Variation of the absolute value of work (black solid line,
labeled on the left y axis) and power (point marked red line, labeled
on the right y axis) as a function of the anisotropy parameter γ in
the limit of τ → 0. A moderate thermalization time ranges from 61
to 191 for anisotropy 0 � γ � 1 when the trace distance D(ρ̂, ρ̂A) ∼
10−2. The other parameters are B1 = 1, B2 = 2, T = 1.

considered to individually interact with the heat bath [67,68],
the main results of this paper will remain the same.

In this section, we have considered the QOE with an
always-on single bath along with a measurement protocol. On
the other hand, it is possible for a QOE that operates with
two heat baths to maintain such an always-on coupling, while
still achieving a reciprocating cycle by periodically changing
the interaction strength with the baths. However, as the per-
formance of these QOEs deteriorates in a finite time, such an
always-on interaction cannot give us operational advantages
over a measurement-based engine.

A. Power analysis of the engine

The isochoric cooling process of the system with a thermal
bath is not an instantaneous process, and ideally takes infinite
time. To make a power analysis, we assume that the state of
the system becomes very close to a thermal state ρA at a finite
time tc. In order to make an estimate of this closeness we
have calculated the trace distance between two states ρ̂ and
ρ̂A, defined as D(ρ̂, ρ̂A) = 1

2 Tr |ρ̂ − ρ̂A| [45], where the state
ρ̂ is obtained by solving the master equation [Eq. (18)], with
time-independent dissipation rate coefficients, as the magnetic
field is kept constant at B = B1 during this cooling process.
Also, as defined in Sec. II B, ρA represents the thermal state at
a temperature T (that of the cold bath) when the magnetic field
is maintained at B = B1 [see also, Fig. (1)]. We estimated tc,
as a time when the trace distance D(ρ̂, ρ̂A) becomes ∼10−2.
Such a finite-time analysis of the cooling process helps us in
defining the power of the engine as P = W/(2τ + tc), where
τ is the duration of each unitary stage, and we have assumed
that the measurement is an instantaneous process. The plot of
the power as a function of the anisotropy is shown in Fig. 7.

We found that in the limit of τ → 0, the work does not
change substantially with respect to γ as compared to the qua-
sistatic limit, which is discussed in Sec. III D. However, the
thermalization time increases with the increase in anisotropy,
leading to a reduction of power. Further, if we consider that
both spins interact with the bath, thermalization of the system

during the isochoric cooling process can be achieved at a
much faster pace, and hence, more power would be generated
by the engine.

V. CONCLUSIONS

We have studied the performance of a measurement-based
QOE in a two-spin working system coupled by the Heisenberg
anisotropic XY interaction. A nonselective quantum measure-
ment is used to fuel the engine. The noncommuting nature
of the Hamiltonian at two different times initiates transi-
tions between the instantaneous energy eigenstates at finite
time unitary processes. Furthermore, the instantaneous energy
eigenstates do not coincide with the measurement basis states
which causes some transition between them. The relevant
thermodynamic quantities are calculated in terms of these
transition probabilities. We found that the efficiency oscillates
largely at short times when the two-spin system is coupled by
an anisotropic interaction, while for isotropic interaction there
is no oscillation. This oscillation in efficiency is explained
in terms of interference between different transition proba-
bilities at finite times. It is observed that the oscillation in
efficiency dies out as the unitary processes extend for a longer
time and eventually the efficiency approaches the quasistatic
limit. Thus, proper control of the duration of unitary processes
during transient times can lead to higher work output and
less heat absorption. As a result, a finite-time engine can be
more efficient than a quasistatic engine. The efficiency further
increases with increasing anisotropy while in the quasistatic
limit; it is observed that the performance deteriorates with an
increase in anisotropy.

Also, we studied the performance of the HE under the
condition of always-on coupling to the heat bath. We found
that the presence of the bath has a negligible effect on its
performance in a very short time limit. However, for a longer
duration of the stages AB and CD, its performance degrades.
This is primarily due to the dominance of the bath interaction
over external control during these stages.

APPENDIX A: EIGENVECTORS AND EIGENVALUES
FOR γ = 0 AND THE CORRESPONDING TRANSITION

PROBABILITIES

In the limit of γ → 0, the eigenstates and correspond-
ing eigenvectors of the Hamiltonian Ĥ (t ) take the following
forms:

|ψ0〉 = |00〉, E0 = −2B,

|ψ1〉 = 1√
2

(−|10〉 + |01〉), E1 = −2J,

|ψ2〉 = 1√
2

(|10〉 + |01〉), E2 = 2J,

|ψ3〉 = |11〉, E3 = 2B. (A1)

Clearly, the states |ψ0,3〉 are no longer entangled, though
they differ from the Bell states |ψ±〉. Also in this limit, it
can be shown using the above eigenstates that the transition
probabilities, as mentioned in Sec. III A, are reduced to δ =
λ = χ = 1/2 and ξ = 0, where we used: 〈ψ (2)

0 |Û (τ )|ψ (1)
3 〉 =
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〈ψ (2)
3 |Û (τ )|ψ (1)

0 〉=〈ψ (1)
0 |V̂ (τ )|ψ (2)

3 〉=〈ψ (1)
3 |V̂ (τ )|ψ (2)

0 〉=0,
and 〈ψ (2)

0 |Û (τ )|ψ (1)
0 〉 = 〈ψ (1)

3 |V̂ (τ )|ψ (2)
3 〉 = 1. Therefore,

for the isotropic case, the efficiency becomes η = 1 − B1/B2,
which does not depend on τ .

APPENDIX B: DERIVATION OF
THE INTERNAL ENERGIES

1. At A: The Hamiltonian at point A of the cycle can be
expressed as

ĤA = Ĥ1 =
3∑

i=0

E (1)
i

∣∣ψ (1)
i

〉〈
ψ

(1)
i

∣∣,
where {|ψ (1)

i 〉} are the eigenstates of the Hamiltonian Ĥ1. As
we consider that the system at A is in thermal equilibrium with
the heat bath, the thermal density matrix is given by

ρ̂A = e−βĤ1

Z
=

3∑
i=0

Pi

∣∣ψ (1)
i

〉〈
ψ

(1)
i

∣∣, (B1)

where Pi = e−βE (1)
i /Z is the thermal occupation probability of

the ith eigenstate and Z is the relevant partition function. So,
the average internal energy at point A is given by

〈EA〉 = Tr(Ĥ1ρ̂A) =
3∑

i=0

PiE
(1)
i

= −4K1
sinh 2K1β

Z
− 2J

sinh 2Jβ

Z
. (B2)

2. At B: The Hamiltonian at point B of the cycle can be
expressed as

ĤB = Ĥ2 =
3∑

i=0

E (2)
i

∣∣ψ (2)
i

〉〈
ψ

(2)
i

∣∣,
where {|ψ (2)

i 〉} are the eigenstates of the Hamiltonian Ĥ2. The
density matrix at point B after the unitary process AB can be
obtained as

ρ̂B = Û (τ )ρ̂AÛ †(τ ) =
3∑

i=0

PiÛ (τ )
∣∣ψ (1)

i

〉〈
ψ

(1)
i

∣∣Û †(τ ). (B3)

The average internal energy at the point B can be obtained
as

〈EB〉 = Tr(Ĥ2ρ̂B)

= P0E (2)
0

〈
ψ

(2)
0

∣∣Û (τ )
∣∣ψ (1)

0

〉〈
ψ

(1)
0

∣∣Û †(τ )
∣∣ψ (2)

0

〉
+ P3E (2)

0

〈
ψ

(2)
0

∣∣Û (τ )
∣∣ψ (1)

3

〉〈
ψ

(1)
3

∣∣Û †(τ )
∣∣ψ (2)

0

〉
+ P1E (2)

1 + P2E (2)
2 + P0E (2)

3

〈
ψ

(2)
3

∣∣Û (τ )
∣∣ψ (1)

0

〉
× 〈

ψ
(1)
0

∣∣Û †(τ )
∣∣ψ (2)

3

〉 + P3E (2)
3

〈
ψ

(2)
3

∣∣Û (τ )
∣∣ψ (1)

3

〉
× 〈

ψ
(1)
3

∣∣Û †(τ )
∣∣ψ (2)

3

〉
= P0E (2)

0 (1 − ξ ) + P3E (2)
0 ξ + P1E (2)

1 + P2E (2)
2

+ P0E (2)
3 ξ + P3E (2)

3 (1 − ξ )

= −4K2(1 − 2ξ )
sinh 2K1β

Z
− 4J

sinh 2Jβ

Z
, (B4)

where we have used the microreversibility conditions
|〈ψ (2)

0 |Û (τ )|ψ (1)
3 〉|2 = |〈ψ (2)

3 |Û (τ )|ψ (1)
0 〉|2 = ξ (proof is

given in the Appendix C) and |〈ψ (2)
0 |Û (τ )|ψ (1)

0 〉|2 =
|〈ψ (2)

3 |Û (τ )|ψ (1)
3 〉|2 = 1 − ξ . In unitary stages for a short

time interval τ , nonadiabatic transitions occur between
energy eigenstates that are coupled [54]. In the present case,
such transitions will be induced between the levels |ψ0〉 and
|ψ3〉. So, the terms like 〈ψ (2)

0 |Û (τ )|ψ (1)
1 〉, 〈ψ (2)

0 |Û (τ )|ψ (1)
2 〉,

and 〈ψ (2)
3 |Û (τ )|ψ (1)

1 〉, etc., become zero.
3. At C: The density matrix after the measurement stage

can be written as

ρ̂C =
4∑

α=1

M̂αρ̂BM̂α = P0δ|ψ+〉〈ψ+| + P0(1 − δ)|ψ−〉〈ψ−|

+ P1

∣∣ψ (1)
1

〉〈
ψ

(1)
1

∣∣ + P2

∣∣ψ (1)
2

〉〈
ψ

(1)
2

∣∣
+ P3(1 − δ)|ψ+〉〈ψ+| + P3δ|ψ−〉〈ψ−|, (B5)

where M̂†
α = M̂α and we have used the microreversibility

condition |〈ψ+|Û (τ )|ψ (1)
0 〉|2 = |〈ψ−|Û (τ )|ψ (1)

3 〉|2 = δ (proof
can be found in the Appendix C) and |〈ψ−|Û (τ )|ψ (1)

0 〉|2 =
|〈ψ+|Û (τ )|ψ (1)

3 〉|2 = 1 − δ. The average internal energy at
point C can be obtained as

〈EC〉 = Tr(Ĥ2ρ̂C )

= E (2)
0 P0δ

∣∣〈ψ (2)
0

∣∣ψ+
〉∣∣2 + E (2)

0 P0(1 − δ)
∣∣〈ψ (2)

0

∣∣ψ−
〉∣∣2

+ E (2)
0 P3(1 − δ)

∣∣〈ψ (2)
0

∣∣ψ+
〉∣∣2 + E (2)

0 P3δ
∣∣〈ψ (2)

0

∣∣ψ−
〉∣∣2

+ E (2)
1 P1 + E (2)

2 P2 + E (2)
3 P0δ

∣∣〈ψ (2)
3

∣∣ψ+
〉∣∣2

+ E (2)
3 P3(1 − δ)

∣∣〈ψ (2)
3

∣∣ψ−
〉∣∣2 + E (2)

3 P3(1 − δ)

× ∣∣〈ψ (2)
3

∣∣ψ+
〉∣∣2 + E (2)

3 P3δ
∣∣〈ψ (2)

3

∣∣ψ−
〉∣∣2

= −4K2(1 − 2δ)(1 − 2χ )
sinh 2K1β

Z
− 4J

sinh 2Jβ

Z
,

(B6)

where we have used |〈ψ (2)
0 |ψ+〉|2 = |〈ψ (2)

3 |ψ−〉|2 = χ and
|〈ψ (2)

0 |ψ−〉|2 = |〈ψ (2)
3 |ψ+〉|2 = 1 − χ , which can be proved

using the conservation of probability:

∣∣〈ψ (2)
0

∣∣ψ−
〉∣∣2 + ∣∣〈ψ (2)

3

∣∣ψ−
〉∣∣2 = 1.

4. At D: The density matrix at point D after the unitary
process CD is given by

ρ̂D = V̂ (τ )ρ̂CV̂ †(τ ). (B7)

Similarly to points A, B, and C, we can derive the average
internal energy at point D which is given by

〈ED〉 = Tr(Ĥ1ρ̂D) = −4K1(1 − 2δ)(1 − 2λ)
sinh 2K1β

Z

− 4J
sinh 2Jβ

Z
, (B8)

where we have used the microreversibility condition
|〈ψ (1)

0 |V̂ (τ )|ψ+〉|2 = |〈ψ (1)
3 |V̂ (τ )|ψ−〉|2 = λ (proof is
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given in the Appendix C) and |〈ψ (1)
3 |V̂ (τ )|ψ+〉|2 =

|〈ψ (1)
0 |V̂ (τ )|ψ−〉|2 = 1 − λ.

APPENDIX C: PROOF OF THE MICROREVERSIBILITY
CONDITIONS

We show below in details the proof of the relation
|〈ψ (2)

0 |Û (τ )|ψ (1)
3 〉|2 = |〈ψ (2)

3 |Û (τ )|ψ (1)
0 〉|2:

∣∣〈ψ (2)
3

∣∣Û (τ )
∣∣ψ (1)

0

〉∣∣2 = 〈
ψ

(2)
3

∣∣Û (τ )
∣∣ψ (1)

0

〉〈
ψ

(1)
0

∣∣Û †(τ )
∣∣ψ (2)

3

〉
= 〈

ψ
(2)
3

∣∣Û (τ )
(
I − ∣∣ψ (1)

1

〉〈
ψ

(1)
1

∣∣ − ∣∣ψ (1)
2

〉
× 〈

ψ
(1)
2

∣∣ − ∣∣ψ (1)
3

〉
y
〈
ψ

(1)
3

∣∣)Û †(τ )
∣∣ψ2

3

〉
,

(C1)

where we have used the completeness relation∑3
i=0 |ψ (1)

i 〉〈ψ (1)
i | = I. The above relation can then be

rewritten as〈
ψ

(2)
3

∣∣Û (τ )Û †(τ )
∣∣ψ (2)

3

〉 − ∣∣〈ψ (2)
3

∣∣Û (τ )
∣∣ψ (1)

3

〉∣∣2

= 1 −
(

1 − ∣∣〈ψ (2)
0

∣∣Û (τ )
∣∣ψ (1)

3

〉∣∣2
)

= ∣∣〈ψ (2)
0

∣∣Û (τ )
∣∣ψ (1)

3

〉∣∣2
. (C2)

In the last step of the above derivation, we have used the
conservation of the probability:∣∣〈ψ (2)

0

∣∣Û (τ )
∣∣ψ (1)

3

〉∣∣2 + ∣∣〈ψ (2)
3

∣∣Û (τ )
∣∣ψ (1)

3

〉∣∣2 = 1.

Similarly, we can prove the other microreversibility
conditions, namely, |〈ψ+|Û (τ )|ψ (1)

0 〉|2 = |〈ψ−|Û (τ )|ψ (1)
3 〉|2

and |〈ψ (1)
0 |V̂ (τ )|ψ+〉|2 = |〈ψ (1)

3 |V̂ (τ )|ψ−〉|2 by using∑4
α=1 M̂2

α = 1 and the conservation of probability,
respectively,∣∣〈ψ+

∣∣Û (τ )
∣∣ψ (1)

3

〉∣∣2 + ∣∣〈ψ−
∣∣Û (τ )

∣∣ψ (1)
3

〉∣∣2 = 1,∣∣〈ψ (1)
0

∣∣V̂ (τ )
∣∣ψ−

〉∣∣2 + ∣∣〈ψ (1)
3

∣∣V̂ (τ )
∣∣ψ−

〉∣∣2 = 1.
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Eur. Phys. J. D 71, 1 (2017).
[47] D. Türkpençe and F. Altintas, Quant. Info. Proc. 18, 1 (2019).
[48] B. Çakmak and Ö. E. Müstecaplıoğlu, Phys. Rev. E 99, 032108
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