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First-passage properties of continuous stochastic processes confined in a one-dimensional interval are well
described. However, for jump processes (discrete random walks), the characterization of the corresponding
observables remains elusive, despite their relevance in various contexts. Here we derive exact asymptotic expres-
sions for the leftward, rightward, and complete exit-time distributions from the interval [0, x] for symmetric jump
processes starting from x0 = 0, in the large x and large time limit. We show that both the leftward probability
F0,x (n) to exit through 0 at step n and rightward probability F0,x (n) to exit through x at step n exhibit a universal
behavior dictated by the large-distance decay of the jump distribution parametrized by the Levy exponent μ. In
particular, we exhaustively describe the n � (x/aμ)μ and n � (x/aμ)μ limits and obtain explicit results in both
regimes. Our results finally provide exact asymptotics for exit-time distributions of jump processes in regimes
where continuous limits do not apply.
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I. INTRODUCTION

In many physical systems, exit-time distributions, which
quantify the time taken by a random process to exit a given
confining region, play a key role in understanding the rel-
evant time scales driving the system [1–4]. Although the
geometrical constraints can be defined in any dimension, the
escape of random processes from the one-dimensional interval
[0, x] appears as a highly recurrent and instructive physical
model in a variety of fields, from chemical reaction kinet-
ics [2,4] to foraging animals [5] to financial asset modeling
[6,7]. A classic example of application is the Wright-Fisher
evolutionary model [8], describing the dynamics of a popu-
lation of two alleles A and B. The first time n at which one
of the alleles completely disappears from the population is
schematically described by the first exit-time distribution of
a random process in the interval [0,1], with initial position
x0 describing the initial fraction of, say, allele A. In fact,
in this representative example of a stochastic process with
two alternative outcomes, not only the exit time but also the
exit side matters. The fixation or extinction time distributions
of the allele A are indeed given, respectively, by the right-
ward or leftward exit-time distributions of the corresponding
process.

While these observables are well documented for one-
dimensional continuous stochastic processes [1,4], their dis-
crete time counterparts, namely, for jump processes, remain
elusive; this is in essence because the integral equations sat-
isfied by exit-time distributions are notoriously difficult to
analyze in bounded domains [9]. Jump processes are, how-
ever, relevant to a variety of situations [10], and have been
the subject of multiple recent works in the context of self-
propelled particles, such as active colloids, or larger-scale
animals [11–15]. In addition, experimental data of typical
tracking experiments (be it of single molecules, animals, or
asset prices) are discrete in time by nature, because of a

finite sampling rate. Thus, no matter the microscopic nature
of the underlying process, experimental trajectories of a tracer
particle invariably take the form of discrete time series of
successive positions of the tracer. They therefore constitute
intrinsic realizations of jump processes, which are for this
reason of clear interest in this context. In what follows, we
focus on leftward, rightward, and complete exit-time distri-
butions of general jump processes. These observables are of
particular interest at a theoretical level, and also relevant to
analyze experimental data involving transport processes with
competitive outcomes.

The one-dimensional jump processes considered hereafter
are defined as follows: starting from 0 � x0 � x, the random
walker successively performs jumps drawn from a symmetric
continuous distribution p(�), with Fourier transform p̃(k) =∫ ∞
−∞ eik� p(�)d�, until it strictly exits the interval [0, x] by

crossing either 0 or x. The corresponding first exit-time prob-
ability (FETP) at step n is denoted by F0,x(n|x0). Importantly,
because the random walk is defined in discrete time, the FETP
is nonvanishing for x0 = 0. For example, the one-step FETP,
given by F0,x(n = 1|0) = 1 − ∫ x

0 p(y)dy, is strictly positive.
As a result, the FETP cannot be determined by simply taking
the continuous limit of the process, which would invariably
lead to a vanishing value for a process starting at x0 = 0.
In addition, the determination of first exit observables, and
in particular the FETP for x0 = 0, is key in understanding
experimental data [16]. As an example, it was recently shown
in the context of photon and neutron scattering [16–20] that
the transmission probability through a slab of width x was
given by the splitting probability π0,x to reach x before 0
starting from 0. The latter was determined asymptotically in
Ref. [21] as

π0,x ∼
x→∞

2μ−1�
( 1+μ

2

)
√

π

[aμ

x

] μ

2
, (1)
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FIG. 1. Rightward and leftward FETPs. In this specific realiza-
tion, after taking two steps inside the interval, the jump process
escapes either through x or through 0 on its third step, with respec-
tive probabilities F0,x (3|x0 ) (red rightward dot) or F0,x (3|x0 ) (purple
leftward dot).

where μ and aμ characterize the small k behavior of p̃(k):

p̃(k) =
k→0

1 − (aμ|k|)μ + o(kμ). (2)

Of note, the splitting probability does not contain any infor-
mation on the exit time. To go further and quantify the time
at which exit events occur, one needs the leftward, rightward,
and complete FETPs. The leftward FETP F0,x(n) is defined as
the probability for the walker starting from 0 to exit through 0
at time n exactly without having crossed x before, and F0,x(n)
is its rightward counterpart (see Fig. 1). The complete FETP
F0,x(n) is then given by

F0,x(n) = F0,x(n) + F0,x(n). (3)

A natural strategy to compute these FETPs is to consider the
continuous limit of the problem, defined here as the limit
aμ � x0, which implies that typical exit times satisfy n � 1.
Two limit behaviors then arise depending on the value of μ

[22,23]: for 0 < μ < 2 the process converges to an α-stable
Levy process of parameters μ and aμ, while for μ = 2 the
limit distribution is that of a Brownian motion with diffusion
coefficient D = a2

2. In this continuous limit, the complete first
exit-time distribution has been the focus of several works and
is given by [24,25]

F (c)
0,x (n|x0) =

∞∑
k=1

Ck (x0)λk2μ
[aμ

x

]μ

e−λk2μ[
aμ

x ]μn

Ck (x0) =
[∫ 2

0
ψk (u)du

]
ψk

(
2

x
x0

)
,

(4)

where λk and ψk are, respectively, the eigenvalues and eigen-
functions of the fractional diffusion equation of order μ on
the interval [0,2] with absorbing boundary conditions [26].
Of note, only approximates of ψk and λk have been obtained
so far for 0 < μ < 2 [25]. For illustration we provide λ1 �
[π

2 − (2−μ)π
8 ]μ; see also Appendix A.

Although the continuous limit Eq. (4) describes the regime
aμ � x0 for F0,x(n|x0), it fails to capture the regime x0 � aμ,
which depends on the microscopic details of the process. In
particular, taking x0 → 0 in Eq. (4) would yield F0,x(n|0) = 0,
which is clearly incorrect for a discrete time jump process.
The quantitative understanding of the regime x0 � aμ for
leftward, rightward, and complete FETPs for general jump
processes, which is key to analyzing experimentally rele-
vant situations and, in particular, the transmission properties
stated above, thus calls for a new approach, which is the
objective of this paper. For the sake of simplicity, we focus

here on the x0 = 0 case (see Appendix D for the full regime
0 � x0 � aμ).

II. SUMMARY OF RESULTS

In this article, we derive exact asymptotics for both F0,x (n)
and F0,x(n) in the n → ∞ and x → ∞ limit. More precisely,
we show that the rightward FETP displays the following uni-
versal asymptotic behavior:

F0,x(n) ∼
n→∞
x→∞
τ fixed

π0,x hμ(τ ) n−1 (5)

where π0,x is the splitting probability defined above, hμ is
a universal μ-dependent function, and τ = [ aμ

x ]μ n is the
rescaled number of steps, with respect to the typical number
of steps needed to escape the interval, ntyp = (x/aμ)μ. For
μ = 2, we find

h2(τ ) = 2τπ2
∞∑

k=1

k2(−1)k+1e−k2π2τ , (6)

while for 0 < μ < 2 we obtain the following asymptotic be-
haviors:

hμ(τ ) ∼
τ�1

�(μ/2) sin(πμ/2)π− 3
2
√

τ (7a)

hμ(τ ) ∼
τ�1

Cμ�2( μ

2 )

�(μ)
2

μ

2 −2[λ12μτ ]e−λ12μτ (7b)

where λ1 is defined above and C is a constant which reads

C = lim
x0→0

ψ1(x0)

x
μ

2
0

[∫ 2

0
ψ1(u)du

]
. (8)

Next, we show that the leftward FETP displays an analo-
gous universal asymptotic behavior:

F0,x(n) ∼
n→∞
x→∞
τ fixed

F0(n)gμ(τ ), (9)

where F0(n) ∼ (4πn3)−
1
2 is the large n asymptotic first

passage time distribution through 0 in the semi-infinite
system (starting from 0), obtained from the celebrated
Sparre-Andersen theorem, and gμ is a universal μ-dependant
function. For μ = 2, the function g2 is determined explicitly
and reads

g2(τ ) = 4π
5
2 τ

3
2

∞∑
k=1

e−k2π2τ k2, (10)

while for 0 < μ < 2 we obtain the following asymptotic be-
haviors:

gμ(τ ) ∼
τ�1

1 (11a)

gμ(τ ) ∼
τ�1

C �
(

1 + μ

2

)√
πλ

− 1
2

1 [λ12μτ ]
3
2 e−λ12μτ . (11b)

Finally, Eqs. (5)–(11) provide a comprehensive picture of the
asymptotic behavior of the rightward and leftward FETPs,
which in turn give access to the complete FETP. The obtained
universal asymptotic forms capture the dependence on both
the system size x and number of steps n.
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FIG. 2. Rightward FETP for a jump process with p(�) ∝ e−|l|

(yielding μ = 2). Upon rescaling according to Eq. (5), F0,x (n) con-
verges to the scaling function h2(τ ), defined by Eq. (6).

III. RIGHTWARD FETP

We first write the rightward FETP as F0,x(n) = π0,x h(x, n),
where h(x, n) is the conditional probability to escape through
x at step n knowing that the walker reaches x before 0, and
π0,x is the splitting probability defined above. In the large n
and x limit, h(x, n) can be written

h(x, n) = F0,x(n)

π0,x
∼

n→∞
x→∞
τ fixed

lim
x0→0

[
F (c)

0,x (n|x0)

π
(c)
0,x (x0)

]
, (12)

where F (c)
0,x (n|x0) is the rightward FETP of the continuous

process and π
(c)
0,x (x0) the corresponding continuous splitting

probability [27,28].
Indeed, in the large n and x limit, the typical position Xn of

the random walker satisfies Xn � aμ and the continuous limit
can be taken. In turn, since F (c)

0,x (n|x0) ∝ π
(c)
0,x (x0) for x0 → 0

(see Appendix B), h(x, n) is a well-defined x0-independent
function. Making use of scale invariance, we then define the
μ-dependent universal scaling function hμ(τ ), with τ given
above, as

lim
x0→0

[
F (c)

0,x (n|x0)

π
(c)
0,x (x0)

]
≡ hμ(τ )

n
. (13)

This yields the result (5). Importantly, the discrete nature of
the jump process only enters through π0,x, which yields a non-
vanishing rightward FETP as expected. For μ = 2, h2(τ ) can
be derived explicitly from Eq. (12) and leads to (6). This exact
asymptotic behavior is confirmed by numerical simulations
(see Fig. 2).

For 0 < μ < 2, the rightward FETP F (c)
0,x (n|x0) of continu-

ous Levy processes is not known, so that hμ cannot be derived
explicitly; its large and small τ asymptotics can, however,
be obtained. For τ � 1, i.e., n � (x/aμ)μ, we remark that
the dynamics become independent of the starting point so
that F (c)

0,x (n|x0) ∼ 2−1F (c)
0,x (n|x0). Using Eq. (4), this yields the

result (7b). Of note, the leading τ behavior of (6) is compatible
with Eq. (7b) for μ = 2.

For τ � 1 (or equivalently x/aμ � n1/μ), the leading be-
havior of hμ cannot be extracted from (4) because there is

a priori no simple link between hμ and F (c)
0,x (n|x0) in this limit.

However, it can conveniently be obtained by making use of the
following exact decomposition of F0,x(n), which states that
during the first n − 1 steps the walker remains in the interval
[0, x], while the nth step takes him beyond x:

F0,x(n) =
∫ x

0
G0,x(u, n − 1)

[∫ ∞

x−u
p(l )dl

]
du. (14)

Here G0,x(u, k) is defined as the propagator of the jump pro-
cess in the bounded interval [0, x] after k steps. Next, we
note that in the large x limit with n fixed, G0,x(u, n − 1) ∼
G0(u, n − 1) with G0 the semi-infinite propagator. This, to-
gether with (14), then yields the asymptotic relation

F0,x (n) ∼
x→∞

∫ x

0
G0(u, n − 1)U (x − u)du, (15)

where U (x) = ∫ ∞
x p(l )dl is the cumulative of the jump dis-

tribution. Importantly, this shows that the two-target quantity
F0,x (n) can be expressed asymptotically in terms of the well-
characterized one-target quantity G0(x, n) only. We finally
introduce the Laplace transform (in space) of a given function
f (x) as f̃ (p) = ∫ ∞

0 e−px f (x)dx and the generating function
(in time) of a given function g(n) as ĝ(ξ ) = ∑

n�0 g(n)ξ n and
obtain ̂̃F 0,p(ξ ) ∼

p→0
ξ ̂̃G0(p, ξ ) Ũ (p). (16)

Both ̂̃G0(p, ξ ) and Ũ (p) can then be readily analyzed in the
p → 0 limit to extract the leading large x behavior of F0,x(n).
In the case 0 < μ < 1 (see Appendix C for 1 � μ < 2), one
has [29] ̂̃G0(p, ξ ) = 1√

1 − ξ
+ o(pμ)

Ũ (p) = cμ (aμ)μ pμ−1 + o(pμ−1), (17)

where cμ = sec( πμ

2 )/2. To leading order in p → 0, we obtain̂̃F 0,p(ξ ) ∼ ξ√
1−ξ

cμ (aμ)μ pμ−1 and, upon Laplace inversion,
we derive the following exact asymptotic form:

F0,x(n) ∼
x→∞ q(n − 1)

�(μ)

π
sin

(πμ

2

)[aμ

x

]μ

(18)

where q(n) is the (survival) probability that a symmetric jump
process starting from x = 0 remains positive up to step n,
given by the universal Sparre-Andersen result q(n) = (2n

n

)
2−2n

[30]. In fact, we show in Appendix C that Eq. (18) holds for all
μ such that 0 < μ < 2. Last, using q(n) ∼ (πn)−

1
2 for large

n, identification with Eqs. (5) and (1) yields the announced
universal small τ behavior (7a), as displayed in Fig. 3 for
different μ < 2.

Of note, both asymptotic behaviors described by Eq. (7)
are necessary to recover the large x scaling of the splitting
probability π0,x = ∑∞

n=1 F0,x (n) (see Appendix E).

IV. LEFTWARD FETP

As for the rightward FETP, our strategy consists in
expressing the two-target quantity F0,x(n) in terms of a well-
characterized one-target quantity—here the first passage time
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FIG. 3. Small τ behavior of the rightward FETP for various Levy
flights with μ < 2. The universal small τ behavior of F0,x (n) pre-

dicted by Eq. (7a) is displayed, with γμ = �(μ/2) sin(πμ/2)π− 3
2 .

probability through 0 for a jump process starting from 0 in
a semi-infinite domain F0(n). We first recall that for a given
jump process, the typical number of steps needed to cover
a distance x scales as n ∝ xμ [22]. We thus argue that, for
an interval of typical extension (x/aμ)μ � n, F0,x(n) ∼ F0(n),
because trajectories approaching the rightmost target are very
unlikely [28,31]. On the other hand, for n � (x/aμ)μ, F0,x(n)
vanishes exponentially fast since it is increasingly unlikely for
the walker to remain in [0, x]. Following the derivation of (12)
and (13), we introduce g(x, n) and define its continuous limit
gμ(τ ) by

g(x, n) = F0,x(n)

F0(n)
∼

n→∞
x→∞
τ fixed

lim
x0→0

[
F (c)

0,x (n|x0)

F (c)
0 (n|x0)

]
≡ gμ(τ ), (19)

with F (c)
0 and F (c)

0,x , respectively, the semi-infinite first passage
time distribution and leftward FETP of the limit continu-
ous process. It is shown in Appendix B that F (c)

0,x (n|x0) ∝
F (c)

0 (n|x0) for x0 → 0, which ensures that gμ(τ ) is well de-
fined and independent of x0. Similarly to the rightward FETP,
g2 can be computed explicitly and is given in (10). For 0 <

μ < 2, only the asymptotic behavior of gμ for τ � 1 and
τ � 1 can be obtained. For small τ , one has F0,x(n) ∼ F0(n)
(as discussed above), yielding Eq. (11a). Note that this is
verified explicitly in the case μ = 2 (see Appendix F). When
τ � 1, we perform the same analysis as for the rightward
FETP. F (c)

0 (n|x0) is known exactly [32]:

F (c)
0 (n|x0) ∼

n→∞

[
x0

aμ

] μ

2 1

2
√

π�
(
1 + μ

2

) 1

n
3
2

, (20)

and in the large n limit, F (c)
0,x (n|x0) ∼ 2−1F (c)

0,x (n|x0). Equa-
tion (19) together with Eq. (4) then yields (11b), which is
illustrated in Fig. 4 for various μ � 2.

V. COMPLETE FETP

Finally, the complete FETP can now be obtained from
Eq. (3). For n � (x/aμ)μ, one finds F0,x(n) ∼ F0(n), which
simply reflects the fact that the target at x is never approached

0 1 2 3 4 5 6

FIG. 4. Leftward FETP for n � (x/aμ)μ. Defining τ̃ = λ12μτ

and rescaling F0,x (n|0) according to (11b), all curves collapse onto
a single exponential for various processes with 0 < μ � 2. The
Laplace jump process is defined by p(�) ∝ e−|�|, corresponding to
μ = 2. C is given by Eq. (8), and here γμ = �(1 + μ

2 )
√

π .

by the walker and rightward exit events almost never occur.
For n � (x/aμ)μ, however, both rightward and leftward FETP
contribute and one has F0,x(n) ∼ F0,x(n). Indeed, after a large
number of steps, the dynamics is independent of the initial
condition and exits on both sides are equiprobable. The com-
plete FETP thus reads F0,x(n) ∼ 2F0,x(n).

VI. CONCLUSION

We have derived asymptotic forms for the rightward, left-
ward, and complete exit-time probabilities from an interval
[0, x] for general jump processes starting from the edge of
the domain. While such first-passage properties have been
well described for continuous stochastic processes, the case
of jump processes has so far remained elusive, despite its rel-
evance in various contexts. In fact, continuous limits provide
only vanishing expressions for starting positions close to the
edge of the domain, and are thus useless to quantify impor-
tant observables such as transmission or backscattering-type
probabilities. These are key to analyzing experimental data,
such as phase delay in neutron-scattering experiments. Our
approach fills this gap and provides a comprehensive picture
of exit-time probabilities, which yields asymptotically explicit
universal forms controlled by the large-distance decay of the
jump distribution only.

APPENDIX A: EIGENVALUES AND EIGENFUNCTIONS
OF THE FRACTIONAL DIFFUSION EQUATION

In this section, we reproduce results from Ref. [25] re-
garding the eigenvalues and eigenfunctions of the fractional
Laplacian. We emphasize that the fractional Laplacian is an
important technical tool to describe Levy-like processes, but
that the eigenfunctions φ̃k and eigenvalues λk of the operator
in a bounded interval are not known analytically. Here we
present approximates of these quantities; we closely follow
the notations of Ref. [25]. Let D = (−1, 1) be the domain of
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interest; we aim at finding solutions to the following equation:(
d2

dx2

) μ

2

φ(x) = λφ(x) for x ∈ (−1, 1), (A1)

with φ(−1) = φ(1) = 0. Denoting λk the kth eigenvalue,
sorted in increasing order, we have

λk =
(

kπ

2
− (2 − μ)π

8

)μ

+ O

(
1

k

)
. (A2)

Approximate expressions ψk of the corresponding eigen-
functions can be obtained by combining infinite and semi-
infinite eigenfunctions of the fractional Laplacian, which are
known explicitly. It is found that

ψk (x) = q(−x)Fμk (1 + x) − (−1)kq(x)Fμk (1 − x), (A3)

with

μk = kπ

2
− (2 − μ)π

8
(A4)

and Fλ defined in the following way:

Fλ(x) = sin

(
λx + (2 − μ)π

8

)
− G(λx). (A5)

Here G is the Laplace transform of a positive function γ (s):

γ (s) =
√

2μ sin
(

μπ

2

)
2π

sμ

1 + s2μ − 2sμ cos
(

μπ

2

)
× exp

[
1

π

∫ ∞

0

dr

1 + r2
ln

(
1 − rμsμ

1 − r2s2

)]
. (A6)

Finally, q is an interpolating function:

q(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for x ∈ (−∞,− 1

3

)
9
2

(
x + 1

3

)2
for x ∈ (− 1

3 , 0
)

1 − 9
2

(
x − 1

3

)2
for x ∈ (

0, 1
3

)
1 for x ∈ (

1
3 ,∞)

.

(A7)

From these combined expressions, one can numerically
evaluate the approximates ψk; this is used to determine nu-
merically C in Eq. (8) of the main text.

APPENDIX B: SMALL x0 BEHAVIOR
OF THE CONTINUOUS QUANTITIES

In this section, we show that all continuous quantities
considered in the main text, namely, F (c)

0 (n|x0), F (c)
0,x (n|x0),

F (c)
0,x (n|x0), π

(c)
0,x (x0), vanish similarly to x0 → 0. Denoting

here ψk the eigenfunctions of the fractional Laplacian op-
erator on [0, x] and φk the eigenfunctions of the fractional
Laplacian operator on [0,+∞], Kwasnicki shows that for
x0 → 0:

ψk (x0) ∝ φk (x0) ∝
[√

μ

2
�

(μ

2

)]−1

[μkx0]
μ

2 . (B1)

Since all of the F (c)
0 (n|x0), F (c)

0,x (n|x0), F (c)
0,x (n|x0), π

(c)
0,x (x0)

can be projected either on the ψk or φk basis, we obtain that

they all vanish as x
μ

2
0 as x0 → 0.

APPENDIX C: DETAILS ON THE RIGHTWARD
EXIT-TIME PROBABILITY FOR THE CASE 1 � μ < 2

In this section, we focus on the asymptotic behavior of
F0,x (n|0) in the case 1 � μ < 2, by performing the same
asymptotic expansion as in the main text for the μ < 1 case.

1. μ = 1 case

Let us list the various small p expansions necessary for the
analysis, which can be found in Ref. [33], or easily derived:

̂̃G0(p, ξ |0) = 1√
1 − ξ

[
1 +

(
ξ

1 − ξ

) 1
μ a1

π
p log(p) + O(p)

]

f̃ (p) = 1

2
+ a1

π
p log(p) + O(p)

F̃ (p) = −a1

π
log(p) + O(1),

(C1)

To lowest order in p one then obtains

̂̃F 0,p(ξ ) = − ξ√
1 − ξ

a1

π
log(p) + o[log(p)], (C2)

which yields, after inversion,

F0,x(n|0) ∼
x→∞

1

π
q(n − 1|0)

[a1

x

]
, (C3)

in agreement with Eq. (18) from the main text.

2. 1 < μ < 2 case

Let us repeat this operation:

̂̃G0(p, ξ |0) = 1√
1 − ξ

[
1 +

(
ξ

1 − ξ

) 1
μ aμ p

sin(π/μ)

− ξ

1 − ξ
cμ(aμ p)μ + o(pμ)

]
f̃ (p) = 1

2
− p〈 f 〉 − cμ(aμ p)μ + o(pμ)

F̃ (p) = 〈 f 〉 + cμ aμ
μ pμ−1 + o(pμ−1). (C4)

To lowest order in p one then obtains

̂̃F 0,p(ξ |0) = ξ√
1 − ξ

[〈 f 〉 + cμ aμ
μ pμ−1

]
, (C5)

which yields, after inversion,

F0,x(n|0) ∼
x→∞ q(n − 1|0)

×
[
〈 f 〉δ(x) + 1

π
�(μ) sin

(
πμ

2

)[aμ

x

]μ
]
.

(C6)

054109-5



KLINGER, VOITURIEZ, AND BÉNICHOU PHYSICAL REVIEW E 107, 054109 (2023)

(a) (b)

FIG. 5. x0 dependence of exit-time probabilities. (a) Leftward FETP for a Laplace jump process. After rescaling, the rightward FETP
collapses to the U (x0 ) = 1√

π
+ V (x0) function, for various τ values. (b) Rescaled rightward FETP for an F-distributed jump process defined

by p(�) ∝ [
√|l|(1 + |l|)]−1. The x0 dependence is in this case sublinear.

In the large x limit, we finally obtain

F0,x(n|0) ∼
x→∞ q(n − 1|0)

1

π
�(μ) sin

(
πμ

2

)[aμ

x

]μ

, (C7)

in agreement with Eq. (18) of the main text.

APPENDIX D: NONZERO INITIAL CONDITIONS

In this section we focus on the derivation of F0,x(n|x0)
and F0,x(n|x0) for 0 < x0 � aμ. Note that the assumption
x0 � aμ is important since in the opposite limit x0 � aμ, the
continuous limit is recovered and the rightward and leftward
exit-time distributions are known. Our objective here is thus
to highlight the peculiar behaviors arising from the discrete
time nature of the jump process. Recalling Eqs. (5) and (9)
of the main text, we argue that the dependence on the initial
position of exit-time probabilities is contained either in the
splitting probability (rightward FETP) or in the semi-infinite
first passage time probability (leftward FETP):

F0,x (n|x0) ∼
n→∞
x→∞
τ fixed

π0,x(x0)hμ(τ )n−1

F0,x(n|x0) ∼
n→∞
x→∞
τ fixed

F0(n|x0)gμ(τ ).
(D1)

It was shown in Refs. [33,34] that both splitting and
semi-infinite first passage time probabilities exhibit similar
asymptotic forms in the large n and x limit. More precisely,
for a jump process with jump distribution p(l ) and Fourier
transform p̃(k) = ∫ ∞

−∞ eik� p(�)d� one has

F0(n|x0) ∼
n→∞

1√
4n3

[
1√
π

+ V (x0)

]

π0,x(x0) ∼
x→∞ 2μ−1�

(
1 + μ

2

)[aμ

x

] μ

2

[
1√
π

+ V (x0)

]
,

(D2)

where aμ is the scale of the jump process defined by the small
k expansion of p̃(k):

p̃(k) =
k→0

1 − (aμ|k|)μ + o(kμ), (D3)

and V (x0) is defined by its Laplace transform:

LV (λ) =
∫ ∞

0
V (x0)e−λx0 dx0

= 1

λ
√

π

(
exp

{
− λ

π

∫ ∞

0

dk

k2 + λ2
ln[1 − p̃(k)]

}
− 1

)
(D4)

Combining Eqs. (D1) and (D2), we thus obtain the small
x0 � aμ behavior of the rightward and leftward FETPs,
along with the complete exit-time distribution F0,x(n|x0) =
F0,x(n|x0) + F0,x(n|x0). Agreement with numerical simula-
tions is displayed in Fig. 5.

These expressions constitute the extension of the results
derived in the main text to the full regime 0 < x0 � aμ. We
stress that the V (x0) function displays highly nontrivial x0

behavior, far from the continuous limit V (x0) ∝
x0�aμ

xμ/2
0 and

clearly identified in Ref. [21].

APPENDIX E: SCALING OF THE SPLITTING
PROBABILITY

In this section, we show how to recover the scaling of the
splitting probability derived in Ref. [21] from Eqs. (5) and
(18). Recall first that the splitting probability starting from
x0 = 0 reads

π0,x =
∞∑

k=1

F0,x(k). (E1)

Splitting this sum into two parts, we obtain the following
decomposition:

π0,x =
xμ∑

k=1

q(k − 1)
�(μ)

π
sin

(πμ

2

)[aμ

x

]μ

+
∞∑

k=xμ

π0,x
hμ

(
k

xμ

)
k

≡ A1(x) + A2(x). (E2)

Since the survival probability satisfies q(k) ∝ k− 1
2 in the

large k limit, one has A1(x) ∝ x− μ

2 . In the large x limit, the
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second sum can be rewritten as an integral:

A2(x) ∼ π0,x

∫ ∞

1
hμ(τ )τ−1dτ. (E3)

Recalling the definition of hμ(τ ) from Eq. (3) of the main
text, we rewrite A2 as

A2(x) ∼ π0,x

∞∑
k=1

P(k)e−λk2μ

, (E4)

with P(k) some subexponential function of k that guarantees
the convergence of the sum. Summing A1 and A2 together, we
thus recover the expected scaling of the splitting probability

derived in Ref. [21]:

A1(x) + A2(x) ∝ x− μ

2 . (E5)

APPENDIX F: SMALL τ BEHAVIOR OF g2(τ )

In this section we give an alternate expression of g2(τ )
defined in Eq. (10) of the main text, which is convenient to
analyze small τ values. We obtain this expression by using
the Poisson sum formula:

g2(τ ) = 4π
5
2 τ

3
2

∞∑
k=1

e−k2π2τ k2

= 1 +
∞∑

k=1

e− k2

τ

(
2 − 4k2

τ

)
(F1)

In particular, this yields g2(τ ) → 1 for τ → 0.
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