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Opinion formation models with extreme switches and disorder: Critical behavior and dynamics
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In a three-state kinetic exchange opinion formation model, the effect of extreme switches was considered in
a recent paper. In the present work, we study the same model with disorder. Here disorder implies that negative
interactions may occur with a probability p. In the absence of extreme switches, the known critical point is at
pc = 1/4 in the mean-field model. With a nonzero value of q that denotes the probability of such switches, the
critical point is found to occur at p = 1−q

4 where the order parameter vanishes with a universal value of the
exponent β = 1/2. Stability analysis of initially ordered states near the phase boundary reveals the exponential
growth (decay) of the order parameter in the ordered (disordered) phase with a timescale diverging with exponent
1. The fully ordered state also relaxes exponentially to its equilibrium value with a similar behavior of the
associated timescale. Exactly at the critical points, the order parameter shows a power-law decay with time with
exponent 1/2. Although the critical behavior remains mean-field-like, the system behaves more like a two-state
model as q → 1. At q = 1 the model behaves like a binary voter model with random flipping occurring with
probability p.

DOI: 10.1103/PhysRevE.107.054106

I. INTRODUCTION

To address the problem of opinion formation in a society
[1–3], several models with three opinion states have been
considered recently [4–20]. Typically these opinions are taken
as ±1 and 0, where ±1 may represent extreme ideologies. In a
recent paper [17], using a mean-field kinetic exchange model,
the present authors studied the effect of extreme switches
of opinion, which is not usually considered in such models.
Several interesting results were obtained; in particular, for the
maximum probability of such a switch, the model was shown
to effectively reduce to a mean-field voter model beyond a
transient time. In this paper we extend the previous work
by including negative interaction between the agents which
acts as a disorder. Such negative interactions have been in-
corporated in three-state kinetic exchange models previously
[10–14] and several properties have been studied in different
dimensions. However, the effect of extreme switches and neg-
ative interaction both occurring together has not been studied
earlier. Since these two features can occur simultaneously in
reality, the dynamics of a model incorporating both is worth
studying. In the absence of the extreme switches the critical
point as well as the critical behavior is known [10–12]. The
interest is primarily to see how the critical behavior is affected
in the presence of the extreme switches.

In the present two-parameter model, representing the prob-
abilities of negative interaction and extreme switches, in
addition to obtaining the phase boundary and behavior of
the order parameter, we have studied the dynamical behavior
close to the fixed point. The relaxation of the order parameter
from a fully ordered state is also studied at and away from
criticality. The static critical behavior as well as the dynamical
behavior are found to be similar to the mean-field model with-
out extreme switches. However, we find that the nature of the

phases in terms of the densities of the three types of opinions
is quite different. Especially, the case with maximum extreme
switches in the presence of the negative interaction leads to
an interesting mapping to a disordered binary model. As a
starting point, the mean-field model has been studied where
the majority of the results can be obtained analytically. We
derive the time derivatives of the three densities of population
in terms of the transition rates which are then either solved
analytically or numerically. A small-scale simulation is also
made particularly to study the finite size scaling behavior of
the order parameter.

In Sec. II, the model is described. Results are presented
in Sec. III and some further analyses are made in the last
section which also includes the concluding remarks.

II. THE MODEL

We have considered a kinetic exchange model for opinion
formation with three opinion values 0,±1. Such states may
represent the support for two candidates or parties and a neu-
tral opinion [17,21,22] or three different ideologies where ±1
represent radically different ones. The opinion of an individ-
ual is updated by taking into account her present opinion and
an interaction with a randomly chosen individual in the fully
connected model. The time evolution of the opinion of the ith
individual opinion denoted by oi(t ), when she interacts with
the kth individual, chosen randomly, is given by

oi(t + 1) = oi(t ) + μok (t ), (1)

where μ is interpreted as an interaction parameter, chosen
randomly. The opinions are bounded in the sense |oi| � 1
at all times and therefore oi is taken as 1 (−1) if it is more
(less) than 1 (−1). There is no self-interaction so i �= k in
general. The values of the interaction parameter are taken
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FIG. 1. Updated opinions of the ith individual for μ = ±1 and
±2 after interacting with the randomly chosen kth individual follow-
ing Eq. (1) are shown.

to be discrete: μ = ±1 and ±2. Here we take |μ| = 1 and
2 with probability 1 − q and q, respectively, and negative
interactions, i.e., a negative value of μ occurs with probability
p.

The updated opinion of an individual after interaction with
another agent, with all possible values of opinion for both
agents, are shown schematically in Fig. 1 for the four values
of μ = ±1 and ±2.

III. RESULTS

The mean-field results are known for the limits q = 0, any
p and also for p = 0, any q. For q = 0, the system undergoes
a order-disorder phase transition at p = 1/4. For p = 0 on
the other hand, the fate of the system starting from initially
ordered configurations showed that it reached consensus for
q �= 1 while for q = 1, there is a quasiconservation leading
to a partially ordered state. Initially disordered states flow to
a q-dependent frozen fixed point which is disordered for all
q [17]. These results are ensemble averaged and valid in the
thermodynamic limit.

A. Rate equations

The densities of the three populations with opinion 0,±1,
are denoted by f0, f±1, with f0 + f+1 + f−1 = 1. The ensem-
ble averaged order parameter is 〈O〉 = f+1 − f−1 with −1 �
〈O〉 � 1. A nonzero value of the order parameter indicates an
ordered state while 〈O〉 = 0 would correspond to a disordered
state.

To set up the rate equations for the fi’s, we need to treat
the time variable as continuous. Let the opinion change from
i to j (i, j = 0,±1) in time �t with the transition rate given
by wi→ j . Then we have the following set of wi j’s:

w+1→+1 = f0 f+1 + f 2
+1(1 − p) + f+1 f−1 p,

w0→+1 = (1 − p) f0 f+1 + p f0 f−1,

w−1→+1 = q(1 − p) f−1 f+1 + pq f 2
−1,

w+1→0 = (1 − q)(1 − p) f−1 f+1 + p(1 − q) f 2
+1,

w0→0 = f 2
0 ,

w−1→0 = (1 − q)(1 − p) f−1 f+1 + (1 − q)p f 2
−1,

w+1→−1 = q(1 − p) f+1 f−1 + qp f 2
+1,

w0→−1 = (1 − p) f0 f−1 + p f+1 f0,

w−1→−1 = f0 f−1 + (1 − p) f 2
−1 + p f−1 f+1.

In general, we have fi(t + �t ) = fi(t ) + ∑
j w j→i�t −∑

j wi→ j�t such that taking �t → 0, we get

df+1

dt
= qp f 2

−1 + f0((1 − p) f+1 + p f−1) − (1 − q)(1 − p) f−1 f+1 − p f 2
+1, (2)

df−1

dt
= qp f 2

+1 + f0((1 − p) f−1 + p f+1) − (1 − q)(1 − p) f−1 f+1 − p f 2
−1. (3)

B. Steady states and critical behavior

Solving Eqs. (2) and (3), it is possible to obtain the time
evolution of the order parameter 〈O〉 which satisfies

d〈O〉
dt

= [−qp − p + f0(1 − p + qp)]〈O〉. (4)

To reach a steady state the right-hand side of the above
equation should be zero at t → ∞. It is obvious that any
initially disordered configuration will remain disordered, i.e.,

the order parameter will be zero always which can be achieved
whenever f+1 = f−1.

It was already observed in [17] that the q = 1 case is
unique. Here also, it should be discussed separately. Precisely,
for an ordered state to exist, f0 = 2p when q = 1. However,
we note that f0 is expected to vanish very fast as there is no
flux to the zero state from other states for q = 1. Assuming f0

vanishes within a transient time, one can show directly from
the dynamical equations for the individual densities that for
an ordered state to exist, p can only take the zero value when
q = 1.
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Taking the origin of time as that when f0 becomes zero and
for q = 1, one can rewrite Eqs. (2) and (3) as

df+1

dt
= p f−1 − p f+1, (5)

and

df−1

dt
= p f+1 − p f−1. (6)

As f+1 + f−1 = 1, one can easily obtain the solutions,

f±(t ) = 1 − [1 − 2 f±(0)]e−2pt

2
, (7)

where f±1(0) are the values of f±1 when f0 reaches 0. These
equations are valid with the origin of time shifted but it does
not matter as we are interested in the t → ∞ results. When
p = 0 we get the result that f±(t → ∞) → f±(0). This will
then result in an ordered state (but not a consensus state in
general). Here it is assumed that the initial state is ordered;
for initial disordered states, 〈O(t )〉 = 0 for all times as already
mentioned. For any nonzero value of p the system will reach
an equilibrium state only with 〈O〉 = 0 as f±1 → 1/2 accord-
ing to Eq. (7). Thus for the q = 1 point, we see that any p �= 0
makes the system disordered.

For values of q �= 1, Eq. (4) indicates that in the steady state
(at t → ∞), the system may reach an ordered state with 〈O〉 �=
0 when [−qp − p + f0(1 − p + qp)] = 0, i.e., f0 = qp+p

qp−p+1
(this puts a restriction p � 0.5 as f0 � 1, hence no ordered
state is possible if p � 0.5). Now at the steady state if we also
demand that the individual densities attain a fixed point, i.e.,
df+1

dt = 0, etc., then from Eq. (2), putting f0 = qp+p
qp−p+1 , we get

f+1 = −q − 2p + 2pq + 1 ± √
(1 − q)(1 − q − 4p)

−2(p + q − 2pq + pq2 − 1)
. (8)

Note that the above is valid for q �= 1.
Therefore the expression of 〈O〉 in the steady state will be

〈O〉 = −q − 2p + 2pq + 1 ± √
(1 − q)(1 − q − 4p)

−(p + q − 2pq + pq2 − 1)

+ 2p − 1

pq − p + 1
. (9)

As 〈O〉 is real, a nonzero solution for 〈O〉 implies (1 − q −
4p) should be greater than or equal to zero. This provides a
more stringent bound for the ordered phase given by 1−q

4 � p.
On the other hand, when the steady state (at t → ∞) is

disordered, f+1 = f−1, which when put in Eq. (2), one gets

f+1 = f−1 = 1

3 − q
; f0 = 1 − q

3 − q
. (10)

Interestingly, the above values are independent of p.
Phase boundary.
At the critical point between ordered-disordered phase

transition the fraction f0 at the steady state for both the phases
should be equal which gives

f0 = 1 − q

3 − q
= qp + p

qp − p + 1
.

FIG. 2. The phase diagram in the p − q phase space is shown
with the phase boundary given by p = 1−q

4 . The color code corre-
sponds to the value of the order parameter. The dashed line in the
disordered phase represents f0 = 1−q

3−q .

Hence one gets an equation of a straight line,

p = 1 − q

4
, (11)

which is the phase boundary in the p − q phase space shown
in Fig. 2. The value of f0, a function of q only in the disordered
phase, is also shown. Note that the order-disorder boundary
obtained at p = 0 for q = 1 can be obtained as an analytical
continuation from the above equation. However, all results
discussed henceforth are for q �= 1 in general.

Behavior of 〈O〉 close to a critical point.
Each point on the phase boundary is a critical point. We

analyze the behavior of the order parameter close to a critical
point along two different routes S1 and S2 as indicated in
Fig. 2. For path S1, we take x = pc − p and q = qc to get from
Eq. (9),

〈O〉 = 2
(
4x − 4qcx − q2

c + 1 ± 4
√

(1 − qc)x
)

(
4x − qc − 8qcx + 4q2

c x − 3q2
c + q3

c + 3
)

−
qc

2 + 2x + 1
2

qc

4 + x − qc
( qc

4 + x − 1
4

) + 3
4

. (12)

As x → 0 behavior of 〈O〉 → √
x, i.e., the critical exponent β

is 0.5 along the path S1.
Similarly, for path S2, rewriting Eq. (9) taking y = qc − q

and p = pc we get

〈O〉 = 2pcy − y − 4pc + 8p2
c ± √

y(4pc + y)

16p3
c + 8p2

cy + pcy2 − 4pc − y

− 2pc − 1

pc + pc(4pc + y − 1) − 1
. (13)

Thus 〈O〉 → √
y as y → 0 showing that the value of the ex-

ponent β = 1/2 does not depend on the path. In fact, the full
variation of 〈O〉 can easily be seen to depend on [x + 4y]1/2 as
the leading order term if we allow both p and q to vary about
the critical point as before, i.e., p = pc − x and q = qc − y
with the restriction that x + 4y � 0 for a general direction.
Note that for S1 and S2, both x, y � 0.

We have also numerically solved the time evolution equa-
tions to obtain the values of 〈O(t → ∞)〉 along paths S1
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FIG. 3. 〈O∞〉 calculated numerically by solving Eqs. (2) and (3)
for different sets of values of qc and pc along paths S1 and S2, respec-
tively, on the phase boundary (see Fig. 2). In (a) the curves are for the
path S1 with fixed critical values of q; qc = 0.70, 0.52, 0.32 from left
to right; in (b) the curves are for the path S2 with fixed critical values
of p; pc = 0.17, 0.12, 0.075 from left to right. Analytical values of
〈O〉 from Eq. (9) are also plotted with dashed lines for qc = 0.52
in (a) and pc = 0.12 in (b). Insets of (a) and (b) show the scaling
behavior of 〈O〉, indicating β = 0.5.

and S2 for a particular point on the phase boundary to find
that indeed the results are compatible with β = 0.5 shown in
Fig. 3.

C. Stability analysis

In the disordered phase, we obtained a fixed point charac-
terized by f+1 = f−1 = 1

3−q . As there are three variables, in
principle it is possible that in the disordered state, the values
of f+1 and f−1 still evolve keeping f+1 = f−1. However, for
the above values there can be no further change and hence we
call this the frozen fixed point [17].

Stability of this frozen fixed point can be studied by in-
troducing a deviation δ about it. Taking f+1 = x∗ + δ1 and
f−1 = x∗ + δ2, where x∗ = 1

3−q , a stability analysis leads to

δi(t ) = δ0
i exp[γ t] for both i = 1, 2. Here δ0

i is the initial de-
viation considered about the fixed point at t = 0 and

γ = 1 − q − 4p

3 − q
. (14)

As 〈O〉 = f+1 − f−1 = δ1 − δ2, we get

〈O〉 = (
δ0

1 − δ0
2

)
exp[γ t]. (15)

The above equation shows that for an initially ordered state,
there will be a growth or decay of the order parameter accord-
ing to the sign of γ which changes at 1 − q − 4p = 0. This
is consistent with the phase boundary obtained at 1 − q = 4p
and as expected one ends up in a disordered state even after
starting from an ordered state (when δ1 �= δ2) in the disordered
phase. Once again, the time-dependent equations are solved
numerically by taking initial states close to the frozen fixed
point and the results agree with the above as shown in Fig. 4.

Equation (15) shows that there is a timescale τ = γ −1

associated with the dynamics of the growth or decay. Since
τ ∝ (1 − q − 4p)−1, it diverges with an exponent 1 close
to the critical point. The diverging timescale indicates criti-
cal slowing down known to be present in continuous phase
transitions. The exponent with which τ diverges is related
to the critical dynamical exponent z; this is to be discussed
further in the next section.

FIG. 4. The time evolution of 〈O〉 generated numerically from
Eqs. (2) and (3) for 1−q

4 > p (ordered phase) and 1−q
4 < p (disordered

phase) are shown in (a) and (b), respectively, with the initial config-
uration f+1 = x∗ + δ1 and f−1 = x∗ + δ2 (see text), where we have
taken δ1 = 0.07, δ2 = 0.02. The dotted line in each graph represents
the fitted graph following Eq. (15).

D. Relaxation from a perfectly ordered state

While for initial states with small order, the order param-
eter will either decay or grow depending on whether one is
in the disordered or ordered phase, for a fully ordered initial
state the order parameter will decrease in time in both phases.
We study the relaxation behavior by numerically solving the
rate equations taking initial condition f+1 = 1.

In the disordered phase the decay of the order parameter
is expected to follow Eq. (15) at late times as it comes closer
to the frozen fixed point, indicating again the presence of a
timescale ∝ |γ |−1. In the ordered phase, the order parameter
will initially decay and then attain a nonzero saturation value.
We find that both behaviors are captured by a single equation,

(〈O〉 − 〈O∞〉) ∝ exp[−t/τR], (16)

where 〈O∞〉 is the ensemble averaged equilibrium value of
the ordered parameter at t → ∞. We have plotted the data for
some particular points above and below the phase boundary
in Fig. 5, and the timescales τR extracted from the slopes of
the log-linear graphs are shown in Figs. 6(a) and 6(b). The
results show that τ and τR have identical scaling behavior in
the disordered phase as argued above, while in the ordered
phase also, τR diverges close to the critical point with the same
exponent 1 [see Figs. 6(c) and 6(d)].

Lastly, we plot 〈O〉 as a function of time at several points
exactly on the phase boundary in Fig. 7 to get a power-law
decay with an exponent close to 0.5. This discussion of course
excludes the q = 1 point which is unique, one can easily check

FIG. 5. Time evolution of 〈O〉 calculated by numerically solving
Eqs. (2) and (3) with a fixed value of q = 0.52 and different values
of p (a) below and (b) above the corresponding pc when the initial
condition is ( f+, f0, f−1) = (1, 0, 0). The dotted lines show the fitted
curve with Eq. (16).
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FIG. 6. The timescale τR calculated from the slopes of the log-
linear plots in Fig. 5 using Eq. (16) is shown (a) against p for a
constant value of q and (b) against q for a constant value of p.
In (c) and (d), these values of τR are plotted against |p − pc| and
|q − qc|, respectively, both above and below the critical values to
show a power-law divergence with the associated exponent very
close to unity. The color codes for the upper and lower panels are
the same.

that with the critical value p = 0 here, no evolution of the
initially fully ordered state is possible.

IV. SUMMARY AND DISCUSSIONS

In this paper, we have studied the case of extreme switches
in opinion in a three-state kinetic exchange model where the
interactions may be both positive as well as negative. The
two parameters characterizing the probabilities of the extreme
switches and negative interactions are q and p, respectively.
Our main findings are the following.

(1) The presence of a phase boundary given by p = 1−q
4 .

(2) β, the exponent associated with the order parameter, is
universal with the value 1/2.

(3) The phase boundary can also be obtained using stabil-
ity analysis. Additionally one gets the time evolution of the

FIG. 7. Time variation of 〈O〉 calculated by numerically solving
Eqs. (2) and (3) exactly at different critical points on the phase
boundary indicates O(t → ∞) ∝ t−0.5.

FIG. 8. Simulation results. Data collapse of the scaled order
parameter ONβ/ν̄ , for q = 0.52 when plotted against (pc − p)N1/ν̄ ,
where pc = 0.12, is obtained using the values ν̄ = 2.0 and β = 0.5.
Inset shows the raw data.

partially ordered state showing exponential growth or decay.
The associated timescale τ diverges with an exponent −1.

(4) The overall behavior is mean-field-like for q �= 1.
(5) Relaxation behavior of the fully ordered state shows

the expected exponential decay of the order parameter with
time in the disordered phase; for the ordered phase, it relaxes
exponentially to a saturation value. The relaxation timescales
τR and τ have identical scaling behavior. Exactly on the phase
boundary, the order parameter shows a power-law decay.

(6) The q = 1 point has a special significance.
While the first three issues have already been discussed in

detail in the previous section, we focus on the last three points
here. It had been already known that in the mean-field three-
state kinetic exchange model without extreme switches, the
value of the exponent β = 1/2. Also, assuming the mean-field
model has an effective dimension d , the exponent ν̄ = νd = 2
was obtained previously where ν is the correlation length
exponent [10]. We have found β to be equal to 1/2 at any
point on the phase boundary in the two-parameter model for
q �= 1. To get ν̄, we conduct small-scale simulations about
a particular point on the phase boundary. Indeed the scaled
order parameter curves collapse when plotted against |ε|N1/ν̄ ,
where ε denotes the deviation from the critical point, with
β = 1/2 and ν̄ = 2. The raw data and the collapse are shown
in Fig. 8. Hence the static critical behavior is unaffected by
the parameter q �= 1.

The critical slowing down phenomena is observed with a
timescale diverging as |ε|−1, again independent of q. Since
in a continuous phase transition, the timescale diverges as ξ z

where ξ is the correlation length ∝ |ε|−ν and z the dynamic
critical exponent, one gets τ ∝ |ε|−νz. Hence our results indi-
cate νz = 1.

Next one can consider the relaxation of the order parameter
exactly at criticality. The power-law behavior t−1/2 can be
shown to be compatible with the theory of dynamic critical
phenomena. In general the dynamical behavior of the order
parameter is given by O(t ) ∝ t−y f (t/ξ z ) with O(t ) ∝ t−y

exactly at the critical point. Equilibrium behavior indicates
y = β/νz. Therefore, using the values β = 1/2 and νz = 1,
one gets y = 1/2, which is the value obtained here. We also
remark that the values of the static and dynamic exponents
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obtained here coincide with those of the mean-field Ising
model (β = 1/2, ν = 1/2, z = 2) if one uses d = 4, the upper
critical dimension of the Ising model.

Even though the critical behavior is unchanged with a
nonzero value of q, we note that the fixed point values are
independent of p in the disordered phase [Eq. (10)]. Also, the
variation of f0 in the disordered phase (see Fig. 2) suggests
that as q is increased, the model tends to become a binary
one. The interpretation is, with increasing probability of ex-
treme switches, the system in the disordered phase tends to
be polarized as it becomes more difficult to retain a neutral
opinion. Thus the nature of polarization is affected by the
presence of the extreme switches. This can correspond to
cases where there are two major candidates represented by
opinions ±1 and the society is strongly polarized. All other
candidates can be clubbed to the opinion zero. People switch
their opinions from one strong candidate to the other and
also from the weaker candidates to one of the stronger ones
with considerably higher probability, depleting the votes for
the less significant candidates, a situation known to occur
in reality. On the other hand, without the extreme switches,
the disordered state has a fixed point where all the densities
become equal. In fact, the polarization can be quantified as
f±1 − f0 = q/(3 − q) which is zero for q = 0 and takes a
maximum value 1/2 at q = 1.

For q = 1, we get two equations [Eqs. (5) and (6)] after
a transient time when f0 becomes zero. These can be eas-
ily identified as the equations governing the dynamics of a
two-state binary model with random flipping probability p.

Obviously, it becomes disordered at any value of p. Previously
it was noted that for p = 0, the model is identical to the
mean-field voter model for q = 1; with p �= 0 we thus obtain
a mapping to a model with random flipping.

Hence the main conclusion from the present study is that
the extreme switches act as additional noise for the model
considered in [10] thereby lowering the critical values pc

without changing the critical behavior. The point q = 1 has a
special interpretation. The role of the two kinds of disorder
are, however, different; the system becomes disordered for
a finite value of p (for q = 0) but remains ordered up to
the extreme value of q (for p = 0) [17]. It is, therefore, not
surprising that the critical behavior is dominated by p while
q acts as an irrelevant variable. However, the nature of the
disordered phase is dictated by q alone.

The results obtained in the present paper are based on the
mean-field dynamical equations. Of course, if we consider the
system on lattices with nearest-neighbor coupling, there will
be quantitative changes. As a future study, it will be interesting
to investigate how the extreme switches affect qualitatively the
criticality and dynamics in finite dimensions.
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