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Nonequilibrium currents in stochastic field theories: A geometric insight
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We introduce a formalism to study nonequilibrium steady-state probability currents in stochastic field theories.
We show that generalizing the exterior derivative to functional spaces allows identification of the subspaces
in which the system undergoes local rotations. In turn, this allows prediction of the counterparts in the real,
physical space of these abstract probability currents. The results are presented for the case of the Active
Model B undergoing motility-induced phase separation, which is known to be out of equilibrium but whose
steady-state currents have not yet been observed, as well as for the Kardar-Parisi-Zhang equation. We locate and
measure these currents and show that they manifest in real space as propagating modes localized in regions with
nonvanishing gradients of the fields.

DOI: 10.1103/PhysRevE.107.054105

I. INTRODUCTION

Statistical physics aims to describe large-scale phenomena
emerging from interacting elementary constituents, ranging
from chemicals to animals, and from bacteria to traders.
Except when systems satisfy a detailed balance, no general
theory can be systematically applied to study such systems. To
understand how microscopic mechanisms drive a system out
of equilibrium, physicists have been quantifying the distance
to equilibrium using diverse observables, such as the entropy
production [1–5], violations of the fluctuation-dissipation the-
orem [6,7], or ratchet currents [8–11]. Among those, the
stationary probability current plays an important role since its
knowledge, together with the stationary probability measure,
entirely determine the equations of motion (see [12–14] and
Sec. II). For systems driven out of equilibrium by external
fields [15–17] or boundary conditions [18,19], probability
currents directly lead to real-space currents—e.g., of energy
or mass—that can be observed and quantified easily. In many
other situations, as in active systems [20–25], surface growth
problems [26], or reaction-diffusion processes [27], proba-
bility currents live in high-dimensional configuration spaces
and have no simple low-dimensional projection in real space,
which makes their study challenging.

While probability currents are well understood for finite-
dimensional systems [28–38], collective behaviors are best
described at a macroscopic scale using field theory [39–41].
The nonequilibrium nature of such infinite-dimensional de-
scription has attracted a lot of interest recently [15,21,42–
44], but the identification of their probability currents remains
elusive. Progress has been made in specific situations [45,46],
but a generic framework is crucially lacking.

In this article, we address this challenge by introducing a
mathematical framework that enables a systematic character-
ization of steady-state probability currents in nonequilibrium
stochastic field theories. This framework is based on a gener-
alization of the curl operator to functional spaces in the form
of a functional exterior derivative and on the identification

of the appropriate Riemannian metric on the space of fields.
We note that a related object, called “vertical derivative,” has
been introduced for jet bundles [47], a context more restrictive
than what we present here—since it cannot handle nonlocal
functionals, for instance. In addition, differential geometry
has been formally extended to abstract mathematical spaces
[48], but the corresponding level of abstraction makes such
theory hardly applicable to concrete physics problems. Fur-
thermore, these mathematical formalisms have never been
applied to characterize probability currents in stochastic field
theories. Below, we briefly recap the finite-dimensional case
to highlight the key steps of its generalization to infinite
dimension. We then detail the construction of the func-
tional exterior derivative for two important examples: the
Active Model B (AMB) [49] and the Kardar-Parisi-Zhang
(KPZ) equation [26]. Importantly, when undergoing motility-
induced phase separation (MIPS), AMB leads to a finite
entropy production rate localized at the liquid-gas interface
[21,50]. However, the corresponding probability currents have
remained out of reach so far. Here, we show how these
currents can be decomposed into superpositions of local two-
dimensional (2D) rotations, allowing for direct observation
(see Fig. 1). Our framework also reveals the direct manifes-
tations of these high-dimensional currents in real space, in
the form of propagating modes localized at the liquid-gas
interface (see Fig. 2). Similarly, for the KPZ equation, we
show how fluctuations are advected along height gradients
(see Fig. 4).

II. REMINDER OF THE FINITE–DIMENSIONAL CASE

To set the stage for stochastic field theories, we start with
a quick reminder of the well-known finite-dimensional case.
Consider the n-dimensional Langevin dynamics,

ṙ(t ) = F(r(t )) +
√

2Dη(t ), (1)

where r(t ) ∈ Rn, η is a Gaussian white noise of zero mean
and unit variance, D is the diffusion constant, the mobility has
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FIG. 1. Measurements of the stationary probability currents in the planes [ρ(r0), ∂xρ(r0)] at representative points in phase-separated
systems, using numerical resolution of Eq. (9). The rows correspond to 2λ + κ ′ < 0 (top), 2λ + κ ′ = 0 (center), and 2λ + κ ′ > 0 (bottom),
respectively. The average stationary profiles are shown in the left column. Other columns show the current vector fields measured at the
corresponding points r0 = A, B,C in the phase-separated profiles. (Arrow colors encode their angles with respect to ex .) Parameters: a = −1,
b = 1, κ = 0.1, average density ρ0 = −0.4, D = 10−3, Lx = Ly = 10, and λ = −2 (top), 0 (center), and 2 (bottom). See Appendices A and B
for numerical details.

been set to 1, and F is an arbitrary smooth vector field. The
corresponding Fokker-Planck equation reads

∂t p = −∇ · J with J = pF − D∇p. (2)

FIG. 2. Evolution of a perturbation δρ around the equilibrium
profile ρs under the AMB dynamics (9) using periodic boundary
conditions and δρ(x, y, t = 0) = ε cos(100πx/Lx ). (a)–(c) Kymo-
graphs representing the evolution of δρ(x, Ly/2, t ). (d) A cut of
ρs at y = Ly/2. Parameters: ρ0 = −0.45, a = −1, b = 1, κ = 0.15,
dt = 10−7, dx = dy = 10−2, Lx = Ly = 10, ε = 0.05, and λ = −4,
0, and 4 for (a)–(c), respectively. Time axis unit of the kymographs
is 	t = 10−5.

Note that as stated in Sec. I, the joint knowledge of the sta-
tionary probability density ps and current Js (together with D)
entirely determines Eq. (1) since F = Js/ps + D∇lnps.

Importantly, the stationary probability current Js encodes
the advection of the probability ps by the mean velocity field,

vs ≡ Js/ps = F − D∇lnps. (3)

The flow lines of vs indicate the typical trajectories of the
system in the steady state [14]. Because it favors certain
trajectories over their time-reversed counterparts, the swirling
behavior of vs is responsible for the irreversibility of dynamics
(1). When n = 3, it is characterized by the vorticity

ω(r) ≡ ∇ × vs(r) = ∇ × F(r), (4)

whose norm gives the angular speed of the local swirls, and
whose direction is orthogonal to the local two-dimensional
planes in which the current undergoes local rotations. Further,
note that the entropy production rate of dynamics (1) is given
by [5]

σ = 1

D

∫
Js(r) · F(r)dr. (5)

Since Js is divergence free and Rn simply connected, there
is a vector field C such that Js = ∇ × C. Injecting this last
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FIG. 3. Analysis of the currents shown in Fig. 1 predicting the
mode propagation reported in Fig. 2. Consider the case 2λ + κ ′ < 0
and a point r0 = (x0, Ly/2) on the left boundary of the droplet (top
row, column A of Fig. 1). In the central panel, we show the circulation
induced by the current in the [δρ(r0), ∂xδρ(r0)] plane. Consider a
perturbation such that δρ(r0) is a local maximum at t = 0 [panel (1),
red star]. As time goes on, the current drives the fluctuation sequen-
tially from (1) to (2) (orange dot), to (3) (yellow triangle), and to (4)
(green square). Each panel shows the fluctuation profile δρ(x, Ly/2)
around x0 (blue curves). These successive states of δρ show that the
probability current corresponds to a leftward propagation of δρ in
the real space, from the liquid to the gas phase. Inspection of Fig. 1
allows prediction of all the dynamics reported in Fig. 2.

equality into Eq. (5) and integrating by parts leads to

σ = 1

D

∫
C(r) · ω(r)dr. (6)

Hence, ω(r) can be seen as the local source of entropy produc-
tion and C(r) as a weight over the infinitesimal loops around
r. In fact, D−1ω and C have recently been identified as the
continuous-space analogs of cycle affinity and flux [51], re-
spectively, quantities that turn out to be crucial to characterize
the irreversibility of Markov chains [52,53].

FIG. 4. Kymographs showing the zero-noise relaxation of a per-
turbation δh(x) = 0.1 sin(40πx), added at time t = 0 to a linear
profile h(x) = 10x, under the KPZ dynamics (43) with Dirichlet
boundary conditions. Parameters: ν = 2 and λ = −16, 0, 16 for (a)–
(c), respectively. System size L = 1. Space and time discretization:
dx = 10−3 and dt = 10−7.

The generalization to arbitrary but finite dimension n
amounts to replacing ∇ × F by dF� in the vorticity ω, where
d is the exterior derivative and F� the one-form associated to
F through a Riemannian metric g [54]. Denote by (ei )i=1,...,d a
local basis and (dxi)i=1,...,d its dual, which satisfies dxi(e j ) =
δi

j . Then, to F = ∑
i F iei, we associate the one-form F� =∑

i Fidxi = ∑
i, j gi jF jdxi with gi j ≡ g(ei, e j ). The exterior

derivative of F� is then the two-form dF�, whose action on
arbitrary pairs u, v of vector fields reads

dF�(u, v) =
n∑

i, j=1

(
∂Fj

∂xi
− ∂Fi

∂x j

)
uiv j . (7)

Denoting by dxi ∧ dx j the bilinear maps such that dxi ∧
dx j (u, v) = uiv j − u jvi, the vorticity reads

ω ≡ dF� =
∑

1�i< j�n

(
∂Fj

∂xi
− ∂Fi

∂x j

)
dxi ∧ dx j . (8)

The prefactor of dxi ∧ dx j in Eq. (8) measures the local ro-
tation induced by F in the (ei, e j ) plane: its sign gives the
direction of the rotation and its amplitude the angular speed.
Finally, note that dynamics (1) is reversible if and only if
dF� = 0. Then, F is a gradient and Eq. (1) is a stochastic
gradient descent.

III. NONEQUILIBRIUM FIELD THEORIES

We now turn to the core results of this article: the gen-
eralization of Eq. (8) to infinite-dimensional stochastic field
theory and the physical insight it provides on the corre-
sponding systems. For an arbitrary field theory, this requires
generalizing the � and d operators. The former amounts to
finding the Riemannian metric that identifies a reversible dy-
namics with a gradient descent of the free energy; it also
associates a one-form to the deterministic drift. The ex-
terior derivative then extracts the skew-symmetric part of
the corresponding Jacobian, which vanishes for equilibrium
dynamics and identifies the nonequilibrium circulations oth-
erwise. These ideas can be applied to any overdamped,
Gaussian, stochastic field dynamics. In this article, for the
sake of clarity, we present them on two important examples,
i.e., the AMB and the KPZ equation.

A. Active Model B

We start with the study of AMB, which has attracted a lot of
interest recently [21,49], and whose probability currents have
remained elusive so far. AMB describes a scalar field whose
dynamics is given by

∂tρ = −∇ · j with j = −∇μ +
√

2D�. (9)

In Eq. (9), �(r, t ) is a centered Gaussian white noise field
of unit variance and μ a nonequilibrium chemical potential
defined by

μ([ρ], r) = aρ + bρ3 − κ (ρ)	ρ + λ(ρ)|∇ρ|2. (10)

Note that a, b, and D are constants, but λ and κ depend on
ρ(r).

Comparing (9) to the finite-dimensional dynamics (1), we
see that the configuration of the system, which was given by
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the vector r ∈ Rd in Eq. (1), is now replaced by the density
field ρ. We denote by F the functional space to which the field
ρ belongs.

In order to generalize (8), we first identify, in Sec. III A 1,
the appropriate notions of vector fields and one-forms on F. In
Sec. III A 2, we determine the suitable Riemannian metric that
allows interpretation of a reversible dynamics as a stochastic
gradient descent of the free energy. In addition, this Rieman-
nian metric induces a mapping between functional one-forms
and vector fields that we exploit thereafter. We then turn to
generalizing the exterior derivative to the functional space F
in Sec. III A 4 and use this operator to define a functional
vorticity analogous to Eq. (8). In Sec. III A 5, we carry out
the explicit computation of the vorticity of AMB. Finally,
we show in Sec. III A 6 that this functional vorticity allows
identification of the structure of the probability currents in F,
as well as their counterpart in the physical space in the form
of anisotropic propagating modes localized at the liquid-gas
interface of a phase-separated profile.

1. Functional one-forms and vector fields

First, we restrict F to fields satisfying all the integrability
and regularity conditions so that our manipulations are valid.
Then we note that the total number of particles is conserved
by dynamics (9). Thus, a small variation δρ(r) of a given ρ ∈
F—i.e., a tangent vector at ρ—should preserve this constraint
and hence integrate to zero over the whole space. In turn, a
vector field over F is a scalar-valued functional of ρ and a
function of r that integrates to zero with respect to r, for any
ρ ∈ F. We denote such function(al) as μ(r, [ρ]) in boldface,
with the reason for this notation justified in what follows.

We further note that since the divergence operator is a
surjective map from real-space vector fields to functions
whose integral vanishes, for any μ there exists a mass cur-
rent j(r, [ρ]) such that μ = −∇ · j. In addition, j(·, [ρ]) can
always be decomposed as the superposition of a gradient and
a divergence-free vector field. The divergence of the latter
being zero, it vanishes in the relation between μ and j. We
thus get that for any functional vector field μ, there exists
a scalar function(al) μ(r, [ρ]), called the chemical potential
associated to μ, such that

μ(r, [ρ]) ≡ −	μ(r, [ρ]). (11)

We finally identify chemical potentials μ(r, [ρ]) that only
differ by a harmonic function so that Eq. (11) can be seen
as a one-to-one mapping between chemical potentials μ and
functional vector fields μ.

We now turn to functional one-forms over F. A functional
one-form α associates to any ρ ∈ F a linear function that maps
a tangent vector μ(·, [ρ]) at ρ to a real number. As such, it can
be written as

α(μ)|ρ =
∫

α(r, [ρ])μ(r, [ρ])dr, (12)

where α(r, [ρ]) is a functional of ρ and a (possibly gen-
eralized) function of r—that is temporarily denoted by the
same letter as the associated one-form. Note that for a given
one-form α, the function(al) α(r, [ρ]) is not unique. Indeed,
since any vector field reads μ = −	μ, integrating by parts in

Eq. (12) shows α(r, [ρ]) to be defined up to any h(r, [ρ]) that
is harmonic with respect to r. In other words, just as functional
vector fields, functional one-forms are in one-to-one corre-
spondence with chemical potentials. Consequently, for any
chemical potential μ0(r, [ρ]), we will denote the associated
one-form as αμ0 , i.e.,

αμ0 (μ) =
∫

μ0(r, [ρ])μ(r, [ρ])dr. (13)

2. Riemannian metric

First, note that the functional Fokker-Planck equation as-
sociated to (9) reads

∂t P[ρ] = −
∫

dr
δ J(r, [ρ])

δρ(r)
, (14)

where J is the probability current given by

J(r, [ρ]) = P[ρ]	μ(r, [ρ]) + D	
δP[ρ]

δρ(r)
. (15)

Equation (9) is reversible if and only if the stationary probabil-
ity current Js vanishes. Using that μ = −	μ, this conditions
reads μ = DPs[ρ]−1	

δPs[ρ]
δρ(r) , which turns out to be equivalent

to the existence of a functional F such that

μ = −	
δF
δρ

. (16)

Then, our choice of metric is constrained by the require-
ment that Eq. (16) has to be equivalent to μ being the gradient
of F . This is the infinite-dimensional analog to −F i = (∇V )i

and reads

μ = gradF = −	
δF
δρ

. (17)

Let us now show how this determines the metric g, which we
write as

g(μ1,μ2) =
∫

μ1(r, [ρ])G(r, r′)μ2(r′, [ρ]) dr dr′, (18)

where G is a symmetric positive kernel.
We start from the general definition of a gradient,

∀μ0, g(gradF ,μ0) ≡ δF (μ0), (19)

where δF is the differential of F[ρ], given by

δF (μ0) ≡
∫

δF[ρ]

δρ(r)
μ0(r, [ρ])dr. (20)

Using Eqs. (18) and (20), Eq. (19) can be rewritten as∫
gradF (r, [ρ]) G(r, r′)μ0(r′, [ρ])drdr′

=
∫

δF[ρ]

δρ(r)
μ0(r, [ρ])dr. (21)

The constraint (17) then leads to∫
−	r

δF[ρ]

δρ(r)
G(r, r′)μ0(r′, [ρ])drdr′

=
∫

δF[ρ]

δρ(r)
μ0(r, [ρ])dr. (22)
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Performing an integration by parts on this last equation gives∫
−δF[ρ]

δρ(r)
	rG(r, r′)μ0(r′, [ρ])drdr′

=
∫

δF[ρ]

δρ(r)
μ0(r, [ρ])dr. (23)

Since this last equality is required for any functional F and
any functional vector field μ0, we conclude that

G(r, r′) = −	−1
r δ(r − r′). (24)

For any pair of functional vector fields μ1 = −	μ1, μ2 =
−	μ2, inserting Eq. (24) into Eq. (18) finally leads, after
integrating by parts, to the Riemannian metric,

g(μ1,μ2) =
∫

∇μ1 · ∇μ2dr. (25)

Note that the noise of the Active Model B is additive. But if
it were multiplicative with an amplitude proportional to

√
ρ—

as is the case when the stochastic hydrodynamics is explicitly
derived from a set of microscopic stochastic equations with
additive noise (see, e.g., [55])—then the corresponding Rie-
mannian metric would be the Otto metric and hence would
induce the Wasserstein distance on F [56].

3. From functional vector fields to one-forms

As in finite dimension, the Riemannian metric (25) allows
one to map any vector field μ1 to a (functional) one-form,
denoted by μ

�
1, through

μ
�
1(·) ≡ g(μ1, ·). (26)

Performing an integration by parts in equation Eq. (26) leads
to the relation

μ
�
1(μ2) =

∫
μ1(r, [ρ])μ2(r, [ρ])dr, (27)

where μ2 is an arbitrary vector field. Hence, applying the one-
form μ

�
1 to any vector field μ2 at ρ ∈ F amounts to integrating

μ2(r, [ρ]) against the chemical potential μ1(r, [ρ]) associated
to μ1 through (11). First, this means that μ

�
1 = αμ1 , as defined

in (13). Furthermore, μ1(r, [ρ]) plays, for the one-form μ
�
1, a

role similar to the one played by the (covariant) coordinates
Fi(r) for F� in finite dimension. This last point will turn out to
be crucial for generalizing the exterior derivative to functional
space in the next section.

4. The functional exterior derivative

We now turn to the construction of the functional exterior
derivative. Inspired by the finite-dimensional case given by
Eq. (7), we define the functional exterior derivative of a one-
form μ� through its action on an arbitrary pair (φ,ψ) of vector
fields as

dμ�(φ,ψ) ≡
∫ [

δμ(r, [ρ])

δρ(r′)
− δμ(r′, [ρ])

δρ(r)

]
φ(r′)ψ(r)drdr′.

(28)
Equation (28) is the definition of the linear operator d for
one-forms. As in finite dimension, the exterior derivative of
zero-form, i.e., a functional F[ρ], is then simply defined as its
differential dF ≡ δF , where δF is given by Eq. (20). Using

Eqs. (20) and (28) together with the functional version of
Schwarz theorem [57,58], one then checks that as expected,

d2 = 0, (29)

i.e., differentials of functionals have vanishing exterior deriva-
tives. This is the analog of gradient in three dimensions having
vanishing curl. Since the functional space F is simply con-
nected (being an affine space), the converse also holds, i.e.,
any one-form with vanishing exterior derivative is the differ-
ential of a functional. One could keep constructing exterior
derivatives of higher-order forms, hence building the de Rham
co-chain complex of F, but this goes beyond the scope of this
study.

5. Vorticity of AMB

Using the definition (11) of the functional vector field μ

associated to a chemical potential μ, dynamics (9) can be
rewritten as

∂tρ = −μ + ∇ · [
√

2D�]. (30)

Hence, as can be seen by comparing with the finite-
dimensional setting presented in Sec. II, the local vortex
structure induced by the deterministic drift of dynamics (9)
must be characterized by a functional vorticity two-form,

ω ≡ d(−μ)� = −dμ�, (31)

with this last equality stemming from the linearity of d and
�. This functional vorticity (31) is—up to a factor D−1—the
field-theoretic analog of the cycle affinity of Markov chains.
As such, it plays a similar role in the characterization of
the time-reversal symmetry breaking of dynamics (9), as de-
scribed in detail in the following Sec. III A 6.

Let us now compute the functional exterior derivative as-
sociated to the chemical potential μ of AMB (10). In order to
lighten the notations, we will use the shorthand fr to denote
any function f (r, [ρ]). The functional derivative of μ reads

δμr

δρr′
= [

a + 3bρ2
r + λ′

r|∇ρr|2 − κ ′
r	ρr

]
δ(r − r′)

+ 2λr∇ρr · ∇rδ(r − r′) − κr	rδ(r − r′), (32)

where λ′ ≡ dλ
dρ

and κ ′ ≡ dκ
dρ

. Now since ∇rδ(r − r′) =
−∇r′δ(r − r′), Eq. (32) can be rewritten as

δμr

δρr′
= [

a + 3bρ2
r + λ′

r|∇ρr|2 − κ ′
r	ρr

]
δ(r − r′)

− 2λr∇ρr · ∇r′δ(r − r′) − κr	r′δ(r − r′). (33)

Using the fact that ψr	φr − φr	ψr = ∇ · (ψr∇φr −
φr∇ψr ) and reinjecting (33) in (28), we get, after some
integrations by parts,

dμ�(φ,ψ) =
∫

(2λr + κ ′
r )∇ρr · (ψr∇φr − φr∇ψr )dr.

(34)
In order to interpret Eq. (34) in a similar way to what

we did for the finite-dimensional exterior derivative (8), we
define the wedge product δr ∧ ∇δr between δr (the Dirac at r)
and its gradient ∇δr through its action on a pair of functions
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f (r), g(r) as

[δr ∧ ∇δr]( f , g) ≡ δr( f )∇δr(g) − δr(g)∇δr( f )

= − fr∇gr + gr∇ fr. (35)

We can now rewrite Eq. (34) as

dμ�(φ,ψ) =
∫

dr (2λr + κ ′
r )∇ρr · [δr ∧ ∇δr](φ,ψ). (36)

The vorticity of AMB is thus given by

ω = −dμ� = −
∫

dr (2λ + κ ′)∇ρ · δr ∧ ∇δr. (37)

As in finite dimension (4), the vorticity ω of the determin-
istic drift of Eq. (9) is also that of the (functional) velocity
field vs ≡ Js/Ps. Indeed,

vs = −μ − DgradlnPs, (38)

so that its associated one-form reads

v�
s = −μ� − DdlnPs. (39)

Equation (29) then allows one to conclude that

ω = dv�
s . (40)

In the next section, we focus on the physical content of
the functional vorticity ω of AMB, given by Eq. (37). Before
we do so, let us stress that ω measures the vortex structure
of the probability current Js = Psvs—which is a vector field
over the functional space F—and not that of any current in the
real space. As such, it is not (at least directly) related to the
fluid-mechanical vorticity that has been studied previously in
active systems [59–61].

6. Physical interpretation and consequences

First, as discussed in Sec. III A 4, ω = 0 corresponds to the
Schwarz condition under which μ is the functional derivative
of a free energy [57,58]. For AMB, this reads 2λ + κ ′ = 0
[49,62], which is the condition for dynamics (9) to be re-
versible.

Then, comparing Eq. (37) to Eq. (8), the discrete sum over
dxi ∧ dx j has been replaced by an integral over δr ∧ ∇δr.
Equation (37) can thus be interpreted as follows: the flow
lines of −μ swirl around a given point ρ in F as soon as
(2λ + κ ′)∇ρ 	= 0. As in the finite-dimensional setting, such
a local swirl corresponds to an infinitesimal rotation that can
be decomposed into the superposition of rotations occurring in
the spaces [ρ(r), ∂xρ(r), ∂yρ(r)] wherever (2λ + κ ′)∇ρ(r) 	=
0. All in all, the flow lines of the deterministic drift tend to
rotate in the 2D plane [ρ(r), ∂kρ(r)]:

{
counterclockwise iff [2λ + κ ′]∂kρ(r) > 0,

clockwise iff [2λ + κ ′]∂kρ(r) < 0,
(41)

at a speed given by the amplitude of (2λ + κ ′)∂kρ(r).
Let us now show that these predictions allow measurement

of the steady-state currents of a phase-separated AMB. We

denote by ρs(r) ≡ 〈ρ(r)〉 the stationary average profile of the
fluctuating field ρ. We then measure the probability current
in the plane [ρ(r), ∂xρ(r)] at three different positions (points
A, B, and C; see Fig. 1) along the horizontal diameter of the
liquid droplet (see Appendix B for details about the sampling
procedure). As predicted, changing the sign of 2λ + κ ′ (top vs
bottom row of Fig. 1) or that of ∂xρ (column A vs C) changes
the direction of the circulation. Furthermore, the probability
current vanishes in the equilibrium case 2λ + κ ′ = 0 (center
row), as expected.

Note that at the interface, ρ(r) � ρs(r) and ∇ρ(r) �
∇ρs(r), so that dμ�|ρ � dμ�|ρs , which corresponds to uni-
form rotations in each space [ρ(r),∇ρ(r)]. The latter give
rise to the leading-order terms of the current in the noise
amplitude (columns A and C). On the contrary, in the bulk,
∇ρ(r) � ∇δρ(r), where δρ ≡ ρ − ρs. This leads to weaker,
higher order currents (column B).

It is tempting to split the chemical potential into μ =
μeq + μact, where μeq is the functional derivative of a free en-
ergy F , whereas μact is not integrable, so as to identify μact as
the source of irreversibility. Unfortunately, such a decomposi-
tion is not unique since adding a functional derivative δG/δρ

to μeq and subtracting it from μact yields another equiva-
lent decomposition. On the contrary, dμ� can unambiguously
be identified as the source of irreversibility since the set of
functional derivatives exactly coincides with the kernel of d,
so that

dμ� = dμ
�
act = d

(
μ

�
act + dG

)
. (42)

Propagating modes. Let us now show how our formalism
yields a valuable insight into the dynamics of fluctuations.
In Figs. 2(a)–2(c), we show the short-time relaxations of a
perturbation δρ = ε cos(qx) around a phase-separated profile
ρs for 2λ + κ ′ negative, null, or positive. To best compare the
three cases, we use the same ρs, corresponding to a stationary
droplet for 2λ + κ ′ = 0 [see Fig. 2(d)]. The analysis, detailed
in Fig. 3, of the current constructed in Fig. 1 predicts that
the perturbation propagates at the interface, from the liquid
to the gas, when 2λ + κ ′ < 0, and vice versa when 2λ + κ ′ >

0. In the equilibrium case, on the contrary, the perturbation
is predicted to relax to δρ = 0 while remaining stationary.
These predictions are confirmed by the simulations shown in
Figs. 2(a)–2(c).

Figure 2 shows the advection of initial perturbations by
the deterministic drift. In the presence of a finite noise, su-
perpositions of the corresponding propagating modes will be
constantly excited. Hence, to leading order in the noise, den-
sity fluctuations propagate radially at the interface, outwards
or inwards, depending on the sign of 2λ + κ ′. This is the
main real-space manifestation of the steady-state probability
current. It suggests a natural mechanism to account for the
continuous expulsion of bubbles, from the bubbly liquid to the
gas phase, observed in the Active Model B + [63]. We note
that higher-order contributions will also include orthoradial
fluctuations. The latter are particularly interesting since their
dynamics could offer insight into surface tension effects or
capillary waves, which have recently attracted a lot of interest
[64–72].
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B. The Kardar-Parisi-Zhang equation

Consider the celebrated KPZ equation [26],

∂t h = −μ +
√

2D�, μ(r, [h]) = λ|∇h|2 − κ	h. (43)

Here, one can conduct an analysis similar to the one we
carried out for AMB in the previous sections. This would lead
to directly identify −μ as a vector field on F (no conservation
constraint over the field h) and the usual L2–scalar product
as being the appropriate Riemannian metric to construct the
functional vorticity,

gh(μ1, μ2) =
∫

μ1(r, [h])μ2(r, [h])dr. (44)

In this geometry, the one-form μ�(·) ≡ g(μ, ·) associated to a
vector field μ(r, [h]) again corresponds to integration against
μ, and the vorticity of the deterministic drift of Eq. (43) is
again ω = −dμ�, where dμ� = ∫

dr(2λ + κ ′)∇h · δr ∧ ∇δr.
The above analysis of the vorticity of AMB can then be
directly transposed to KPZ. We thus predict that fluctuations
around a height profile h should again propagates upward
or downward ∇h, depending on the sign of 2λ + κ ′. These
predictions are confirmed by the simulations shown in Fig. 4.

We stress that the KPZ equation and AMB describe fun-
damentally different physics: the unbounded growth of a
fluctuating interface and the nonequilibrium phase separa-
tion of a conserved field leading to a well-defined stationary
profile. These distinct long-term behaviors stem from the
different irrotational component of their deterministic drifts.
Importantly, our analysis reveals that, on the contrary, these
systems share the same vorticity. In turn, this leads to an
unexpected similarity in the dynamics of fluctuations, as seen
by comparing Figs. 2 and 4.

IV. CONCLUSION

For a continuous Markov process that possesses a steady
state, the curl part (in the appropriate geometry) of the de-
terministic drift is entirely responsible for the breakdown of
detailed balance. In this article, we introduced a functional
version of the curl operator: the functional exterior derivative
d, that in turn allows defining a functional vorticity, or cycle
affinity. The latter offers a systematic, local, and unambiguous
criterion to characterize the departure from equilibrium of
spatially extended systems. It accounts for, on the one hand,
the vortex structure of the stationary probability current in the
space of fields and, on the other hand, the real-space mani-
festation of time-reversal symmetry (TRS) breaking, both of
which may be quite subtle to measure.

We put this methodology at work on the Active Model B.
It first allowed us to measure the appropriate 2D projections
of the stationary probability current. Note that the difficulty
here resides in the fact that the corresponding space is infi-
nite dimensional, hence forbidding any attempt of brute-force
sampling. In turn, we were able to unveil the real-space coun-
terpart of these probability currents, which is the leading-order
manifestation of TRS breaking in physical space, namely, the
permanent excitation of anisotropic propagating modes local-
ized at the liquid-gas interface. Since AMB was originally
formulated to account for the leading-order physics of active

phase separation, we expect the presence of these localized
anisotropic modes to be the main qualitative difference be-
tween generic active and passive phase-separated systems, at
the coarse-grained level. The fact that it remained unnoticed
for such a long time, despite the extensive literature dedicated
to the subject over the last 15 years, is certainly due to its
localization in a noisy, relatively narrow region of space,
namely, the interface between liquid and gaseous phases. This
is a second difficulty which the theoretical framework pre-
sented in this article allowed one to overcome.

We also applied this formalism to the celebrated KPZ equa-
tion. As discussed in Sec. III B, despite the lack of a steady
state in this process due to the irrotational part of its determin-
istic drift, the functional exterior derivative showed the KPZ
and AMB drifts to share (for two different geometries) the
same rotational part. For the KPZ equation, it is responsible
for the propagation of perturbations either downward or up-
ward the gradient of the background mean profile, depending
on the parameters.

While we have focused here on the AMB and the KPZ
equation, both for the sake of clarity and due to the in-
terest they have attracted over the years, we note that
our theoretical framework can be generalized to any over-
damped fluctuating hydrodynamics with Gaussian noise.
Suppose, for instance, that the chemical potential of Eq. (9)
or (43) is given by a fourth-order expansion in gradient
of ρ, i.e., μ = μ0 + λ|∇ρ|2 − κ	ρ + α1	

2ρ + α2|∇ρ|4 +
α3|∇ρ|2	ρ + α4(	ρ)2 + α5∇ρ · ∇	ρ, where μ0 is a lo-
cal function of ρ and where, for the sake of clarity, all
the other coefficients are taken to be constant. This sit-
uation leads to dμ� = ∫

dr([2λ∇ρ + 4α2|∇ρ|2∇ρ + (α5 −
2α4)∇	ρ] · δr ∧ ∇δr + α5∇ρ · δr ∧ ∇	δr ). Our framework
thus predicts the probability currents to be localized in the
spaces [ρ(r),∇ρ(r)] and [ρ(r),∇	ρ(r)]. More broadly,
generalizing our framework to nonlocal interactions, vector
or tensor fields, as well as for active mixtures [73–75], is an
exciting program for the future.
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APPENDIX A: SIMULATING AMB DYNAMICS

The numerical simulations of the dynamics of AMB were
realized through the discretization of the field on a lattice of
Nx × Ny sites, with periodic boundary conditions and a dis-
cretization step dx (dy) in the x direction (in the y direction),

ρt (x, y) −→ ρnt (nx, ny) ≡ ρnt dt (nxdx, nydy), (A1)

where (nx, ny) ∈ �0, Nx − 1� × �0, Ny − 1�. We used the dis-
crete gradient given by

∇ρ(i, j)

≡
(

ρ(i + 1, j) − ρ(i − 1, j)

2dx
,
ρ(i, j + 1) − ρ(i, j − 1)

2dy

)

(A2)
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and the discrete Laplacian

	ρ(i, j) = ρ(i + 1, j) + ρ(i − 1, j) − 2ρ(i, j)

dx2

+ ρ(i, j + 1) + ρ(i, j − 1) − 2ρ(i, j)

dy2
. (A3)

In the simulations, we considered λ and κ constants. In addi-
tion, in order to stabilize the simulations, we used an implicit
time-discretization scheme for the term proportional to κ in
the dynamics of AMB. Hence, our discrete version of Eq. (9)
reads

ρnt +1 − ρnt

dt
= −κ	2ρnt +1 + 	

[
aρnt + bρ3

nt
+ λ|∇ρnt |2

]
+∇ · �nt , (A4)

where we omitted the spatial discrete variable (nx, ny) for the
sake of clarity. At time nt , each component of the noise �nt

is a random Gaussian variable of zero average and variance
2D

dxdydt .
Note that the discrete field ρ(nx, ny) can alternatively be

described through its discrete Fourier transform (DFT),

ρ̂(kx.ky) ≡
Nx−1∑
nx=0

Ny−1∑
ny=0

ρ(nx, ny)e−2iπ ( kx nx
Nx

+ kyny
Ny

)
. (A5)

The inverse DFT of ρ̂(kx, ky) gives back the initial field,

ρ(nx, ny) = 1

NxNy

Nx−1∑
kx=0

Ny−1∑
ky=0

ρ̂(kx, ky)e2iπ ( kx nx
Nx

+ kyny
Ny

)
. (A6)

The discrete Fourier transform (DFT) of the discrete gradient
(A2) is thus

∇̂ =
(

i

dx
sin

[
2πkx

Nx

]
,

i

dy
sin

[
2πky

Ny

])
, (A7)

while the DFT of the discrete Laplacian (A3) is given by

	̂ = −4

[
1

dx2
sin2

(
πkx

Nx

)
+ 1

dy2
sin2

(
πky

Ny

)]
. (A8)

Note that computing ρnt +1 from ρnt via Eq. (A4) requires
the inversion of the operator (1 + κdt	2). The latter being
linear and invariant by translation, it is diagonal in the Fourier
basis. Hence, to make things easier, we compute the inverse
of this operator in the Fourier basis.

All in all, knowing the state of the field ρnt and of its DFT
ρ̂nt at a given time step nt , we compute ρnt +1 through the
following algorithm:

(i) We compute the nonlinear terms fnt (nx, ny) ≡
aρnt (nx, ny ) + bρ3

nt
(nx, ny) + λ|∇ρnt (nx, ny)|2 in direct space.

(ii) We draw all the noise terms �nt (nx, ny) independently
from N (0, 2D/[dxdydt]).

(iii) We compute the DFTs f̂nt and �̂nt .
(iv) We compute ρ̂nt +1 through

ρ̂nt +1 = [1 + κdt	̂2]−1[ρ̂nt + dt	̂ fnt + dt∇̂ · �̂nt ]. (A9)

Figures 1 and 2 of the main text have been generated using
the semispectral numerical integration of the AMB dynamics
described above, with Nx = Ny = 256, dx = dy = 10/256,
and a time step dt = 10−6. The other parameters are given
in the caption of each figure.

APPENDIX B: SAMPLING (PROJECTIONS OF)
THE STATIONARY PROBABILITY CURRENT

The projected probability current πr0 [Js] in the space
[ρ(r0), ∂kρ(r0)] at a given point r0 is the vector field whose
value at a point [ρ(r0), ∂kρ(r0)] is given by

πr0 [Js] = 〈[ρ̇t (r0), ∂k ρ̇t (r0)]δ[ρt (r0) − ρ(r0)]

× δ[∂kρt (r0) − ∂kρ(r0)]〉, (B1)

where the time derivatives are defined in the Stratonovich
sense, and 〈·〉 denotes the average in the steady state (con-
ditioned to a fixed droplet center). Given the ergodicity of
dynamics (9), the current (B1) is also given by the time av-
erage,

πr0 [Js] = lim
T →∞

1

T

∫ T

0
[ρ̇t (r0), ∂k ρ̇t (r0)]δ[ρt (r0) − ρ(r0)]

× δ[∂kρt (r0) − ∂kρ(r0)]dt, (B2)

where the stochastic integral is defined in the Stratonovich
sense. Figure 1 of the main text was realized by sampling
πr0 [Js] at different points r0.

APPENDIX C: SIMULATING THE KPZ EQUATION

The numerical simulations of the KPZ equation were
realized on a one-dimensional lattice, with fixed Dirichlet
boundary conditions. We used the same space discretization
of the ∇ and 	 operators as in Appendix A. We used a fully
explicit time-discretization scheme, and computed the value
of hnt +1 from that hnt in direct space.
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