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Group-equivariant autoencoder for identifying spontaneously broken symmetries
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We introduce the group-equivariant autoencoder (GE autoencoder), a deep neural network (DNN) method that
locates phase boundaries by determining which symmetries of the Hamiltonian have spontaneously broken at
each temperature. We use group theory to deduce which symmetries of the system remain intact in all phases,
and then use this information to constrain the parameters of the GE autoencoder such that the encoder learns an
order parameter invariant to these “never-broken” symmetries. This procedure produces a dramatic reduction in
the number of free parameters such that the GE-autoencoder size is independent of the system size. We include
symmetry regularization terms in the loss function of the GE autoencoder so that the learned order parameter
is also equivariant to the remaining symmetries of the system. By examining the group representation by which
the learned order parameter transforms, we are then able to extract information about the associated spontaneous
symmetry breaking. We test the GE autoencoder on the 2D classical ferromagnetic and antiferromagnetic Ising
models, finding that the GE autoencoder (1) accurately determines which symmetries have spontaneously broken
at each temperature; (2) estimates the critical temperature in the thermodynamic limit with greater accuracy,
robustness, and time efficiency than a symmetry-agnostic baseline autoencoder; and (3) detects the presence
of an external symmetry-breaking magnetic field with greater sensitivity than the baseline method. Finally, we
describe various key implementation details, including a quadratic-programming-based method for extracting the
critical temperature estimate from trained autoencoders and calculations of the DNN initialization and learning
rate settings required for fair model comparisons.
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I. INTRODUCTION

Mapping a material’s phase diagram is an important en-
deavor in condensed-matter physics and materials science
[1,2]. This is a crucial step towards practical applications
as such diagrams can act as a road map to manipulating a
material’s functionality. From a theoretical perspective, pre-
dicting the locations of phase boundaries for a given material
can provide important insights into the microscopic physics
that govern its behavior and can provide crucial validation of
proposed low-energy models.

In some cases (e.g., structural transitions), phase transitions
are governed by high-energy processes and can be reason-
ably predicted with efficient computational methods [3] like
density functional theory [4–8] or molecular dynamics sim-
ulations [9–11]. However, there are also numerous examples
of phase transitions between novel states of matter that are
completely governed by low-energy properties, which can
be much harder to predict. Notable examples include the
Mott and other metal-to-insulator transitions [12], unconven-
tional superconductivity [13–15], and quantum magnetism
and spin liquid behavior [16,17]. For example, predicting
the low-energy properties of strongly correlated systems has
proven to be extremely challenging, even with the advent of
state-of-the-art computational algorithms and the widespread
availability of high-performance computing. A case in point
is the single-band Hubbard model, whose doping-temperature

phase diagram is rich with many competing and intertwined
orders [15,18] and may or may not contain a superconducting
ground state [19–21].

In the Landau paradigm, a phase transition is characterized
by an order parameter—a measurable quantity encoding some
macroscopic property of the system that undergoes a discon-
tinuous change at a critical point (e.g., a critical temperature,
critical pressure, etc.). The change in the order parameter is
tied to an associated symmetry breaking, where the order
parameter is zero in the high-symmetry disordered phase and
nonzero in the low-symmetry ordered phase. Identifying when
a phase transition occurs thus requires knowledge of an appro-
priate order parameter or the corresponding symmetry.

Physical intuition or experimental input can provide insight
towards the identification of the correct order parameter and
its relevant symmetry. However, there are well-known exam-
ples of order parameters that are nonlocal or exist in a more
abstract space. Notable examples include the Haldane transi-
tion in spin-1 antiferromagnetic chains [22,23], the breaking
of gauge symmetry across the superconducting transition [24],
or the emergence of topological order in the quantum Hall
states [25]. In cases like these, there is no general method
for identifying order parameters and their associated sym-
metries. There are also materials where cross-over behavior
is observed that may or may not be associated with a true
phase transition. Perhaps the most famous example of this
is the pseudogap “phase” of the high-Tc cuprates [26]. Thus,
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it would be very advantageous to have a general method of
identifying an order parameter, detecting sudden changes in
its value, and determining the corresponding broken symme-
try across the transition. Our goal here is to introduce such a
method.

In recent years, techniques from machine learning—in par-
ticular, deep neural networks (DNNs) [27]—have been used
to successfully identify phase transitions in both classical and
quantum many-body lattice systems in a purely data-driven
manner [28–35]. DNNs are complex parametric models con-
sisting of an alternating composition of linear and nonlinear
transformations; such models now constitute the state of the
art for a variety of problems in domains such as computer
vision and natural language understanding [36–38]. To date,
most applications using DNNs to detect phase transitions have
focused on Monte Carlo (MC) simulations of lattice models,
which is natural given that large volumes of training and
validation data can be easily generated [35].

More recently, methods from unsupervised learning have
been applied to the problem of identifying phase transitions
[39–43]. Unsupervised learning is the paradigm used to find
structure in unlabeled data, such as its intrinsic dimension-
ality. Perhaps the best-known methods for dimensionality
reduction are principal components analysis (PCA) and the
autoencoder, where the latter is a DNN with an encoder-
decoder architecture that may be thought of as a nonlinear
generalization of PCA [44,45].

The main contribution of this paper is a DNN method
for identifying phase transitions, which we call the group-
equivariant autoencoder (GE autoencoder). In contrast to
previous methods cited above, the GE autoencoder is specifi-
cally designed to identify which symmetries of a given system
are broken at each point in a region of its phase diagram; the
identification of the corresponding phase transition is thus a
corollary. In this way, the GE autoencoder not only locates
phase transitions but also gives insight into its mechanism
via the associated spontaneous symmetry breaking (SSB).
Our method assumes only that (1) we have knowledge of the
symmetry group G of the system Hamiltonian and that (2) we
have selected a latent dimensionality for the GE autoencoder;
the key steps of the GE-autoencoder method are then the
following:

(1) Use group theory to deduce the subgroup GNB of
“never-broken symmetries,” i.e., the symmetries in G that
remain intact in all phases of the system.

(2) Constrain the GE autoencoder such that it learns a
GNB-invariant order parameter.

(3) Train the GE autoencoder using “symmetry regulariza-
tion” such that it learns a G-equivariant order parameter.

During training, the GE autoencoder learns the representa-
tion of G by which the order parameter transforms, and from
this we can extract information about the associated SSB.

The advantage of the GE autoencoder over previous
symmetry-agnostic DNN methods is threefold. First, the GE
autoencoder exploits knowledge about the symmetries of the
system that would otherwise be wasted. The point of using
ML for identifying phase transitions is that it does not re-
quire us to have knowledge of the relevant order parameter,
but this does not mean we should forget the knowledge we
may have, such as symmetries of the high-energy microscopic

Hamiltonian. Second, due to the never-broken symmetries
constraining the GE autoencoder as well as training with sym-
metry regularization, we expect the GE autoencoder to locate
phase transitions with greater accuracy, efficiency, and ro-
bustness than symmetry-agnostic methods. Third and finally,
as already mentioned, the GE autoencoder not only identi-
fies phase transitions but also provides information about the
associated SSB, thereby elucidating its mechanism. Having
access to details on broken symmetries provides information
on how to couple to the order parameter via a conjugate field,
a requirement for probing associated phase transitions in the
laboratory.

Since we are introducing the GE autoencoder, we focus
on the details of the methodology in this paper and test it
as a proof of principle on the 2D ferromagnetic and anti-
ferromagnetic Ising models. Moreover, we discuss numerous
implementation details throughout the paper that were essen-
tial for obtaining conclusive results. The paper is organized as
follows: In Sec. II we review as background the mathematical
notion of SSB, the Ising model, and autoencoders. In Sec. III
we describe the GE-autoencoder method in detail, focusing
on the case of a 1D order observable for clarity; we also
describe the experimental setup, including calculations of the
DNN initialization and learning rate settings required for fair
experimental comparisons. In Sec. IV we present our exper-
imental results; we find that the GE autoencoder accurately
identifies which symmetries are broken at each temperature
and estimates the critical temperature with greater accuracy,
time efficiency, and robustness than a baseline autoencoder.
We concurrently give additional details of the data analysis,
including a method for extracting stable critical temperature
estimates from statistics of trained autoencoder models. In
Sec. V we extend the GE autoencoder to support arbitrary
finite symmetry groups and vector-valued order observables,
paving the way for future applications. Finally, in Sec. VI
we conclude the paper with a discussion of its key findings,
implications, and directions for future work [46].

II. BACKGROUND

A. Spontaneous symmetry breaking

In this section we review the concept of spontaneous sym-
metry breaking (SSB) from a mathematical perspective, which
will help us formulate the method. This discussion is based on
the one given in Ref. [47].

Consider a classical many-body system on a lattice whose
size is parameterized by L (e.g., for a hypercubic lattice, L
is the size of one dimension). Let X denote the space of all
lattice configurations, and suppose the system Hamiltonian
is invariant under the action of a group G on X. An equi-
librium state is then a distribution of lattice configurations
that maximizes the entropy subject to a fixed expected in-
ternal energy. In other words, the equilibrium state solves a
constrained convex optimization problem. For finite systems,
the equilibrium state is uniquely the well-known Boltzmann
distribution over lattice configurations. In the thermodynamic
limit (L → ∞), on the other hand, uniqueness is no longer
necessary, and in general we have a polyhedral solution set
S of equilibrium states. An abrupt change in the structure
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(e.g., dimensionality) of this set S with respect to temperature
or any other tuning parameter in the Hamiltonian is called a
phase transition. Here we restrict ourselves to disorder-order
phase transitions, where the equilibrium state changes from
being unique (disordered) to not unique (ordered).

When viewed in this framework, every symmetry (ele-
ment) in G sends an equilibrium state to an equilibrium
state. Thus, in the disordered phase, the unique equilibrium
state is itself G-invariant. However, in the ordered phase, the
equilibrium states are no longer necessarily G-invariant, as
they may permute under the action of an element of G. This
phenomenon is often called spontaneous symmetry breaking
(SSB).

The abstract polyhedral set S of equilibrium states is
made concrete by way of an order parameter—a linear
embedding of S into a Euclidean space of dimension d =
dim(S ), with the centroid of the polyhedron mapped to the
origin. By the Riesz-Markov-Kakutani Representation Theo-
rem, there exists an order observable O : X �→ Rd such that
the order parameter sends each equilibrium state ν to the
expectation

〈O〉ν =
∫
X
O(x) dν(x).

Without loss of generality, O can be chosen such that (1)
〈O〉ν = 0 in the disordered phase and (2) it is G-equivariant;
by G-equivariant, we mean O(gx) = ψgO(x) for all g ∈
G, x ∈ X, where ψ is a nontrivial real-orthogonal represen-
tation of G. Every symmetry g ∈ G for which ψg = 1 is then
said to be never broken and is otherwise broken in the ordered
phase.

Markov chain Monte Carlo (MCMC) simulations of lattice
systems are designed to converge to the average equilibrium
state ν (the centroid of the set S), which is G-invariant and
satisfies 〈O〉ν = 0 in both the disordered and ordered phases.
Hence, the order parameter as defined above cannot be used
to distinguish the two phases. It is possible, however, to define
a general expression in terms of the observable O that can.
For simplicity, for most of this work we focus our exposition
on scalar order parameters (d = 1); for the case of higher-
dimensional order parameters (d � 2), see Sec. V. In the
scalar case, the expected absolute value 〈|O|〉ν is sufficient
to distinguish the two phases, taking a value of zero in the
disordered phase (in the thermodynamic limit) and a nonzero
value in the ordered phase. Although a misnomer, we will
refer to 〈|O|〉ν throughout this paper as the order parameter
and will drop the subscript ν. In the limited case of d =
1, the representation ψ takes values in {−1, 1} with ψg =
−1 for at least one g ∈ G since the representation must be
nontrivial.

B. The Ising model

One of the simplest and best-studied lattice systems is
the classical Ising model in two dimensions; it is both rich
enough to exhibit a second-order phase transition while also
admitting an exact solution [48]. We consider the Ising model
on a square L × L lattice with L even and periodic boundary
conditions. A lattice configuration is obtained by assigning
to each lattice site a classical spin xi = ±1, where i = (ix, iy)

α

ρ

τ

α

ραρ−1

ρτρ−1 τρ

(a)

(b)

FIG. 1. (a) Generators of the spatial Ising symmetries acting on
a square lattice and (b) some example compound spatial symmetries
that can be formed from the generators.

are the spatial indices of the site. The space of all lattice
configurations is X = {−1, 1}L×L. The Ising Hamiltonian is

H(x) = −J
∑
〈i,j〉

xixj, (1)

where x is an L × L matrix with entries xi ∈ {−1, 1}, J is
the coupling constant, and the sum is taken over all pairs of
neighboring lattice sites. We set J = ±1, where J = 1 (resp.
J = −1) corresponds to a ferromagnetic (resp. antiferromag-
netic) magnetic interaction.

Equation (1) has both spatial (translations, reflections, and
orthogonal rotations) and spin-flip (x → −x) internal sym-
metries. The Ising symmetry group G admits a presentation
with independent generators α, ρ, τ , and σ (see Fig. 1).
Picturing the Ising lattice as a matrix, α can be interpreted as
a downward (cyclic) translation; ρ is a 90◦ counterclockwise
rotation about the origin; τ is a reflection about the vertical
line of symmetry; and σ is the spin-flip internal symmetry
(not shown in Fig. 1). Every symmetry operation of the Ising
model can be expressed in terms of the four generators of
G. For example, a rightward translation can be expressed as
ραρ−1, while a reflection about the diagonal can be expressed
as τρ, as shown in Fig. 1. Algebraically, this presentation of
G is defined by the following relations:

αL = ρ4 = τ 2 = σ 2 = 1,

ρτ = τρ3,

αρ2 = ρ2α−1,

ατ = τα,

gσ = σg ∀g ∈ G.

In both the ferromagnetic and antiferromagnetic cases, the
2D Ising model exhibits a second-order phase transition at the
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Input Latent Output

Encoder Decoder

FIG. 2. Schematic illustration of the autoencoder architecture.

critical temperature Tc/J =
√

2
log(1+√

2)
= 2.269 . . . [48]. The

phase transition is associated with the spontaneous breaking
of the x �→ −x internal symmetry. The associated order pa-
rameter is the expected absolute value 〈|M|〉 (resp. 〈|Mstag|〉)
of the magnetization M (resp. staggered magnetization Mstag)
in the ferromagnetic (resp. antiferromagnetic) case, where

M(x) = 1

L2

∑
i

xi and (2)

Mstag(x) = 1

L2

⎛
⎜⎝ ∑

ix+iy even
xi −

∑
ix+iy odd

xi

⎞
⎟⎠. (3)

Note that both M and Mstag are equivariant functions with
respect to the spatial and internal Ising symmetries.

C. Autoencoders

The core of our method is the autoencoder, a DNN archi-
tecture used for various unsupervised learning tasks [44,45],
which we use for dimensionality reduction or “compression.”
Given a data set {xn ∈ Rm}N

n=1, it is a common assumption
in the traditional domains of computer vision and natural
language understanding that the data points lie on a low-
dimensional manifold embedded in Rm. The autoencoder is
a means to discovering this intrinsic manifold structure. An
autoencoder consists of a pair of DNNs—an encoder O :
Rm �→ Rd (which will ultimately represent an observable in
our application) and a decoder D : Rd �→ Rm, where d < m
is the assumed dimensionality of the intrinsic data manifold
(Fig. 2). The encoder thus maps its input to a low-dimensional
“latent” or “compressed” representation in terms of intrinsic
coordinates on the manifold, and the decoder attempts to
reconstruct the original input given the latent representation
by learning the embedding of the manifold into Rm. The
autoencoder is trained by minimizing the reconstruction loss

L(O,D) = 1

N

N∑
n=1

Lmetric(D[O(xn)], xn),

where L(O,D) means that L is a function of the network pa-
rameters of O and D, and Lmetric is some metric (such as mean
square error or binary cross-entropy) that measures the dif-
ference between the reconstructed and original inputs. Once
trained, the encoder can be used to obtain low-dimensional
“summaries” of the data. Below we describe how this aspect
can be used for identifying phase transitions.

III. METHODS

A. Detecting phase transitions with autoencoders

In our autoencoder, the encoder is exactly the sought-after
order observable O : X �→ Rd as introduced in Sec. II A, ex-
cept that we do not require it to be G-equivariant at present.
The decoder D : Rd × R �→ X then represents the condi-
tional Boltzmann distribution of lattice configurations given
a value of the observable O and a temperature T . Note that
in contrast to traditional autoencoders, this decoder accepts a
second argument—the temperature—as a direct input; we do
this because we know the Boltzmann distribution of lattice
configurations depends on temperature. This explicit temper-
ature dependence is the first unique element of our method,
as previous works on autoencoders for identifying phase
transitions assumed a temperature-independent architecture.
Once the autoencoder is trained, we may interpret any abrupt
change in the distribution of the learned observable O with
respect to temperature as indicative of a phase transition.

Even in the absence of any knowledge about the sym-
metries of the Hamiltonian, previous works found that
autoencoders could identify phase transitions with some accu-
racy [42]. However, the reason for the autoencoder’s efficacy
remains unclear at this time. Rather than relying only on the
empirical success of autoencoders, we motivate their use with
the following intuition: Using general information theory,
we can show that training an autoencoder is equivalent to
maximizing the entropy of the observable O learned by the
encoder, where we regard O as a function of the random lattice
configuration across different temperatures. Thus, training the
autoencoder moves the distribution of O closer to a uniform
distribution with as large of a support as possible, and this
in turn means that O learns to aggregate low-probability
states together. This property seems to mimic the type of
coarse-graining performed in Landau theory, where the com-
petition between high-probability states and aggregations of
low-probability states drives a phase transition.

For the example application of the Ising model, we define
the encoder and decoder to have shallow neural network ar-
chitectures, each with one hidden layer of nonlinear activation
units:

O(x) = c +
h∑

k=1

akφ(〈wk, x〉F + bk ), (4)

D(z, T ) = tanh

⎡
⎣c′ +

h′∑
k=1

a′
kφ(〈w′

k, z〉F + b′
k + b′′T )

⎤
⎦, (5)

where bk ∈ R, ak, c ∈ Rd , wk ∈ RL×L; b′
k, b′′ ∈ R, a′

k, c′ ∈
RL×L, w′

k ∈ Rd ; h and h′ are the number of hidden neu-
rons in the encoder and decoder, respectively; 〈·, ·〉F denotes
the Frobenius inner product (Hadamard product of matrices
followed by a sum over all entries); tanh() is applied element-
wise; and φ : R �→ R is the elementwise leaky rectified linear
unit (ReLU) activation function defined as

φ(y) =
{

0.01y, if y < 0
y, otherwise. (6)

The tanh function is used in the decoder to guarantee each out-
put component lies in the interval (−1, 1). We set h = 4 and
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h′ = 64. We also set d = 1, as stated in Sec. II A. Since the
magnetization and staggered magnetization are linear func-
tions, a linear encoder and linear decoder would have been
sufficient. However, for the purpose of demonstrating the ef-
ficacy of our method, we assume no knowledge of the system
except a data set of MC-sampled lattice configurations over a
range of temperatures and the group G of Ising model sym-
metries. We therefore consider an architecture deliberately
more complex than a linear autoencoder, and one that would
be a reasonable initial choice given no additional information
about the system.

Now, given a data set {(xn, Tn) ∈ X × [0,∞)}N
n=1 of lattice

configurations xn at temperatures Tn, we train the autoencoder
by minimizing the loss

L(O,D) = 1

N

N∑
n=1

LBCE(D(O(xn), Tn), xn), (7)

where LBCE : (−1, 1)L×L × {−1, 1}L×L �→ (0,∞) is the bi-
nary cross-entropy loss function defined as

LBCE(x̂, x) = −
∑

i

[(
1 + xi

2

)
log

(
1 + x̂i

2

)

+
(

1 − xi

2

)
log

(
1 − x̂i

2

)]
, (8)

where x̂ is the output of the autoencoder.

B. The group-equivariant autoencoder

We now extend the baseline autoencoder introduced in
Sec. III A to a group-equivariant autoencoder (GE au-
toencoder) by incorporating our prior knowledge about the
symmetries of the system’s Hamiltonian into the network
architecture. Once trained, we will then be able to interpret the
GE autoencoder to infer which symmetries are spontaneously
broken at any temperature.

1. The subgroup of never-broken symmetries

The first step is to see if we can identify a subgroup of
“never-broken symmetries”—symmetries that do not spon-
taneously break at any temperature. Identifying these will
reduce the number of symmetries that we will ultimately
have to check. Our approach for this step is entirely group-
theoretic.

Recall from Sec. II A that a symmetry g ∈ G will remain
unbroken as a function of model parameters and temperature
if ψg = 1. In the absence of any knowledge about the true
representation ψ associated with the order parameter, we can
deduce a subgroup of never-broken symmetries by finding
all symmetries g ∈ G such that ψg = 1 for all representations
ψ : G �→ {−1, 1}. We establish such a subgroup for the Ising
symmetry group in Proposition 1 (see Appendix A 1); we
denote the subgroup as SCB(L) = 〈α2, ρ2, (αρ)2〉 and refer
to it as the special checkerboard group, as it represents the
group of all proper (i.e., no reflections) symmetries of an
L × L checkerboard that map black (resp. white) squares onto

black (resp. white) squares.1 Thus, all even-parity transla-
tional symmetries and the 180◦ rotational symmetry are never
spontaneously broken in the Ising model.

Having established a subgroup of never-broken symme-
tries, it can be shown (see Appendix A 1) that the only
symmetries we have to check for SSB are αm1ρm2τm3σ m4

for mi ∈ {0, 1}. This represents a reduction from 16L2 to 16
symmetries to check, so that the complexity of detecting SSB
is now independent of lattice size, an important advance of the
proposed method.

2. Incorporating symmetries into the encoder

The next step of our method is to incorporate the deduced
subgroup of never-broken symmetries into our autoencoder.
Recall from Sec. II A that the observable O : X �→ Rd , which
is modeled by the encoder network of the autoencoder, must
be G-equivariant; we start by first constraining the parameters
of the encoder O [Eq. (4)] such that it is invariant to the
subgroup of never-broken symmetries SCB(L). However, it
turns out that there are many inequivalent ways to do this, and
it is unclear which set of constraints is optimal. A complete
classification of all ways this information can be incorporated,
as well as the development of a metric by which to determine
which way is best, is beyond the scope of this paper and is
left for future work. Here we enforce invariance in a simple
way and find that it yields good results. The general idea is
illustrated in the top panel of Fig. 3.

We start with Eq. (4) for the observable encoder O : X �→
R. We constrain the elements wk,i of each matrix wk to be

wk,i = 2

L2

{
uk, if ix + iy is even
vk, otherwise. (9)

Each wk is thus constrained to have a “checkerboard” pattern
and is invariant under the action of SCB(L). Since it can
be shown that G acts orthogonally on all of RL×L, then the
invariance of O under SCB(L) immediately follows.

The constraints imposed on the wk allow for a significant
simplification of the expression for the encoder; this is illus-
trated in Fig. 3 (bottom). For an L × L lattice configuration x,
define

x̌B = 2

L2

∑
ix+iy even

xi,

x̌W = 2

L2

∑
ix+iy odd

xi.

We refer to (x̌B, x̌W) as the “checkerboard average” of the
lattice configuration x, i.e., the average value over all “black
squares” and the average value over all the “white squares.”
Then we have

〈wk, x〉F = ukx̌B + vk x̌W,

which allows for a more efficient implementation of the
encoder. We define the reduced encoder Ǒ : [−1, 1]2 �→ R

1The set of black squares (resp. white squares) is also referred to as
sublattice A (resp. sublattice B) in the literature.
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Input Encoder

Input Encoder

(a)
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FIG. 3. (a) Schematic illustration of an encoder constrained to
be invariant to a group of symmetries (even-unit cyclic translations in
the illustration). Network edges of same line style (solid vs dashed vs
dotted) and shade are constrained to have equal weight. (b) Reduced
representation of the same encoder. Rather than replicating weights
in the first layer, lattice sites that feed into the same input neuron are
first averaged.

by

Ǒ((x̌B, x̌W)) = c +
h∑

k=1

akφ(ukx̌B + vk x̌W + bk ). (10)

This result allows us to evaluate the encoder in Eq. (4) in
two separate steps: First, we compute the checkerboard av-
erage (x̌B, x̌W) of the input lattice configuration x. This task
is a one-time calculation and can be done across the entire
available data set of lattice configurations as a preprocessing
step. Second, we evaluate the reduced encoder [Eq. (10)] on
these checkerboard averages. This task is now independent of
the lattice size L. Note that the checkerboard average of x is
manifestly invariant under the action of SCB(L), and thus so
is the reduced encoder Ǒ. Moreover, the form of the reduced
encoder [Eq. (10)] places additional constraints on the spatial
symmetries and implies ψα = ψρ = ψτ (see Proposition 2 in
Appendix A 2 for details). The upshot is that we now need
only estimate ψσ and one of ψα , ψρ , and ψτ from the data;
we choose ψτ without loss of generality. If ψτ = 1, then all
spatial symmetries in 〈α, ρ, τ 〉 never break spontaneously.
Estimating ψσ and ψτ is discussed in Sec. III B 4.

3. Incorporating symmetries into the decoder

As with the encoder, we now incorporate the subgroup of
never-broken symmetries into the decoder of our autoencoder.
The starting point is Proposition 3 (see Appendix A 3), which

states that under suitable conditions, if an unsupervised model
is fit to a data set containing symmetries, then the fit model
will be invariant to those symmetries at least when restricted
to the data set. Proposition 3 provides a strong motivation to
assume that our autoencoder f = D ◦ O is G-invariant; for
g ∈ G,

gD(O(x), T ) = D(O(gx), T ),

gD(O(x), T ) = D(ψgO(x), T ).

We demand this hold for all O(x) and make the stronger
assumption

gD(z, T ) = D(ψgz, T ),∀g ∈ G, z ∈ R.

We have already deduced that ψg = 1 for all g ∈ SCB(L),
giving us the constraint

gD = D,∀g ∈ SCB(L).

This constraint necessitates the output of the decoder to have
a checkerboard pattern as in Eq. (9), and thus it suffices to
have the decoder return only two values—one representing the
value on the black squares and the other for the white squares.
Therefore, we define the reduced decoder Ď : R × (0,∞) �→
(−1, 1)2 as

Ď(z, T ) = tanh

⎡
⎣c′ +

h′∑
k=1

a′
kφ(w′

kz + b′
k + b′′T )

⎤
⎦, (11)

where a′
k, c′ ∈ R2 and w′

k, b′
k, b′′ ∈ R; h′ is the number of

hidden neurons (we set h′ = 64); and the functions tanh and
φ are applied elementwise. We interpret the output as the
checkerboard average of the output of the unreduced decoder
D. Note that like the reduced encoder, the reduced decoder
is now independent of the lattice size L. The reduced en-
coder [Eq. (10)] and reduced decoder [Eq. (11)] together
comprise a reduced autoencoder Ď ◦ Ǒ, which can now be
trained directly on the preprocessed and reduced data set of
checkerboard-averaged lattice configurations.

4. Symmetry regularization

The final step is to ensure that the (reduced) encoder not
only is invariant to the subgroup SCB(L) of never-broken
symmetries but also is in fact G-equivariant; we want Ǒ(gx̌) =
ψgǑ(x̌) for all g ∈ {α, ρ, τ, σ }. By Proposition 2, it is suf-
ficient to consider only τ and σ , and since ψg = ±1, then
we want Ǒ(gx̌) = ±Ǒ(x) for all g ∈ {τ, σ }. Ideally, we would
implement this as a hard constraint to which the optimization
of the reduced autoencoder loss function would be subject;
however, because the representations of G are discrete ob-
jects, the feasible region defined corresponding to this hard
constraint is likely disconnected, with inequivalent irreducible
representations ψ corresponding to distinct connected compo-
nents. To circumvent this issue, we relax the hard equivariant
constraint to a soft constraint, implemented as regularization
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terms included in the reduced autoencoder loss function:

Ľ(Ǒ, Ď) = 1

N

N∑
n=1

LBCE(Ď(Ǒ(x̌n), Tn), x̌n)

+ λ
∑

g∈{τ,σ }

(
1 − ‖Ǒ ◦ g‖

‖Ǒ‖

)2

+ λ
∑

g∈{τ,σ }
[1 − Lcos(Ǒ, Ǒ ◦ g)2]

+ λ min
g∈{τ,σ }

[1 + Lcos(Ǒ, Ǒ ◦ g)], (12)

where λ � 0 is a regularization coefficient and Lcos is the
cosine similarity between observables defined as

Lcos(O1,O2) = 〈O1,O2〉
‖O1‖‖O2‖ ,

where

〈O1,O2〉 = 1

N

N∑
n=1

O1(xn)O2(xn).

The first regularization term [i.e., the second term in Eq. (12)]
enforces the soft constraint ‖Ǒ ◦ g‖ ≈ ‖Ǒ‖. The second reg-
ularization term drives the cosine similarity to one of its
extreme values ±1. Together, these two terms encode the
constraint Ǒ ◦ g ≈ ±1Ǒ as desired. To explain the final reg-
ularization term, recall that we require ψg = −1 for some
g ∈ G to avoid a trivial representation. The last term drives at
least one of ψτ and ψσ to −1 to satisfy this requirement. With
this regularization approach, inequivalent irreducible repre-
sentations ψ now correspond to distinct “valleys” in the loss
landscape, with the regularization coefficient λ determining
the “steepness” of these valleys.

Once trained, we estimate ψg for g ∈ {τ, σ } with the final
cosine similarity:

ψg ≈ Lcos(Ǒ, Ǒ ◦ g). (13)

C. Experimental setup

1. Data sets

We generate data sets of lattice configurations by MC-
sampling the 2D ferromagnetic and antiferromagnetic Ising
models. We impose periodic boundary conditions on an L × L
lattice and consider L = 16, 32, 64, and 128. For each lattice
size, we consider 100 temperatures with 25 values in [1.04, 2]
in increments of 0.04, 50 values in [2.01, 2.5] in increments
of 0.01, and 25 values in [2.54, 3.5] in increments of 0.04.
This distribution of temperatures is evenly distributed about
the theoretical critical temperature Tc = 2

log(1+√
2)

= 2.269 . . .

and denser near Tc. Although not uniform, the temperature
samples are constant across all order observable models and
thus do not effect the model comparison; we sample more
temperatures near Tc only to ensure we achieve results suffi-
ciently stable to draw meaningful conclusions. For each lattice
size and temperature, we run the Wolff algorithm first for

10 000 iterations to allow for thermal equilibration and then
for an additional 50 000 iterations during which we record the
lattice configuration every 10 iterations. We thus obtain 5000
samples for each lattice size and temperature and for each
of the ferromagnetic and antiferromagnetic cases (although
in practice we only use 4096 samples). We also preprocess
copies of these data sets by checkerboard averaging the lat-
tices, which will be used to train the GE autoencoder. We
evenly split each set of 4096 lattice configurations into a
training-validation set and a test set, and we further parti-
tion the 2048 training-validation samples into eight “folds”
each of size 256 that will be used to measure sampling
variance.

2. Order observables

Given only the MCMC data sets and the Ising symmetry
group G, our objective is to detect when a phase transition
occurs by (1) identifying the associated spontaneous sym-
metry breaking and (2) estimating the temperature where it
occurs (i.e., the critical temperature). Importantly, we assume
no prior knowledge about the Ising model beyond the given
data sets and the symmetry group.

We test three “order observables” from which we hope to
derive order parameters:

(1) Magnetization [Eqs. (2) and (3)]: (In the antiferro-
magnetic case, “magnetization” will be understood to mean
the staggered magnetization.) This observable is the standard
order parameter used for the Ising model. Here we use it to
provide a ground-truth estimate for the critical temperature
in comparison to the exact value obtained from the Onsager
solution.

(2) Baseline autoencoder [Eqs. (4)–(7)]: This autoencoder
does not exploit the symmetry group G and is used as a
machine learning baseline. We will refer to its encoder and de-
coder as baseline encoder and baseline decoder, respectively.
Once trained, we interpret the output of the encoder as an
order observable. Note that G-equivariance is not guaranteed
a priori.

(3) GE autoencoder [Eqs. (10)–(12)]: This autoencoder
takes advantage of the symmetry group G, and we thus expect
it to be more accurate and more efficient than the baseline
autoencoder. We will refer to its encoder and decoder as
GE encoder and GE decoder, respectively. Once trained, we
interpret the output of the encoder as a G-equivariant order
observable. We also interpret its representation of G to iden-
tify which symmetries spontaneously break. Finally, as the
GE autoencoder acts on checkerboard-averaged lattice con-
figurations, the same network architecture can be applied to
different sizes of lattices. Therefore, we will also consider
the case of a “multiscale GE autoencoder,” which is trained
simultaneously on all four lattice sizes in our data set while
using only one-quarter of the MCMC data for each lattice
size.

We evaluate magnetization and the trained baseline en-
coder and GE encoder observables on all lattice configurations
in our data sets to obtain measurement distributions and subse-
quently order parameters. Further details on using these order
parameters to estimate the critical temperature are given in
Sec. IV.
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3. Training details

Independent of the lattice size L and training-validation
fold j, we train and validate the baseline and GE autoencoders
on a data set of 100N lattice configurations, where 50% of the
data set is randomly selected for training and the remaining
50% is used for validation. This data set consists of the last
N MC-sampled lattice configurations (out of the total 256
configurations in the jth fold) at each of the 100 temperatures
considered. We test various values of N (ranging from 8 to 256
in powers of 2) to measure the data efficiency of the GE au-
toencoder vs baseline autoencoder, as well as the dependence
of estimated Tc on the training-validation sample size. We
train all autoencoders using the Adam optimizer with learning
rate of 0.001 (or equivalent; see below) and minibatch size
N for 64 epochs; this choice guarantees 50 iterations in each
epoch and ensures that the scale of the noise generated from
stochastic gradient descent is the same for all experiments
[49]. We test three different seeds to randomly initialize the
autoencoder network parameters. Together with eight training
data folds, we thus have 24 trials of each autoencoder experi-
ment.

While training the GE autoencoder, we include the sym-
metry regularization terms in the loss function [Eq. (12)] only
for the second half of training epochs. Intuitively, we start
with no (or weak) regularization so the randomly initialized
GE autoencoder is free to escape the nearest valley in the
loss landscape that could possibly correspond to an incorrect
group representation ψ (i.e., the breaking of incorrect symme-
tries). Assuming there is enough information in the training
data to guide the GE autoencoder into a neighborhood of
the “correct” valley, we strengthen regularization after some
time to drive the GE autoencoder to the minimum of the
valley—thereby refining the learned representation ψ to a
bona fide orthogonal group. We note that switching on regu-
larization halfway through training is, in a sense, the simplest
schedule from weak to strong regularization, and our choice
of regularization schedule is further validated in the same
way as all other optimizer hyperparameter settings, namely,
we observed lower validation loss compared to constant or
linearly increasing regularization strength.

Nontrivial parameter initialization and learning rate set-
tings were needed to obtain reasonable comparisons (see
Appendix B for details). We initialize the GE autoencoder
as usual and set the learning rate to 0.001 based on valida-
tion learning curves. However, to ensure a fair comparison
between the baseline and GE autoencoders, and to avoid ar-
tifactual and noisy results due to hand-tuned hyperparameter
settings, we initialize the baseline autoencoder such that it
is functionally equivalent to the initial GE autoencoder; i.e.,
the baseline autoencoder satisfies the same symmetry con-
straints as the GE autoencoder at initialization time. We then
set a separate learning rate for each layer of the baseline
autoencoder such that it would remain equivalent to the GE
autoencoder throughout training if we maintained the sym-
metry constraints on the baseline autoencoder. This requires
setting smaller learning rates for larger layers to prevent large
sums of parameter updates flowing through the network. As a
result of these settings, the baseline autoencoder and GE au-
toencoder are identical in terms of their initial values and their

learning dynamics and differ only in the symmetry constraints
and symmetry regularization imposed on the GE autoencoder.

IV. RESULTS

A. Identifying phase transitions

Figure 4 is representative of the observed distributions of
the magnetization, baseline-encoder output, and GE-encoder
output over all lattice configurations in our data set at each
temperature. For brevity, we present the distributions only
for the largest lattice size L = 128 and the largest number
of training-validation samples per temperature N = 256. In
contrast to magnetization and the GE encoder, the distribu-
tion of the baseline encoder is not symmetric about zero in
the antiferromagnetic case. This asymmetry is a consequence
of a redundancy in the autoencoder network: The (baseline)
encoder may be freely transformed by any invertible affine
function since the first layer of the decoder can always undo
it. The center of the baseline-encoder distribution is there-
fore arbitrary. Although previous works [42] have reported
approximately symmetric encoder distributions for the Ising
model, our results show that this is not guaranteed unless some
form of explicit symmetry regularization is used, as in the
GE encoder. Similarly, the scale of the encoder is arbitrary
as well (even in the GE encoder), although the scale is not
relevant for SSB. Nevertheless, all distributions exhibit an
abrupt qualitative change near the theoretically known critical
temperature Tc = 2

log(1+√
2)

= 2.269 . . ., and hence all three

observables are able to identify the phase transition in the
Ising model to some degree.

We derive an order parameter from each of the three ob-
servables by calculating the mean absolute value under each
distribution at each temperature (Fig. 5). Note that while this
procedure is justified for magnetization and the GE encoder
as these are G-equivariant observables, it is not justified a
priori for the asymmetric baseline encoder observable in the
antiferromagnetic case. Nevertheless, we do it anyways to
provide a baseline case where symmetries were not taken into
consideration. Due to symmetry constraints and regulariza-
tion, the GE encoder learns a smoother order parameter that
is almost identical to the magnetization order parameter up
to a scale factor (this is made quantitative in Appendix C).
We also compare each order parameter to Onsager’s exact
solution for spontaneous magnetization in the thermodynamic
limit [48]

MONS(T ) =
{[

1 − sinh−4
(

2
T

)] 1
8 , if T < Tc

0, otherwise,
(14)

which is plotted as the dashed blue line in Fig. 5. The smooth
order parameter of the GE encoder provides a better ap-
proximation to Onsager’s solution compared to the baseline
encoder (Fig. 5). Moreover, the GE encoder in the thermo-
dynamic limit converges to Onsager’s solution with less error
than the baseline encoder (see Appendix C for details). As an
immediate consequence, the GE encoder is able to identify the
phase transition as being second-order, which previous works
[42] could not do.
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FIG. 4. Distributions of the order observable values at each temperature T on a lattice of size L = 128 for one example training data fold
and initialization seed and using N = 256 training-validation samples per temperature. The top row shows results for the ferromagnetic model
with the observable derived from (a) the magnetization, (b) the baseline AE, and (c) the GE AE. The bottom row (d)–(f) shows corresponding
results obtained for the antiferromagnetic model. The observable scales (y axes) of the baseline encoder and GE encoder are arbitrary, as any
nonzero rescaling of the encoder can be compensated by the inverse scaling in the decoder; thus, only the relative shapes of these distributions
are meaningful. All three order observables suggest a phase transition in both the ferromagnetic and antiferromagnetic cases near the theoretical
critical temperature (dashed red).

B. Identifying spontaneously broken symmetries

Can we identify at each temperature which symmetries of
the system have spontaneously broken? We have seen that the
GE-encoder order parameter becomes nonzero below some
critical temperature (Fig. 5) and thus breaks the Z2 = ψG

symmetry. It follows that every Ising symmetry g ∈ G such
that ψg = −1 breaks below this critical temperature, while
ψg = 1 implies that g remains unbroken. Using Eq. (13) we
estimate ψg for each generator of G (Table I). In the ferromag-
netic case, we find that ψg ≈ −1 only for g = σ , and hence
only the internal spin-flip symmetry breaks. In the antiferro-
magnetic case, we obtain ψg ≈ −1 for every generator g ∈
{α, ρ, τ, σ }. In other words, the internal spin-flip symmetry as
well as every spatial symmetry not in the special checkerboard
subgroup SCB(L) breaks. Our results are in agreement with
the known SSB in the Ising model across the magnetic transi-
tion, and thus we conclude that our GE-autoencoder method
can correctly and accurately detect SSB.

For contrast, we also measure the degree to which the
baseline encoder is equivariant; we again use Eq. (13) but
replace the GE encoder Ǒ with the baseline encoder O. As
with the GE encoder, we average estimates over all 24 tri-
als (eight training data folds and three initialization seeds)
as well as over all lattice sizes L and training-validation

sample sizes N . In the ferromagnetic case, we find that ψg ≈
0.9998(2) for spatial symmetry generators g ∈ {α, ρ, τ } and
ψσ ≈ −0.92(8) for the internal spin-flip symmetry generator
σ . In the antiferromagnetic case, we obtain ψg ≈ −0.87(5)
for both spatial and internal symmetry generators. The base-
line encoder is thus approximately equivariant and transforms
by approximately the correct group representation. However,
the GE autoencoder learns the representation ψ with sig-
nificantly greater accuracy and sometimes with orders of

TABLE I. Estimated latent representation ψg of the spatial sym-
metry generators (g = α, ρ, τ ) and the internal symmetry generator
(g = σ ). Estimates were averaged over all 24 trials (eight training
data folds and three initialization seeds) as well as over all lattice
sizes L and training-validation sample sizes N as they showed little
variation; the reported uncertainties are standard deviations. In the
antiferromagnetic case, odd spatial symmetries and the internal sym-
metry spontaneously break at some temperature; in the ferromagnetic
case, only the internal symmetry spontaneously breaks.

Spatial Internal

Ferromagnetic 0.99996(27) −1.00001(29)
Antiferromagnetic −0.99982(42) −0.99993(40)
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FIG. 5. Order parameters (mean absolute value of the distributions in Fig. 4) vs temperature T on a lattice of size L = 128 for one example
training data fold and initialization seed and using N = 256 training-validation samples per temperature. The top row shows results for the
ferromagnetic model with the observable derived from (a) the magnetization, (b) the baseline AE, and (c) the GE AE. The bottom row (d)–(f)
shows corresponding results obtained for the antiferromagnetic model. The curves have been normalized to the same scale as Onsager’s solution
for comparison. The standard deviation curves (dashed) were obtained using the jackknife resampling method (these may be difficult to see
as the standard deviations are small). All three order parameters suggest a phase transition in both the ferromagnetic and antiferromagnetic
cases near the theoretical critical temperature (dashed red). However, the order parameters derived from magnetization and the GE encoder are
smoother and give better approximations to Onsager’s solution (dashed blue).

magnitude more robustness than the baseline, particularly in
the antiferromagnetic case.

C. Estimating the critical temperature

We now turn to our second question: Is an SSB-based
approach to identifying phase transitions from data more ac-
curate than a purely data-driven approach? In particular, does
the GE encoder give a more accurate estimate of Tc than the
baseline encoder?

We begin by estimating Tc independently for each lattice
size based on the fourth Binder cumulant [50]:

U4 = 1 − 〈O4〉
3〈O2〉2

,

where O is the order observable. We obtain Binder cumulant
vs temperature curves for each of the three order observables
(Fig. 6). (Once again, for brevity, we present the curves only
for the largest lattice size L = 128 and number of training-
validation samples per temperature N = 256.) We emphasize
that we are simulating a scenario in which we have access to

only a data set of lattice configurations and the symmetries
of the system and are not aware that the system is in fact the
Ising model. Our choice to look at the Binder cumulant should
therefore be interpreted only as a “guess,” and its only justifi-
cation is the a posteriori observation that the Binder cumulant
curves all display an abrupt change near the theoretical critical
temperature.

We perform least-squares regression to fit a step function to
each jackknife-sample Binder cumulant vs temperature data
set. We then interpret the location of the jump discontinuity
of the step function as a jackknife-sample estimate of Tc.
However, if our data set includes temperatures T1, T2, . . . , T100

and if we find the jump discontinuity to lie in the open interval
Ti, Ti+1) for some i, then moving the jump discontinuity to
any other temperature in (Ti, Ti+1) would result in a fit that is
just as good as the original step function. This approach there-
fore allows us only to obtain interval estimates of the critical
temperature. To obtain point estimates, we set up and solve a
convex optimization problem in which we seek to minimize
the jackknife standard deviation in the estimate subject to the
constraints defined by the jackknife-sample interval estimates
(see Appendix D for details). In this way, for each lattice size
L and number of training-validation samples per temperature
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FIG. 6. Fourth-order Binder cumulants U4 of the order observables at each temperature T on a lattice of size L = 128 for one example
training data fold and initialization seed and using N = 256 training-validation samples per temperature. The top row shows results for the
ferromagnetic model with the data derived from (a) the magnetization, (b) the baseline AE, and (c) the GE AE. The bottom row (d)–(f) shows
corresponding results obtained for the antiferromagnetic model. The standard deviation curves (dashed) were obtained using the jackknife
resampling method (these may be difficult to see since the standard deviations are small). In all cases, the Binder cumulant drops abruptly near
the theoretical critical temperature (dashed red). Step functions (blue) are fit to the Binder cumulants using least squares, and the locations of
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N , we obtain a critical temperature estimate as the jackknife2

mean averaged over all 24 trials (eight training data folds
and three initialization seeds), along with a standard deviation
(Figs. 7 and 8).

2We remark on an important detail in the jackknife calculation: It
is common to reduce the bias in the jackknife estimate by combining
the jackknife mean with the estimate obtained without resampling.
The argument for this, however, relies on a Taylor expansion of
the underlying estimator [51], and it turns out that our critical tem-
perature estimator is not everywhere-differentiable; under a small
perturbation of the Binder cumulant estimates, our critical temper-
ature estimate either remains constant or changes abruptly if the
jackknife-sample interval estimates change. Indeed, in our original
Tc estimates, we found that the bias estimate was either zero or so
extreme that it often pushed the critical temperature estimate outside
the range of temperatures included in our data set. In contrast, when
we did not reduce the bias, we obtained more stable results. Overall,
since the bias estimate is known to scale as 1

n while the jackknife
standard deviation scales as 1√

n —so that the bias is typically much
smaller than the standard deviation for a sufficiently large sample size
n and can often be ignored [51]—we were confident that our extreme
bias estimates were spurious. Therefore, we have not adjusted for
them in the results presented (Figs. 7 and 8).

In both the ferromagnetic and antiferromagnetic cases, the
baseline encoder consistently achieves lower error in its crit-
ical temperature estimates than do the GE encoders (Figs. 7
and 8). Moreover, in contrast to the GE encoders, the base-
line encoder makes better use of more training data, as its
error decreases with increasing training data set size. The
GE encoders, on the other hand, achieve errors closer to that
of magnetization, and their estimates are also more stable in
terms of lower standard deviations. Multiscale training (i.e.,
all four lattice sizes in the training data set) results in an
additional reduction in error.

We speculate that the baseline encoder achieves the lowest
error in Tc estimation because it is a more flexible network
in comparison to the GE encoder. As such, it may be able
to express certain nonlinearities that the GE encoder cannot.
From the proximity of the GE encoder to magnetization, we
infer that its four hidden neurons have aligned such that the
GE encoder is approximately a linear function of its input.
In contrast, if the baseline encoder has learned a nonlinearity
such that it squashes (resp. inflates) the value assigned to
lattice configurations with low (resp. high) absolute magne-
tization, then the mean absolute value of the baseline encoder
vs temperature curve will be more “bowed” compared to On-
sager’s solution. Such bowing is indeed what we see (Fig. 5).
This observation is consistent with previous works reporting
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FIG. 7. Ferromagnetic critical temperature estimates (expressed
as percent errors relative to the exact theoretical critical temperature)
for lattice sizes (a) L = 16, (b) 32, (c) 64, and (d) 128. The error bars
represent standard deviations that combine the standard deviation of
means across 24 trials (eight training data folds and three initializa-
tion seeds) and the jackknife standard deviations for each fold and
seed, with most of the variance coming from the former. The standard
deviation associated with magnetization is 0. The baseline encoder
consistently achieves the lowest error and improves with more train-
ing data. The GE encoders, on the other hand, are more similar to
magnetization, with multiscale training reducing error slightly, and
are also more stable in terms of their standard deviations.

that deeper and more flexible autoencoders incorrectly clas-
sify the Ising phase transition as first-order [42], and this
could also explain why the baseline encoder estimates the
critical temperature with greater accuracy, even though it does
worse when extrapolated to the thermodynamic limit (see
Sec. IV D).

D. Extrapolating the critical temperature estimates

Here we perform finite-size scaling analysis on the critical
temperature estimates presented in the last section in order
to obtain estimates at infinite lattice size, i.e., in the thermo-
dynamic limit. For each training data fold and initialization
seed, order observable, training-validation sample size, and
each of the ferromagnetic and antiferromagnetic cases, we
perform least-squares linear regression on the critical temper-
ature estimates against inverse lattice size (r2 value ≈1 for all
fits). We plot an example of these fits for N = 256 training-
validation samples per temperature in Fig. 9. The y intercepts
of the linear fits are then taken to be the critical temperature
estimates at L−1 = 0, i.e., the thermodynamic limit. We find
that while the baseline encoder achieves the lowest error in
its estimation of the critical temperature for individual finite
lattice sizes (Figs. 7 and 8), the GE encoders are significantly
more accurate once their estimates are extrapolated to infinite
lattice size (Fig. 10).
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FIG. 8. Antiferromagnetic critical temperature estimates (ex-
pressed as percent errors relative to the exact theoretical critical
temperature) for lattice sizes (a) L = 16, (b) 32, (c) 64, and (d) 128.
The error bars represent standard deviations that combine the stan-
dard deviation of means across 24 trials (eight training data folds
and three initialization seeds) and the jackknife standard deviations
for each fold and seed, with most of the variance coming from the
former. The standard deviation associated to magnetization is 0. The
baseline encoder consistently achieves the lowest error and improves
with more training data. The GE encoders, on the other hand, are
more similar to magnetization, with multiscale training reducing
error slightly, and are also more stable in terms of their standard
deviations.

E. Measuring the time efficiency

We compare the time efficiencies of the GE-autoencoder
and baseline-autoencoder methods. Since we were able to
exploit never-broken symmetries to reduce the network size
of the GE autoencoder, we expect it to be significantly more
efficient. Figure 11 reports the total computation times for
the GE-autoencoder and baseline-autoencoder methods for
each lattice size. These values include the time to generate all
the data (i.e., run the MC simulation), all preprocessing time
such as checkerboard averaging the lattice configurations,
and the time needed to train and validate the autoencoder
and to evaluate the trained encoder on the entire data set
of lattice configurations. Importantly, the training-validation-
evaluation time is a sum over all 24 trials (eight training data
folds and three initialization seeds) to reflect the computa-
tion needed to obtain error bars on the critical temperature
estimates. Whether we are looking at the ferromagnetic or
antiferromagnetic case has no impact on execution time, as
the autoencoder architectures and learning hyperparameter
settings are identical in both cases. Moreover, as a conse-
quence of allowing the minibatch size to proportionally vary
with the training-validation sample size N , we found that the
execution time depended very little on N . Thus, we report
each execution time as an average over all sample sizes N
and over the ferromagnetic vs antiferromagnetic cases. We
find that the GE-autoencoder method is significantly faster
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FIG. 9. Linear dependence of critical temperature estimates (ex-
pressed as percent errors relative to the exact theoretical critical tem-
perature) on inverse lattice size using N = 256 training-validation
samples per temperature and averaged over 24 trials (eight training
data folds and three initialization seeds). Results for the ferromag-
netic model are shown in (a), and results for the antiferromagnetic
model are shown in (b). Although the baseline encoder achieves
lower error for each lattice size individually, the linear extrapolation
of its estimates to infinite lattice size (y intercept) is a worse estimate
compared to the GE encoders.

than the baseline autoencoder. Moreover, multiscale training
gives an additional boost in efficiency in the computation
time needed to extrapolate estimates to infinite lattice size, as
the multiscale GE autoencoder needs to be trained only once
across the four finite lattice sizes. We therefore conclude that
our GE-autoencoder method is indeed more efficient than the
baseline-autoencoder method.

F. Detecting an external magnetic field

Finally, we investigate if the baseline-encoder and GE-
encoder order observables can be used to detect the presence
of a weak external magnetic field h in the ferromagnetic Ising
model by adding a term to Eq. (1):

H(x) → H(x) − h
∑

i

xi. (15)

We assume the magnetic field is uniform and note that it
breaks the internal symmetry of the Ising model. We consider
two temperatures, 2.0 and 2.5, slightly below and above the
critical temperature, and we consider three field strengths
0.001J , 0.01J , and 0.1J (where J = 1 is the coupling constant
in the Ising Hamiltonian). For each case, as well as the case
of no external field at all, we use the Wolff algorithm with a
“ghost site” [52] to simulate the Ising model with lattice size
L = 128 in an external magnetic field; we generate N = 2000
sample lattice configurations for each temperature and field
strength. If x0

1, . . . , x0
N (resp. x1, . . . , xN ) are the sample lattice
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Samples per temp. N Samples per temp. N

− 4

− 3

− 2

− 1

0

1

2

E
rr

o
r

(%
)

8 16 32 64 128 256

Magnetization

Baseline-AE

GE-AE

GE-AE (multiscale)

 (a) FM  (b) AFM

FIG. 10. Critical temperature estimates (expressed as percent er-
rors relative to the exact theoretical critical temperature) extrapolated
to infinite lattice size. Results for the ferromagnetic (FM) model
are shown in panel (a), and results for the antiferromagnetic (AFM)
model are shown in panel (b). The error bars represent standard
deviations that combine the standard deviation of means across 24
trials (eight training data folds and three initialization seeds) and the
jackknife standard deviations for each fold and seed, with most of the
variance coming from the former. The standard deviation associated
to magnetization is 0. Although the baseline encoder achieves lower
error on finite lattices (Figs. 7 and 8), the GE encoder estimates
extrapolate to have lower error in the thermodynamic limit.

configurations in the absence (resp. presence) of an external
magnetic field, then for each encoder O, we compute the
statistic

D =
∣∣∣∣∣ 1

N

N∑
n=1

O(xn) − 1

N

N∑
n=1

O
(
x0

n

)∣∣∣∣∣. (16)

Using the baseline encoder and GE encoder already fitted to
data as described in previous sections, we obtain 24 mea-
surements of D for each encoder (eight training data folds
and three initialization seeds). We then define the “confidence
score”

ξ = 〈D〉√
〈D2〉 − 〈D〉2

. (17)

Intuitively, a value sufficiently far from zero indicates that
the order parameter has shifted and hence there is an exter-
nal symmetry-breaking field. We normalize by the standard
deviation of D so that ξ is independent of the arbitrary scale
learned by each encoder; it also boosts the score when the
measurement of D is robust across the 24 trials. Figure 12
shows the ξ scores for the baseline encoder and GE encoder
at each temperature and external field strength. In all cases,
the GE encoder attains a significantly higher score than does
the baseline encoder, meaning that it is more sensitive to
and detects with greater confidence the presence of a weak
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FIG. 11. Computation times to generate data (black) and train
(not black) the autoencoders for each lattice size L. Results are
shown for the (a) ferromagnetic and (b) antiferromagnetic cases.
The time to measure magnetization is reported as equivalent to data
generation time as these measurements were taken on the fly during
the MC simulation. Each training time is a sum over all eight training
folds and RNG seeds. The training times were then averaged over
all training-validation sample sizes N and over both the ferromag-
netic and antiferromagnetic cases, as these factors did not contribute
to significant variation in execution time. The GE autoencoder is
significantly more time-efficient (lower time) than the baseline au-
toencoder. The times reported for infinite lattice size are just sums
of the times for the finite lattice sizes, although the multiscale GE
autoencoder exhibits greater efficiency as it only requires a single
network to be trained across all finite lattice sizes.

external magnetic field. At temperature 2.5, the baseline en-
coder does become more confident (increasing score) in its
detection as the external field becomes stronger, which is to
be expected; however, the GE encoder remains confident even
in its detection of the weakest field.

V. ON VECTOR ORDER OBSERVABLES

A. A 2D order observable

We have thus far assumed that the order observable is
scalar valued or equivalently that a sufficient choice for the
latent dimension of the autoencoder networks is 1. In this
section, we justify this assumption by instead assuming a
2D vector order observable; if the real 2D orthogonal rep-
resentation ψ : G �→ O(2,R) by which the order observable
transforms—as learned by the GE autoencoder—is equivalent
to a 1D representation, then we may conclude that a 1D order
observable is sufficient to describe the phase transition. The
exposition in this section will also help to illustrate how our
GE-autoencoder method can be extended to a somewhat more
complex scenario.

We construct the 2D GE autoencoder in direct analogy to
the 1D case. First, we calculate the subgroup of never-broken
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FIG. 12. “Confidence scores” ξ [see Eq. (17)] of the baseline
encoder (white) and GE encoder (dark gray) at detecting the pres-
ence of an external magnetic field at temperatures (a) T = 2 < Tc

and (b) T = 2.5 > Tc. Results are shown for three different field
strengths h. The error bars represent standard deviations estimated
using 10 000 bootstrap draws from the 24 trials used to calculate ξ .
The GE encoder consistently detects the external field with greater
confidence than does the baseline encoder.

symmetries and find it to be H = 〈α2, β2〉, which is the sub-
group generated by the even horizontal translations and even
vertical translations (see Proposition 4 in Appendix E 1). This
subgroup has L2/4 symmetries for even lattice size L, and
the corresponding quotient group G/H of possibly broken
symmetries has 16L2/(L2/4) = 64 elements. Compare this to
the 1D case, in which there are L2 never-broken symmetries
and only 16 possibly broken symmetries.

Next, we constrain the GE autoencoder so that its encoder
is invariant to the subgroup H of never-broken symmetries.
Instead of constraining each weight matrix wk (associated to
the kth hidden neuron) to have a checkerboard pattern as in the
1D case, we constrain it to be a tiling of a 2 × 2 submatrix;
the resulting weight matrix is then invariant to the action of
the subgroup H , and hence so is the encoder. Applying this
constrained encoder to an input L × L lattice configuration
x is then equivalent to the following procedure: First, we
construct a reduced 4D representation x̌ = (x̌1, x̌2, x̌3, x̌4) of
x as follows:

x̌1 = 4

L2

∑
ixeven,iyeven

xi,

x̌2 = 4

L2

∑
ixeven,iyodd

xi,

x̌3 = 4

L2

∑
ixodd,iyeven

xi,

x̌4 = 4

L2

∑
ixodd,iyodd

xi.
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TABLE II. Estimated 2D latent representation ψg by which the
learned 2D order observable (i.e., GE encoder) transforms, for g ∈
{ρ, τ, σ }. Estimates were averaged over all 24 trials (eight training
data folds and three initialization seeds) as well as over all lat-
tice sizes L and training-validation sample sizes N as they showed
little variation; the reported uncertainties are standard deviations.
In both the ferromagnetic and antiferromagnetic cases, the learned
representations are equivalent to the 1D representations presented in
Sec. IV B.

Ferromagnetic Antiferromagnetic

ψρ

[
1.0000(2) 0.000(0)
0.0000(9) 1.000(0)

] [−0.96(5) 0.000(0)
0.00(0) 0.994(9)

]

ψτ

[
1.0000(2) 0.000(0)
0.0000(8) 1.000(0)

] [−0.96(5) 0.000(0)
0.00(0) 0.994(9)

]

ψσ

[−1.0000(8) 0.000(0)
0.0000(0) 1.000(2)

] [−0.96(5) 0.000(0)
0.00(0) 0.994(9)

]

The representation x̌ is just the 2 × 2 block average of x.
Then, we feed x̌ into a reduced unconstrained encoder Ǒ :
[−1, 1]4 �→ R2. Finally, we use the 4D output of a reduced
decoder Ď to reconstruct an L × L lattice configuration by
tiling a 2 × 2 block in the horizontal and vertical directions.

Let ψ : G �→ O(2,R) be the 2D latent representation of
G by which the 2D order observable transforms. We already
know ψg = I∀g ∈ H , where I is the 2 × 2 identity matrix.
Our particular choice of the GE-autoencoder architecture as
described above places an additional constraint on ψ :

ψαǑ = ψρ2τ Ǒ

(see Proposition 5 in Appendix E 1). Thus, we need only
learn three of the four generators of ψ while training the
GE autoencoder: ψρ , ψτ , and ψσ . This result is analogous to
Proposition 2 for the 1D case.

We train the 2D GE autoencoder with the loss function
[Eq. (20)] given below in Sec. V B; it is a generalization of
the loss function [Eq. (12)] and holds for any order observable
dimension d . We train the 2D GE autoencoder with the same
data sets and optimizer settings as in the 1D case. After train-
ing, we obtain the learned latent representation ψ of G using
the estimator [Eq. (19)] given below in Sec. V B. Observe
that the GE autoencoder is invariant under the transformation
Ǒ(·) → AǑ(·) and Ď(·, ·) → Ď(A−1·, ·) for any invertible
2 × 2 matrix A. Thus, without loss of generality, we transform
the learned representation ψ into the eigenbasis of ψσ , so
that ψσ is diagonal with sorted diagonal elements. In both
the ferromagnetic and antiferromagnetic cases, the elements
ψρ , ψτ , and ψσ —and hence the entire representation ψ—are
approximately diagonal (Table II). More precisely, we see
that the learned representation ψ approximately admits the
decomposition ψ = ψ1 ⊕ ψ2 where ψ1 is the representation
learned in the 1D case and ψ2 is the trivial representation.
Thus, the learned 2D representation is equivalent to the 1D
representation in Sec. IV B, and hence a 1D order observable
is sufficient.

TABLE III. Subgroup Hd of never-broken symmetries of the
Ising symmetry group G assuming various dimensions d of the order
observable. Here β = ραρ−1 is the horizontal translation generator.
The subgroups were computed using our GAP implementation of
Eq. (18) for lattice sizes L ∈ {4, 8, 16}.

d |Hd | |G/Hd | Hd

1 L2 16 〈α2, ρ2, (αρ )2〉
2 L2/4 64 〈α2, β2〉
3 L2/4 64 〈α2, β2〉
4 1 16L2 {1}

B. A general procedure

We end this section with some remarks on a general proce-
dure for calculating the subgroup of never-broken symmetries
and applying the GE-autoencoder method. Consider an ar-
bitrary statistical-mechanical system in thermal equilibrium
with finite symmetry group G, and suppose we assume an
order observable of the system to have dimension d (we
can regard d as a hyperparameter that we select as part of
the GE-autoencoder architecture). Then by Proposition 6 (see
Appendix E 2), the subgroup Hd of never-broken symmetries
can be calculated as

Hd =
⋂

χ∈Ĝ|degR(χ )�d

ker(χ ), (18)

where Ĝ is the set of all (complex-)irreducible characters of G;
ker(χ ) is the kernel of the character χ defined as the preimage
set χ−1[deg(χ )] of the degree deg(χ ) = χ (1); and we define
degR(χ ) to be the degree of the smallest real character built
out of χ :

degR(χ ) = deg(χ )

{
1, if IFS(χ ) = 1
2, otherwise,

where IFS(χ ) is the Frobenius-Schur indicator of χ . We can
therefore quickly calculate the subgroup of never-broken sym-
metries once we have the character table of G.

An immediate corollary of Eq. (18) (and Proposition 6)
is that we have the normal series H1 � H2 � · · · � {1}; i.e.,
the subgroup of never-broken symmetries shrinks with in-
creasing dimension of the order observable and eventually
becomes trivial, so that beyond some finite value of d , the
GE autoencoder is no longer able to exploit any never-broken
symmetries and is as large as the baseline autoencoder.

We implemented Eq. (18) in GAP3 and used our implemen-
tation to calculate the subgroup of never-broken symmetries
for the Ising symmetry group G for various dimensions d of
the order observable (Table III). We note that a limitation of
this computational approach is that it requires a numerical
value for the lattice size L, and the computation time increases
with L. We ran our code for lattice sizes L ∈ {4, 8, 16} and
observed that the presentations of the returned subgroups in
terms of generators and relations were independent of lattice

3GAP is a computer algebra system for computational discrete
algebra with particular emphasis on computational group theory [53].
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size, allowing us to conclude empirically that these presenta-
tions hold for arbitrarily large even lattice size L.

The subgroups of never-broken symmetries of the Ising
symmetry group for d ∈ {1, 2} agree with the theoretical cal-
culations in Props. 1,5 (Table III). For d = 3, we get the
same subgroup as with d = 2. For d = 4, the subgroup of
never-broken symmetries becomes trivial, so that the GE au-
toencoder is just as large as the baseline autoencoder; this
remains the case for all d � 4 since the subgroups form a
descending series with increasing d .

Once we have determined the subgroup Hd of never-broken
symmetries, we constrain the GE autoencoder so that the en-
coder is Hd -invariant and the decoder returns an Hd -invariant
lattice configuration. If the encoder and decoder each has
one hidden layer of neurons, then the starting point for de-
termining the appropriate parameter constraints is a recent
classification of all invariant shallow neural networks [54].
Finally, once the GE autoencoder architecture is selected, we
train the network by minimizing a loss function with sym-
metry regularization that generalizes Eq. (12) for 1D order
observables to order observables of any dimension d . The loss
function is given below.

Suppose we have a data set of N lattice configurations. For
every g ∈ G, let Zg ∈ RN×d whose nth row is Ǒ(g−1x̌n); i.e.,
Zg is the matrix of outputs of the GE encoder evaluated on the
data set, where all lattice configurations were first transformed
by g−1 (we use g−1 instead of g because the GE-encoder
outputs are stacked as row vectors in Zg). For the identity
element g = 1, let Z = Z1 for further brevity. Let P be the
orthogonal projection operators onto the null space of Z:

P = I − Z+Z,

where Z+ is the Moore-Penrose pseudoinverse of Z and I
the identity matrix. Finally, let A be a d × d learnable matrix
parameter, and define the following estimator of ψg:

ψ̂g = Z+Zg + PA. (19)

Then the general loss function for a GE autoencoder with
latent dimension d has the form

Ľ(Ǒ, Ď, A) = 1

N

N∑
n=1

LBCE(Ď(Ǒ(x̌n), Tn), x̌n)

+ λ
∑
g∈

(Rg + Sg), (20)

where  ⊂ G is the minimal set of symmetry generators nec-
essary to check (e.g., for Ising symmetries,  = {τ, σ } for
d = 1 and  = {ρτσ } for d = 2) and

Rg = ‖I − ψ̂
g ψ̂g‖2

F , (21)

Sg = ‖Zg − Zψ̂g‖2
F

‖Zg‖2
F

, (22)

and where ‖ · ‖2
F is the squared Frobenius matrix norm (sum

of squared matrix elements). These regularization terms are
obtained by relaxing the hard equivariance constraint Zg =
Zψg to the minimization of ‖Zg − Zψg‖2

F . Specifically, ψ̂g is
the minimizer (i.e., linear least-squares estimator); Rg ensures
ψ̂g is (approximately) an orthogonal representation; and Sg

ensures ‖Zg − Zψ̂g‖2
F is minimized. Note the denominator in

Eq. (22) is included so the optimizer does not simply rescale
the GE encoder.

The above loss function is an approximate generalization
of the loss function for the case of a 1D order observable
[Eq. (12)]. Specifically, if d = 1, then Rg and Sg reduce to
expressions equivalent to the first and second regularization
terms in Eq. (12), with Sg matching the second regularization
term exactly (see Appendix E 3 for details). Equation (12) in-
cludes a third regularization term whose original purpose was
to ensure a nontrivial representation ψ is learned; however,
based on a small sample of numerical tests, we believe that
this third regularization term is not strictly necessary, and we
have thus omitted its generalization from Eq. (20).

VI. DISCUSSION

We introduced the group-equivariant autoencoder (GE au-
toencoder), a deep neural network (DNN) architecture that can
be used to locate phase transitions by detecting the associated
spontaneous symmetry breaking (SSB). We demonstrated its
efficacy for the 2D classical ferromagnetic and antiferro-
magnetic Ising models, finding that the GE autoencoder (1)
accurately determines which symmetries are broken at each
temperature and (2) estimates the critical temperature with
greater accuracy and time efficiency than an SSB-agnostic
autoencoder.

We also found the GE autoencoder to be more robust
than the baseline autoencoder in an interesting sense. Recall
that we deliberately selected nonlinear architectures for the
autoencoders, even though (staggered) magnetization—the
“true” order observable—is a linear function of the lattice
configuration. This models the likely scenario in real appli-
cations where the DNN being used is more expressive than
the unknown order observable we are seeking. Ideally, if the
DNN is robust, then it should be able to reduce its expressivity
to fit the target order observable. As discussed in Sec. IV C,
we suspect that the baseline autoencoder performs better than
the GE autoencoder on finite lattices but worse in the thermo-
dynamic limit because it learned an inappropriate nonlinear
order observable; that the GE autoencoder could accurately
learn magnetization without overfitting attests to its superior
robustness. This robustness is also reflected in the GE au-
toencoder’s greater sensitivity to the presence of an external
symmetry-breaking magnetic field (Sec. IV F).

There are several implementation details in our method that
are worth noting. First, in our proof-of-principle example, we
found that the Tc estimation by fitting a step function to the
fourth Binder cumulant vs temperature curve works well, and
it still allows for finite-size scaling analysis (see Sec. IV D).
In contrast, the intersection of second Binder cumulant curves
across lattice sizes is not guaranteed for autoencoders, and the
intersection points of fourth Binder cumulant curves across
lattice sizes are not guaranteed to be unique. Second, proper
initialization and learning rate settings (see Appendix B) were
critical for a fair comparison of the baseline autoencoder and
GE autoencoder. Our approach to determining these settings
could be useful for deep learning experiments in general,
where one DNN is a constrained copy of another. Finally, in
contrast to ML methods for phase detection that are entirely
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data-driven, our method includes group-theoretic considera-
tions that allow us to exploit some of the structure available
in the problem, namely, symmetries; given the benefits we
have identified here, we think this practice should always be
followed whenever possible.

Our work has several physical implications as well. For
example, recent progress has been made in transfer learn-
ing from small to large lattice sizes implementing ideas of
block decimation from the renormalization group as a way to
more efficiently extrapolate to the thermodynamic limit [33].
The GE autoencoder, on the other hand, is scale-independent
and could therefore be well suited for this transfer-learning
task. Indeed, we found that the multiscale GE autoencoder is
more time-efficient and slightly more accurate than the single-
scale GE autoencoder. In future work, we aim to improve
the multiscale GE autoencoder until it saves us from having
to simulate the largest lattice size (e.g., L = 128) entirely.
For example, researchers have used different generative ML
methods to learn the distribution of lattice configurations of a
system, allowing them to simulate the system more efficiently
than with traditional MC methods [55–60]. Combining these
methods with ideas introduced in this paper could allow us to
generate large sample lattices based only on a data set of small
to moderate lattices, possibly offering a significant speedup
over MC methods.

The superior accuracy of the GE autoencoder could also
translate into greater robustness against the sign problem.
There is empirical evidence suggesting that DNNs could over-
come the sign problem in the single-band Hubbard model
to some extent [29]. Subsequent work, however, showed
that the sign problem returns at more extreme tempera-
tures and doping [30], although this work also demonstrates
that transfer-learning from sign-problem-free regions to sign-
problem-prone regions in the phase diagram could work for
small amounts of doping. If the GE autoencoder is indeed
more robust than previous DNN methods, then perhaps it
could allow us to access even more extreme temperatures and
doping levels.

Finally, knowledge of the SSB associated with a phase
transition has value beyond a means to phase detection alone.
For example, identifying the relevant symmetries could help
elucidate the mechanism driving subtle phase transitions and
thus offer a means to control them in practice to realize real-
world applications.

Last, we end with remarks on some potential improve-
ments to our approach to be addressed in the future. First, we
would like to formalize, further develop, and better understand
the general procedure presented in Sec. V B. For example,
the computational approach described in Sec. V A for find-
ing the subgroup of never-broken symmetries of an arbitrary
finite symmetry group requires that we specify a value for the
system size; understanding how the never-broken symmetries
depend on system size would thus require us to test various
system sizes and then search for a pattern, and it is unclear
how feasible this would be for general systems. On the other
hand, if we consider only a class of systems for which the
dependence of the symmetry group on the system size takes a
particular form, then it may be feasible to derive a specialized
algorithm for calculating the never-broken symmetries for
arbitrary system sizes.

Second, we would like to consider example systems with
more complicated symmetry groups. This could include those
with continuous internal symmetries and gauge symmetries;
however, a first step would be to consider finite non-Abelian
internal symmetry groups that must act on vector-valued lat-
tice configurations.

Third and finally, we would like to better understand how
to choose the representation by which the never-broken sym-
metries are imposed on the GE autoencoder. Relating to this
is our finding that the baseline autoencoder estimates the
critical temperature with greater accuracy than the GE au-
toencoder for individual lattice sizes (i.e., without finite-size
scaling analysis). This aspect was discussed in Sec. IV C.
As speculated there, this observation could be due to the
greater flexibility of the baseline autoencoder. However, we
suspect that this greater flexibility is also why the baseline
autoencoder exhibits a slightly sharper transition in its order
parameter vs temperature curve, while the GE autoencoder
learns an order parameter very close to that of magnetization.
We thus suspect that the baseline autoencoder is more prone
to incorrectly classifying the Ising phase transition as first-
order instead of second-order (as was observed in Ref. [42])
when compared to the GE autoencoder. If greater flexibility
is desired, we believe the better way is to use a more flexible
GE autoencoder; this could become important for cases where
the nature of the phase transition (i.e. continuous or weakly
first-order) is under dispute. The network complexity required
for the GE autoencoder to match the critical-temperature-
estimation performance of the baseline autoencoder is likely
related to our choice of how we impose the never-broken
symmetries. We intend to investigate this relationship in future
work.

Much work remains to be done to establish the GE au-
toencoder as a mature and trusted machine learning model;
however, the proof-of-principle application presented here
provides optimism for its utility in addressing open problems
related to the search for spontaneous symmetry breaking in
the pseudogap phase of the high-temperature cuprates or at
topological phase transitions.
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APPENDIX A: PROPOSITIONS

1. Subgroup of never-broken Ising symmetries

Recall from Sec. II A that a symmetry g ∈ G is never
broken if ψg = 1 [i.e., if g is in the kernel of ψ , denoted
ker(ψ )]. In the absence of any knowledge about the true
representation ψ associated with the order parameter, we can
deduce a subgroup of never-broken symmetries by finding all
symmetries g ∈ G such that ψg = 1 [i.e., g ∈ ker(ψ )] for all
representations ψ : G �→ {−1, 1}. The following proposition
establishes such a subgroup for the Ising symmetry group.
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Proposition 1. Let � be the set of all real scalar representa-
tions ψ : G �→ {−1, 1} of the Ising symmetry group G. Then⋂

ψ∈� ker(ψ ) = 〈α2, ρ2, (αρ)2〉.
Proof. Let g ∈ G such that g = h2 for some h ∈ G. Then

for every ψ ∈ �, we have

ψg = ψh2 = ψ2
h = (±1)2 = 1,

and hence g ∈⋂ψ∈� ker(ψ ); in particular, we have

〈α2, ρ2, (αρ)2〉 ⊆
⋂
ψ∈�

ker(ψ ).

All that remains to show is the reverse inclusion. Let g ∈⋂
ψ∈� ker(ψ ), so that ψg = 1 for every ψ ∈ �. By the defin-

ing relations of G, g admits the expression g = hτm3σ m4 ,
where h is a product of m1 copies of α and m2 copies of ρ

in some order. Now since ψ takes values in an Abelian group,
then for all g1, g2 ∈ G,

ψg1g2 = ψg1ψg2 = ψg2ψg1 = ψg2g1 .

Using this fact, we have

ψg = ψhψτm3 ψσ m4

= ψαm1 ρm2 ψτm3 ψσ m4

= ψm1
α ψm2

ρ ψm3
τ ψm4

σ = 1. (A1)

This holds for every ψ ∈ �. Now each ψ ∈ � is completely
determined by its values on the generators α, ρ, τ , and σ .
Moreover, it is easy to verify that if we apply ψ to every defin-
ing relation of G, then the resulting equations are satisfied for
all choices of ψα , ψρ , ψτ , and ψσ . Thus, � is precisely the
set of homomorphisms ψ : G �→ {−1, 1} determined by every
combination of values in {−1, 1} on the four generators of G.
Let ψi ∈ � such that ψi is −1 on the ith generator and 1 on
the other three generators. Evaluating Eq. (A1) at ψ = ψi, we
get (−1)mi = 1, implying that each mi is even. The element g
thus takes the form g = hτ 2n3σ 2n4 = h, where h is a product
of 2n1 copies of α and 2n2 copies of ρ in some order.

On the other hand, let β = ραρ−1, and note that α and
β commute. Then G = (〈α, β〉 � 〈ρ, τ 〉) × 〈σ 〉, implying that
each g ∈ G admits the unique representation

g = αq1βq2ρq3τ q4σ q5 .

If ψg = 1, then we have already deduced that g must be a
product of α’s and ρ’s, and hence g = αq1βq2ρq3 . Noting that
βq2 = ραq2ρ−1, this expression of g has q1 + q2 copies of
α and 1 − 1 + q3 = q3 copies of ρ. Equating these to the
previously obtained exponents in the expression of g, we have
q1 + q2 = 2n1 and q3 = 2n2, implying that q3 is even and that
q1 and q2 have the same parity. Now using the fact that α and
β commute, g admits the form

g = αq1−q2αq2βq2ρq3

= αq1−q2 (αβ )q2ρq3

= (α2)n1−q2 (αβ )q2 (ρ2)n2 ,

implying g ∈ 〈α2, ρ2, αβ〉. Finally, note that

αβ = αραρ−1

= αραρ3

= αραρρ2

= (αρ)2ρ2.

Since ρ2 ∈ 〈α2, ρ2, αβ〉, then 〈α2, ρ2, (αρ)2〉, and therefore
g ∈ 〈α2, ρ2, (αρ)2〉, establishing⋂

ψ∈�

ker(ψ ) ⊆ 〈α2, ρ2, (αρ)2〉. �

Intuitively, even for a general observable dimension d , the
observable O : X �→ Rd reduces dimensionality from L2 to d
where L may be arbitrarily large in the thermodynamic limit.
If d is less than the minimum dimensionality required for ψ

to be a faithful representation, then some subgroup of G will
necessarily be modded out by ψ .

It can be shown that SCB(L) � G, and hence we have the
quotient group

G/H = 〈αH, ρH, τH, σH〉
= {αm1ρm2τm3σ m4 H : mi ∈ {0, 1}},

H = SCB(L). (A2)

This quotient group represents the reduction in the number
of symmetries we will need to check for SSB; indeed, |G| =
16L2 and |H | = L2, so that |G/H | = 16.

2. Constraint on the representations of spatial symmetries

The form of the reduced encoder [Eq. (10)] places addi-
tional constraints on the spatial symmetries in the quotient
group [Eq. (A2)], as specified in the following proposition.

Proposition 2. Suppose Ǒ : [−1, 1]2 �→ R is nonzero for
at least one lattice configuration. For every ψ ∈ � such that
Ǒ(gx̌) = ψgǑ(x̌) for all Ising symmetries g ∈ G, we have
ψα = ψρ = ψτ .

Proof. Clearly α (downward translation), ρ (90◦ rotation),
and τ (reflection) map black squares to white squares and vice
versa on an L × L checkerboard where L is even. Thus, for all
g ∈ {α, ρ, τ },

g(x̌B, x̌W) = (x̌W, x̌B),

Ǒ(g(x̌B, x̌W)) = Ǒ((x̌W, x̌B)),

ψgǑ((x̌B, x̌W)) = Ǒ((x̌W, x̌B)),

and hence,

ψαǑ((x̌B, x̌W)) = ψρǑ((x̌B, x̌W)) = ψτ Ǒ((x̌B, x̌W)).

Evaluating this on a lattice configuration x for which Ǒ is
nonzero, we obtain ψα = ψρ = ψτ as desired. �

The key idea is that g(x̌B, x̌W) = (x̌W, x̌B) for all g ∈
{α, ρ, τ }. The upshot is that we now need only estimate ψσ

and one of ψα , ψρ , and ψτ from the data.

3. Unsupervised learning of symmetries

The following proposition states that under suitable condi-
tions, if an unsupervised model is fit to a data set containing
symmetries, then the fit model will be invariant to those sym-
metries at least when restricted to the data set.

Proposition 3. Let G be a finite group and X = {xn ∈
Rm}N

n=1 a G-invariant data set; i.e., gxn ∈ X for every g ∈ G
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and xn ∈ X . Let F be a convex set of functions f : X �→ Rm

such that gf g−1 ∈ F for every f ∈ F and g ∈ G. Let Lmetric :
Rm × X �→ R be a function such that

(1) Lmetric(gx, gx′) = Lmetric(x, x′) for all g ∈ G and
(x, x′) ∈ Rm × X , and

(2) Lmetric is strictly convex in its first argument.
Then every global minimizer f∗ ∈ F of the loss function

L : F �→ R given by

L( f ) = 1

N

N∑
n=1

Lmetric( f (xn), xn)

is G-equivariant on the data set X .
Proof. First we establish that the loss function L is both

strictly convex and G-invariant. For each n = 1, . . . , N , it
is easy to show that the map from F to R given by f →
Lmetric( f (xn), xn) is strictly convex. [Note that this relies on
the hypothesis that the domain of the functions in F is the
data set X , so that for f1, f2 ∈ F , f1 = f2 if and only if
f1(xn) = f2(xn) for all n = 1, . . . , N .] Moreover, since L is
a convex combination of such maps, then it is also strictly
convex. Now for every f ∈ F and g ∈ G, we have

L(gf g−1) = 1

N

N∑
n=1

Lmetric(gf (g−1xn), xn)

= 1

N

N∑
n=1

Lmetric(gf (g−1xn), g(g−1xn))

= 1

N

N∑
n=1

Lmetric(gf (xn), gxn) (g−1xn → xn)

= 1

N

N∑
n=1

Lmetric( f (xn), xn)

= L( f ),

where we used the fact that the data set X is G-invariant in
the reindexing step. Thus, L is G-invariant, where each g ∈ G
acts on L by conjugation of its argument.

Now let f∗ ∈ F be a global minimizer of L. By G invari-
ance, gf∗g−1 is also a global minimizer for every g ∈ G, and
by convexity, f∗+gf∗g−1

2 is a global minimizer for each g ∈ G as
well. On the other hand, convexity and G invariance together
imply that

L
(

f∗ + gf∗g−1

2

)
� L( f∗) + L(gf∗g−1)

2

= L( f∗) + L( f∗)

2

= L( f∗),

but since f∗ and f∗+gf∗g−1

2 are both global minimizers, then this
inequality is in fact an equality:

L
(

f∗ + gf∗g−1

2

)
= L( f∗) + L(gf∗g−1)

2
.

Finally, since L is strictly convex, then this necessitates f∗ =
gf∗g−1 or equivalently f (gxn) = gf (xn) for all g ∈ G and xn ∈
X , thereby proving the claim. �

Note that the functions in F are restricted to the data
set X ; the minimizer f∗ is therefore not guaranteed to be G
equivariant off the data set.

For our particular case, the function Lmetric is the binary
cross-entropy LBCE [Eq. (8)]. By its form in Eq. (8), LBCE

is clearly invariant under the spin-flip symmetry (x̂, x) →
(−x̂,−x), and it is manifestly invariant under all spatial sym-
metries as it is a sum over the lattice sites; thus, LBCE is G
invariant where G is the Ising symmetry group. The strict
convexity of LBCE is evident; since xi = ±1, then each sum-
mand in Eq. (8) is either − log( 1+x̂i

2 ) or − log( 1−x̂i
2 ), and in

either case, its second derivative with respect to x̂i is strictly
positive, so that each summand is strictly convex. The set F is
the set of functions (restricted to our data set) expressible as
autoencoders of fixed depth but arbitrary widths; we allow for
arbitrary widths to ensure that any convex combination of au-
toencoders is again expressible as a single autoencoder in F .
In practice, however, we make the assumption that the global
minimizer f∗ ∈ F can be accessed by the single autoencoder
architecture we proposed. There are additional caveats to
Proposition 3: First, our data set of lattice sets is probably
only approximately G-invariant; second, actually finding f∗
is nontrivial since the map from its network parameters to the
autoencoder f is in general nonconvex. Nevertheless, we take
Proposition 3 as strong motivation to make the assumption
that our autoencoder f = D ◦ O is G-invariant.

APPENDIX B: NETWORK INITIALIZATION
AND LEARNING RATES

Here we provide details on the network parameter initial-
ization and learning rate settings needed for a fair comparison
of the baseline autoencoder and GE autoencoder. The GE
autoencoder is a small network that is equivalent to the larger
baseline autoencoder with the parameters of its first encoding
layer and last decoding layer constrained to a checkerboard
pattern (ignoring the symmetry regularization terms in the
GE-autoencoder loss function). The idea is to initialize and
set the learning rates of the baseline autoencoder such that, if
the checkerboard constraint were imposed and maintained on
the baseline autoencoder, then it would be and would remain
functionally equivalent to the GE autoencoder at initialization
time and throughout training.

1. Initialization

We initialize the weight matrix and bias vector of each
layer of the GE autoencoder with IID values sampled under a
uniform distribution over [− 1√

hin
, 1√

hin
], where hin is the input

dimension of the layer. If (uk, vk ) are the initial weights of
the first encoding layer of the GE-autoencoder incident to
the kth hidden neuron, then we initialize the weights of the
first encoding layer of the baseline autoencoder according to
Eq. (9). We initialize the weight matrix and bias vector of
the last decoding layer of the baseline autoencoder by simply
tiling the initialized parameters of the last decoding layer of
the GE autoencoder according to a checkerboard pattern. All
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remaining parameters of the baseline autoencoder are struc-
turally equivalent to those of the GE autoencoder, and we
thus initialize them to be equal to the corresponding initialized
parameters in the GE autoencoder.

2. Learning rate

We set the learning rate of all parameters of the GE autoen-
coder to ηGE = 0.001. We proceed to deduce the appropriate
learning rate η for the weights in the first encoding layer
of the baseline autoencoder; we do this for the weights on
“black squares” [ix + iy even; see Eq. (9)]; the argument for
“white squares” is analogous. Assuming full-batch gradient
descent for simplicity and ignoring symmetry regularization,
the update rules for the weights in the first encoding layers of
the baseline autoencoder and GE autoencoder are

�wk,i = −η
∂L

∂wk,i
and�uk = −ηGE

∂L
∂uk

.

However, by Eq. (9), we have �wk,i = 2
L2 �uk and hence

η
∂L

∂wk,i
= 2

L2
ηGE

∂L
∂uk

.

Applying the chain rule to the right side, we have

η
∂L

∂wk,i
= 2

L2
ηGE

∑
jx+ jyeven

∂L
∂wk,j

∂wk,j

∂uk

= 2

L2
ηGE

⎛
⎝ 2

L2

∑
jx+ jyeven

∂L
∂wk,j

⎞
⎠.

The quantity in parentheses is the average gradient over black
squares. By averaging both sides over j with jx + jy even, we
can obtain such an average gradient on both sides; cancelling
then leaves us with the desired learning rate:

η = 2

L2
ηGE.

As an example, for lattice size L = 128, the learning rate of
the weights in the first encoding layer of the baseline au-
toencoder should be set to approximately 1.2 × 10−7, a value
unlikely to be found by hand. By the same argument as above,
we can show that the learning rate of the parameters in the
last decoding layer of the baseline autoencoder should be set
equal to ηGE. Finally, all remaining parameters of the baseline
autoencoder are structurally equivalent to those of the GE
autoencoder, and hence we set all of their learning rates equal
to ηGE as well.

APPENDIX C: FUNCTIONAL COMPARISON TO
MAGNETIZATION AND ONSAGER’S SOLUTION

Here we regard the order observables (magnetization, base-
line encoder, and GE encoder) as elements of a Hilbert space
and measure the distance from each of them to magnetization.
Given any Euclidean vector space Rn with inner product 〈·, ·〉,
we define a measure of error ν : Rn × Rn �→ [0, 1] as follows:

ν(v, w) = sin2 θ = 1 −
( 〈v, w〉

‖v‖‖w‖
)2

,

16 32 64 128
0

2

4

6

8

10

E
rr

o
r

ν
(%

)

16 32 64 128

8

16

32

64

128

256

(a) FM (b) AFM

Lattice size L Lattice size L

Samples per temperature N

FIG. 13. Measure of error between the baseline encoder and
magnetization applied to the (a) ferromagnetic (FM) and (b) antifer-
romagnetic (AFM) models. Error bars indicate the standard deviation
across 24 trials (eight training data folds and three initialization
seeds). The baseline encoder is distinct from magnetization (positive
error ν) and becomes increasingly distinct with increasing number of
training-validation samples in the ferromagnetic case.

where θ is the angle between vectors v and w. As ν takes
values in [0, 1], we will express it as a percentage. Note
that ν(v, w) is independent of the signs and norms of v
and w—a desirable property for our purpose. We evaluate
each order observable O on a test set of n = 204 800 lattice
configurations (2048 configurations sampled at each of 100
temperatures) to obtain a vector of measurements Ô ∈ Rn. We
then evaluate ν(Ô, ÔM ) for each order observable O, where
OM is magnetization. We trivially have ν(ÔM , ÔM ) = 0, but
we also obtain an error around 0.0%–0.1% or 0.001 for both
the single-scale and multiscale GE encoders across all lattice
sizes and training-validation sample sizes, indicating that the
GE encoders learn a function very similar to magnetization.
In contrast, the baseline-encoder results in a larger error and
is thus more distinct from magnetization (Fig. 13); in the
ferromagnetic case, this error even increases with training-
validation sample size, meaning that the baseline encoder
moves away from magnetization as it sees more data. This is
also consistent with the divergence between the baseline en-
coder and magnetization in terms of their critical temperature
estimates (Fig. 7).

We now compare the order parameter 〈|O|〉 derived from
each order observable (Fig. 5) to Onsager’s solution MONS

[Eq. (14)]. We evaluate the order parameters and Onsager’s
solution on the 100 temperatures in our data set to obtain
vectors in R100. We then evaluate ν(〈|O|〉, MONS) indepen-
dently for each jackknife-sample of the order parameter
〈|O|〉. We perform least-squares regression on the calculated
error ν against inverse lattice size, finding an approxi-
mately linear relationship with the baseline encoder having a
slightly weaker linear dependence (in terms of r2 value) than
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FIG. 14. Measure of error between the order parameters derived
from each order observable and Onsager’s solution using N = 256
training-validation samples per temperature and averaged over 24
trials (eight training data folds and three initialization seeds). Results
for the ferromagnetic model are shown in panel (a), and results
for the antiferromagnetic model are shown in panel (b). The error
exhibits an approximately linear dependence on inverse lattice size,
with stronger linearity for magnetization and the GE encoders. At
infinite lattice size (L−1 = 0), magnetization and the GE encoders
converge more closely to Onsager’s solution than does the baseline
encoder.

magnetization and the GE encoders; we visualize this for
the maximal case of N = 256 training-validation samples per
temperature (Fig. 14). Extrapolating to infinite lattice size
(i.e., the thermodynamic limit), we find that the order param-
eters derived from magnetization and the GE encoders almost
converge to Onsager’s solution, while the baseline encoder
converges further away from Onsager’s solution.

APPENDIX D: OBTAINING POINT ESTIMATES OF THE
CRITICAL TEMPERATURE

Here we provide the details of obtaining a point estimate of
the critical temperature given interval estimates as described
in Sec. IV C. Let T1 < T2 < · · · < TM be the temperatures
at which we ran MC simulations to generate our data set,
and suppose we have N MC-sampled lattice configurations
from each of these temperatures. Let t0 ∈ [Tm0 , Tm0+1] be the
interval estimate of the critical temperature obtained from the
Binder cumulant curve based on all available data, in the way
described in Sec. IV C, and let ti ∈ [Tmi , Tmi+1] be the interval
estimate of the critical temperature obtained from the ith
jackknife-sample Binder cumulant curve, for i = 1, . . . , N .
We seek the critical temperature point estimate that is opti-
mally stable; we do so by minimizing the jackknife variance

subject to the interval estimates:

min
t0,...,tN

N∑
i=1

(ti − t0)2s.t.

Tmi � ti � Tmi+1, for i = 0, . . . , N.

This problem can be expressed more elegantly with vector
notation. Let t, a, b ∈ RN+1 with elements ti, Tmi , and Tmi+1

respectively, and define the matrix A ∈ R(N+1)×(N+1) with
elements

A00 = N,

Ai0 = A0i = −1,

Aii = 1, for i = 1, . . . , N,

and zero for all remaining elements. Then the above optimiza-
tion problem can be expressed as

min
t

tAts.t.a � t � b.

The matrix A admits the factorization A = BB, where
B ∈ RN×(N+1) with block structure B = [1 | I], where 1 is
an N-dimensional vector of 1’s and I is the N × N identity
matrix. The matrix B clearly has rank N , and hence A is a
symmetric positive semidefinite matrix of corank 1. The above
constrained optimization problem is thus a convex quadratic
program, which we efficiently solve numerically using the
coneqp solver available in CVXOPT [61].

Let tsol be the numerical solution obtained. Since A has
corank 1, then the solution set of the optimization problem is
at most a line segment (one degree of freedom). It is easy to
see that if tsol is an interior solution, then tsol ± ε1 is a solution
as well for sufficiently small ε > 0, where 1 is an (N + 1)-
dimensional vector of 1’s. If we set

ε1 = min(tsol − a)andε2 = min(b − tsol ),

then the complete solution set is

{(1 − α)(tsol − ε11) + α(tsol + ε21) : 0 � α � 1}.
We select the midpoint t∗ as the vector of jackknife critical
temperature point estimates.

The jackknife mean and variance of the critical temperature
estimate are then

mean = t∗ + B,

variance =
N∑

i=1

(t∗i − t∗)2 + B2

N
,

where t∗ = 1
N

∑N
i=1 t∗i is the mean of the jackknife samples

(not including the overall estimate based on all N samples),
and B = N (t0 − t∗) is a term added to reduce the bias in the
jackknife mean, at the cost of incurring additional variance.
Note that the above expression for the variance is equivalent to
the objective function of the optimization problem we solved.
As already discussed in Sec. IV C, our estimates of B were un-
stable due to the nondifferentiability of our underlying critical
temperature estimator; we therefore set B = 0 in the above
equations to obtain our final expressions for the mean critical
temperature point estimate and variance.
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APPENDIX E: VECTOR ORDER OBSERVABLES

1. A 2D order observable

Before stating Proposition 4, we need the following lemma,
which characterizes the real orthogonal square and fourth
roots of the 2 × 2 identity matrix.

Lemma 1. Let A be a 2 × 2 real orthogonal matrix such
that A4 = I , where I denotes the 2 × 2 identity matrix.

(a) If A2 = I , then

A = ±I or A =
[

cos θ sin θ

sin θ − cos θ

]
, θ ∈ [0, 2π ).

(b) If A2 �= I , then

A = ±
[

0 −1
1 0

]
.

(c) A2 = ±I .
Proof. Since A is orthogonal, then it has one of the two

following forms for some real θ :

A =
[

cos θ − sin θ

cos θ sin θ

]
or (*)

A =
[

cos θ sin θ

sin θ − cos θ

]
. (**)

To prove (a), suppose A2 = I . If A has the form (**), then
it is easy to check that A2 = I holds trivially. Suppose instead
A has the form (*). Then A2 = I necessitates

cos2 θ − sin2 θ = 1,

cos2 θ − (1 − cos2 θ ) = 1,

cos2 θ = 1,

and hence sin2 θ = 0. By (*), this implies A = ±I as claimed
in (a).

To prove (b), suppose A2 �= I . Since A4 = (A2)2 = I , then
by (a), we must have either A2 = −I or A2 has the following
form for some real φ:

A2 =
[

cos φ sin φ

sin φ − cos φ

]
. (***)

First, suppose A2 has the form (***) and A the form (*).
Then equating the diagonal terms of (*) squared and (***),
and doing similar with the off-diagonal terms, we obtain the
equations

cos2 θ − sin2 θ = ± cos φ,

2 cos θ sin θ = ± sin φ.

These equations imply

cos2 θ − sin2 θ = ±0,

2 cos θ sin θ = ±0,

and hence cos θ = sin θ = 0, which is impossible.
Suppose on the other hand A2 has the form (***) and A the

form (**). Equating the diagonal terms of (***) squared and
(**), we obtain

(± cos θ )2 + sin2 θ = ± cos φ,

1 = ± cos φ,

which is also impossible. Thus, A2 cannot have the form (***).

We now turn to the case A2 = −I . If A2 = −I and A has the
form (**), then cos2 θ + sin2 θ = −1, which is impossible.
On the other hand, if A2 = −I and A has the form (*), then

cos2 θ − sin2 θ = −1,

cos2 θ − (1 − cos2 θ ) = −1,

2 cos2 θ − 1 = −1,

cos2 θ = 0,

and hence sin2 θ = 1. The form (*) thus implies the expres-
sion for A claimed in (b).

Finally, to prove (c), simply observe if A2 = I , then we are
done; otherwise, A has the form given in (b), whose square
is −I . �

We now state and prove Proposition 4, which gives the sub-
group of never-broken symmetries for a 2D order observable.
Let β = ραρ−1; i.e., the generator of horizontal translations.
Let O(2,R) be the group of 2 × 2 real orthogonal matrices.

Proposition 4. Let � be the set of all real 2D representa-
tions ψ : G �→ O(2,R) of the Ising symmetry group G. Then⋂

ψ∈� ker(ψ ) = 〈α2, β2〉.
Proof. Let I be the 2 × 2 identity matrix, and let ψ ∈ �.

Since ρ4 = 1 by definition, then ψ4
ρ = I . By Lemma 1 (c),

ψ2
ρ = ±I . The defining relation αρ2 = ρ2α−1 thus implies

ψαψ2
ρ = ψ2

ρψ−1
α ,

ψα = ψ−1
α ,

ψ2
α = I.

Ergo, α2 ∈ ker(ψ ). We can similarly show β2 ∈ ker(ψ ), and
hence

〈α2, β2〉 �
⋂
ψ∈�

ker(ψ ).

All that remains is to prove the reverse inclusion.
Let � be the set of all real scalar representations φ : G �→

{−1, 1}, and define the set

�1 = {g �→ φgI : φ ∈ �}.
Then by Proposition 1, we have⋂

ψ∈�

ker(ψ ) �
⋂

ψ∈�1

ker(ψ ) � 〈α2, ρ2, (αρ)2〉.

If we can show

ρ2, αβ /∈
⋂
ψ∈�

ker(ψ ), (*)

then this will imply⋂
ψ∈�

ker(ψ ) � 〈α2, β2〉,

which will then establish the claim. Consider ψ ∈ � defined
such that

ψα =
[−1 0

0 1

]
,

ψρ =
[

0 −1
1 0

]
.
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Note these are valid representations as ψαψ2
ρ = ψ2

ρψ−1
α . Then

we have ψ2
ρ = −I as well as

ψαψβ = ψαψρψαψ−1
ρ

= −I,

so that ρ2, αβ /∈ ker(ψ ). This establishes (*) and hence the
proposition. �

Recall the description of the GE-autoencoder architecture
in Sec. V A, where the input into the network is a 4D block
average x̌ of a lattice configuration x. The following proposi-
tion states that our particular choice of architecture places an
additional constraint on the representation ψ .

Proposition 5. The GE encoder described in Sec. V A sat-
isfies ψαǑ = ψρ2τ Ǒ.

Proof. Let x̌ = (x̌1, x̌2, x̌3, x̌4) be the block average of a lat-
tice configuration x over nonoverlapping 2 × 2 blocks. Then

αx̌ = (x̌3, x̌4, x̌1, x̌2),

ρx̌ = (x̌2, x̌4, x̌1, x̌3),

τ x̌ = (x̌2, x̌1, x̌4, x̌3).

Based on these permutations, it is easy to verify αx̌ = ρ2τ x̌.
Thus,

Ǒ(αx̌) = Ǒ(ρ2τ x̌),

ψαǑ = ψρ2τ Ǒ,

completing the proof. �

2. Never-broken symmetries in terms of characters

The following proposition gives a way to compute the
subgroup of never-broken symmetries of an arbitrary finite
group G in terms of its character table.

Proposition 6. Let G be a finite group. Let �d be the set of
all real orthogonal representations of G with degree d . Let Ĝ
be the set of all irreducible characters of G. Then⋂

ψ∈�d

ker(ψ ) =
⋂

χ∈Ĝ|degR(χ )�d

ker(χ ).

Proof. Let χ ∈ Ĝ such that degR(χ ) � d . Let ψ be the
irreducible representation with character χ . Let ψR be the
smallest real representation built out of ψ :

ψR =
⎧⎨
⎩

ψ, if IFS(χ ) = 1
ψ ⊕ ψχ, if IFS(χ ) = 0
ψ ⊕ ψ, if IFS(χ ) = −1.

Note deg(ψR) = degR(χ ) � d . Let n = d − deg(ψR) � 0
and ψ1 the trivial representation. Then construct the represen-
tation

ψχ = ψR ⊕
n⊕

i=1

ψ1.

The kernel of this representation is clearly ker(ψχ ) =
ker(ψR) = ker(χ ). Moreover, deg(ψχ ) = d so that ψχ ∈ �d .
Since a real representation ψχ ∈ �d can be constructed for
every χ ∈ Ĝ | degR(χ ) � d , then

⋂
ψ∈�d

ker(ψ ) �
⋂

χ∈Ĝ|degR(χ )�d

ker(χ ). (*)

All that remains is to prove the reverse inclusion as well.
Let ψ ∈ �d . Then ψ admits the decomposition

ψ = ψ1 ⊕ · · · ⊕ ψk,

where each ψi is a real-irreducible representation (i.e., ir-
reducible over R). For each i ∈ {1, . . . , k}, there exists a
(complex-)irreducible representation ψ ′

i such that ψi = ψ ′
i ,

ψi = ψ ′
i ⊕ ψ ′

i, or ψi = ψ ′
i ⊕ ψ ′

i . Since ker(ψ ′
i ) = ker(ψ ′

i ),
then in any of these three cases, we have ker(ψi ) = ker(ψ ′

i ).
Thus,

ker(ψ ) =
k⋂

i=1

ker(ψi) =
k⋂

i=1

ker(ψ ′
i ).

Now let χi and χ ′
i be the characters of ψi and ψ ′

i respectively.
Clearly, degR(χ ′

i ) = deg(χi ) � d since deg(ψi ) � deg(ψ ) =
d for each i ∈ {1, . . . , k}. Thus,

ker(ψ ) =
k⋂

i=1

ker(χ ′
i ),

where each χ ′
i is irreducible and degR(χ ′

i ) � d . This estab-
lishes the reverse inclusion of (*). �

3. Symmetry regularization

Here we relate the general symmetry regularization terms
Rg and Sg [Eqs. (21) and (22)] to the first and second regular-
ization terms in Eq. (12) for 1D order observables. This will
provide insight into how Eq. (20) generalizes Eq. (12). We use
the notation as in Eqs. (19)–(22).

First, however, we simplify the expression for Sg [Eq. (22)]
for arbitrary order dimension d .

Lemma 2. The regularization term Sg [Eq. (22)] admits the
expression

Sg = 1 − ‖ZZ+Zg‖2
F

‖Zg‖2
F

.

Proof. Recalling the expression [Eq. (19)] for the linear
least-squares estimator ψ̂g, the squared residual is

‖Zg − Zψ̂g‖2
F = ‖Zg − Z (Z+Zg + PA)‖2

F

= ‖Zg − ZZ+Zg‖2
F

= ‖(I − ZZ+)Zg‖2
F .
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Since I − ZZ+ is an orthogonal projection operator, then by
the Pythagorean theorem we obtain

‖Zg − Zψ̂g‖2
F = ‖Zg‖2

F − ‖ZZ+Zg‖2
F ,

and thus

Sg = 1 − ‖ZZ+Zg‖2
F

‖Zg‖2
F

,

completing the proof. �
We now derive the simplified expressions for the regular-

ization terms Rg and Sg for 1D order observables.
Proposition 7. Let d = 1. Then the regularization terms Rg

and Sg [Eqs. (21) and (22)] admit the expressions

Rg =
(

1 − ‖Zg‖2

‖Z‖2
(1 − Sg)

)2

,

Sg = 1 −
(

ZZg

‖Z‖‖Zg‖
)2

.

Proof. We first consider Sg. By Lemma 2,

Sg = 1 − ‖ZZ+Zg‖2

‖Zg‖2
,

where we replaced the Frobenius matrix norm with the usual
vector norm since Z and Zg are now N-dimensional column
vectors. Since ZZ+ is an orthogonal projection operator, then
(ZZ+)(ZZ+) = ZZ+ so that

Sg = 1 − Z
g ZZ+Zg

‖Zg‖2
.

Now unless the GE encoder is exactly zero on every sampled
lattice configuration, Z is a nonzero column vector and thus

full rank. Its pseudoinverse is thus the row vector

Z+ = Z

‖Z‖2
.

Substituting this into our expression for Sg, we obtain

Sg = 1 − Z
g ZZZg

‖Z‖2‖Zg‖2

= 1 −
(

ZZg

‖Z‖‖Zg‖
)2

,

as claimed.
We now move to Rg. Since Z is full rank, then its null

space is trivial so that P = 0. The estimator ψ̂g [Eq. (19)] thus
simplifies to

ψ̂g = Z+Zg + 0

= ZZg

‖Z‖2

= ‖Zg‖
‖Z‖

ZZg

‖Z‖‖Zg‖ .

Substituting this into Eq. (21) and noting ψ̂g is a scalar, we
have

Rg = (1 − ψ̂2
g

)2
=
(

1 − ‖Zg‖2

‖Z‖2

(
ZZg

‖Z‖‖Zg‖
)2
)2

=
(

1 − ‖Zg‖2

‖Z‖2
(1 − Sg)

)2

,

completing the proof. �
Observe that the expressions for Rg and Sg in Proposition

7 match the first and second regularization terms in Eq. (12),
except for the factor (1 − Sg) in Rg. Still, in the optimal case
Sg = 0, the expression for Rg matches the first regularization
term in Eq. (12).
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