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Steady-state thermodynamics: Description equivalence and violation of reservoir independence

Leonardo Ferreira Calazans * and Ronald Dickman †

Departamento de Física and National Institute of Science and Technology for Complex Systems, ICEx, Universidade Federal de Minas
Gerais, C. P. 702, 30123-970 Belo Horizonte, Minas Gerais, Brazil

(Received 2 March 2023; accepted 4 April 2023; published 1 May 2023)

For stochastic lattice models in spatially uniform nonequilibrium steady states, an effective thermodynamic
temperature T and chemical potential μ can be defined via coexistence with heat and particle reservoirs. We
verify that the probability distribution PN for the number of particles in the driven lattice gas with nearest-
neighbor exclusion in contact with a particle reservoir with dimensionless chemical potential µ* possesses a
large-deviation form in the thermodynamic limit. This implies that the thermodynamic properties determined
in isolation (fixed particle number representation) and in contact with a particle reservoir (fixed dimensionless
chemical potential representation) are equal. We refer to this as description equivalence. This finding motivates
investigation of whether the effective intensive parameters so obtained depend on the nature of the exchange
between system and reservoir. For example, a stochastic particle reservoir is usually taken to insert or remove a
single particle in each exchange, but one may also consider a reservoir that inserts or removes a pair of particles in
each event. In equilibrium, equivalence of pair and single-particle reservoirs is guaranteed by the canonical form
of the probability distribution on configuration space. Remarkably, this equivalence is violated in nonequilibrium
steady states, limiting the generality of steady-state thermodynamics based on intensive variables.
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I. INTRODUCTION

Despite progress on many fronts, extending thermody-
namics to far-from-equilibrium systems remains an unsolved
challenge. An attractive preliminary goal is a thermodynamic
description of nonequilibrium steady states (NESS), that is,
steady-state thermodynamics [1,2]. By thermodynamics, we
understand a macroscopic description using a small number
of variables, having predictive power. A fundamental ques-
tion is the prediction of coexistence: Consider two systems,
SA and SB in NESS, that are weakly coupled via exchange
of energy and/or particles. What values will macroscopic
quantities assume when the systems reach coexistence, i.e.,
a stationary state, such that the net mean fluxes between the
two systems vanish? One approach to predicting properties at
coexistence involves defining effective intensive parameters
in NESS [3–5] such that coexisting systems possess identical
values of the relevant intensive parameters, just as in equi-
librium thermodynamics. Recently, an approach to defining
effective intensive parameters via coexistence with stochas-
tic reservoirs has achieved a measure of success (including
a zeroth law of thermodynamics) when applied to spatially
uniform systems, provided the exchange rates satisfy two con-
ditions: detailed balance and a factorization property [2,3,5–
7]. For such systems, this definition allows one to predict
coexistence properties.

This achievement motivates further investigations ex-
ploring the consequences of this definition of intensive
parameters. In Ref. [8], the authors defined an entropy
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function via nonequilibirum thermodynamic integration of
effective intensive parameters and found that it is different
from the Shannon entropy, and is not a state function. In
Refs. [9,10], it was shown that this definition is not able to
predict densities of nonuniform systems (e.g., for a nonequi-
librium drive applied to half the system or to a driven system
confined between walls). Moreover, this definition does not
allow prediction of phase coexistence in models such as the
Katz-Lebowitz-Spohn (KLS)-driven lattice gas [11]. These
violations can be understood as a consequence of nonfac-
torizing exchange rates between two regions, as shown by
Guioth and Bertin [4]. A number of works explore definitions
of intensive parameters via large-deviation analysis [4–6] or
a nonequilibrium free energy for NESS [12]. These studies
conclude that under some conditions, such as the additivity
of the large-deviation function and a macroscopic detailed
balance condition, it is possible to define intensive parameters
for NESS.

In this paper, we investigate the equivalence of thermo-
dynamic approaches. A fundamental property of equilibrium
thermodynamics is the equivalence of the descriptions as-
sociated with distinct representations. Thus, one can choose
among entropy, Helmholtz, Gibbs, and other representations
according to convenience. The entropy, Helmholtz and grand-
potential representations, describe, respectively, the system in
isolation (microcanonical ensemble), in contact with an (en-
ergy) reservoir (canonical ensemble), and in contact with an
energy and a particle reservoir (grand canonical ensemble). In
equilibrium statistical mechanics, the various ensembles treat
a system in contact (or not) with reservoirs of distinct quan-
tities, and ensemble equivalence includes the possibility of
treating a small subsystem S ′ of a large isolated system S as if
it were in contact with a reservoir formed by the complement
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of S ′ in S . In NESS, full ensemble equivalence, extending
to subsystems, is, in general, ruled out due to the fluxes that
characterize nonequilibrium, but we may still inquire as to the
equivalence of representations in which a NESS is in contact
with an external reservoir or is isolated. We call this property
description equivalence.

We briefly review basic notions regarding a system S in
contact with a stochastic reservoir R. A reservoir R is a
system much larger than S such that exchanges between them
do not alter the value of the intensive parameter(s). We regard
R as a system that attempts to exchange particles and/or
energy with any system S with which it is placed in contact.
The attempt rates governing this exchange are independent
of S , in particular, of whether S is in equilibrium or not.
(The fraction of attempted exchanges that are accepted does,
of course, depend on the state of S .) Suppose the internal
dynamics of S allows it to attain equilibrium. In this case,
S attains equilibrium with R when the two are placed in
contact, implying that the exchange rates must satisfy detailed
balance relations consistent with the intensive properties (tem-
perature and chemical potential) of the reservoir. Equilibrium
between S and R occurs when their intensive properties are
equal, and is independent of the manner in which exchange
occurs.

Now consider a system S in a NESS. When placed in
contact with a reservoir, it may attain a state of zero net flux
with R, i.e., a new NESS. We call this situation coexistence
between S and R to avoid confusion with equilibrium be-
tween S and R. As mentioned above, coexistence with a
stochastic reservoir associates an effective intensive parameter
or parameters with S . In fact, under certain restrictions, two
systems S1 and S2 (either or both of which are in NESS)
coexist under direct exchange if both coexist with the same
reservoir, yielding a zeroth law of thermodynamics for ef-
fective intensive parameters [3]. Further, effective intensive
parameters of a NESS not in contact with a reservoir can be
defined using the idea of virtual exchange [3].

The foregoing observations raise two questions as we
attempt to extend the formalism of equilibrium statistical ther-
modynamics to NESS:

(i) Are the descriptions of (a) a NESS in coexistence with
a reservoir and (b) a NESS free of such contact, equivalent in
the infinite-size limit?

(ii) Do the values of the effective intensive parameters
associated with a NESS depend on the manner of exchange
with R?

In this paper, we examine these issues in the context of the
NNE lattice gas, a system of interacting particles that can be
maintained far from equilibrium in a NESS. We provide an
affirmative answer to the first question, based on numerical
evidence for the existence of a large-deviation function. We
also show that, unlike in equilibrium, the values of the effec-
tive intensive parameter(s) characterizing a NESS do, in fact,
depend on the manner in which exchange with R is realized.
This restricts the generality of effective intensive parameters,
compared with equilibrium.

For NESS, no general principle is known for determining
the stationary probability distribution on configuration space;
it must instead be found by solving the master equation.
This stationary solution generally has a detailed dependence

on the transition rates, including those describing exchanges
between S and R. One can nevertheless ask if the physical
descriptions in both frameworks (S in contact with R or not)
are equivalent in the thermodynamic limit (TL). We consider
three levels of equivalence. First, macroscopic equivalence,
which means that the values of stationary means of macro-
scopic quantities of interest are equal in both frameworks
in the TL. The second is thermodynamic equivalence, i.e.,
thermodynamic properties of a system in isolation determined
from measuring the effective chemical potential as a function
of density are the same as thermodynamic properties of a
system in contact with a particle reservoir with the density
determined by the chemical potential of R. Finally, the third
level is measure equivalence, which means that the probability
densities associated with the two descriptions are equal in the
TL [13].

Construction of descriptions for NESS depends on defin-
ing effective intensive parameters. Bertin and coauthors [6]
explore the definition of ensembles for the zero-range pro-
cess [14], a model with a factorizable stationary probability
distribution, which is far from a general situation for NESS.
Recently, a more general formulation of the grand canonical
ensemble, based on large-deviation theory was proposed by
Guioth and Bertin [15].

The driven NNE lattice gas is a simple model with non-
trivial properties such as an order-disorder phase transition.
In isolation, the model is characterized by three parameters:
particle number N , system size V , and drive strength D. For
the fixed-N description, the dimensionless effective chemical
potential μ∗ ≡ μ/kBT can be evaluated via virtual contact;
assuming that one particle can be inserted or removed in each
virtual exchange event, this parameter is given by [3]

μ∗ = ln
ρ

ρ̃op
, (1.1)

where ρ̃op is the mean density of open sites in the stationary
state with fixed particle number, N . When S is in contact with
particle reservoir, N fluctuates; let the stationary probability
distribution be P̃N . The condition of coexistence between S
and R under weak contact implies

μ∗ = ln
〈ρ〉

〈ρ̃op〉 , (1.2)

where 〈·〉 denotes the stationary mean with respect to P̃N .
Although expressions (1.1) and (1.2) are superficially

similar, the quantities involved are associated with distinct
stochastic processes, so that equivalence of the two expres-
sions for µ* is not immediately evident.

The remainder of this paper is organized as follows. In
Sec. II, we define the NNE model used in our investigation.
In Sec. III, we discuss coexistence of a NESS with a particle
reservoir and present results on description equivalence, based
on numerical evidence for a large-deviation function. We
discuss reservoir independence (or lack thereof) in Sec. IV,
followed, in Sec. V, by our conclusions and comments on
avenues for further investigation.

054102-2



STEADY-STATE THERMODYNAMICS: DESCRIPTION … PHYSICAL REVIEW E 107, 054102 (2023)

FIG. 1. In the left panel, a particle occupies the central site. White sites: first-nearest neighbors; colored sites: second neighbors. Center
panel: The two colored sites represent a pair of open second-neighbors. Right panel: The colored sites highlight a pair of particles occupying
second-neighbor sites.

II. DRIVEN LATTICE GAS WITH NEAREST-NEIGHBOR
EXCLUSION MODEL

We study a driven lattice gas with nearest-neighbor exclu-
sion (NNE) on square lattices of L × L sites with periodic
boundaries. Each site of the lattice can be occupied by at
most one particle; occupancy of a site implies that its four
nearest neighbors (NNs) be vacant. A configuration C consists
of N particles distributed over the lattice, obeying the NNE
condition; in equilibrium, all N-particle configurations are
equally probable. The configuration evolves according to a
continuous-time (i.e., sequential) Markovian dynamics of par-
ticle jumps. Each particle can hop to a first or second neighbor
if the resulting configuration satisfies the NNE conditions.
Consider a transition from configuration C to C ′, generated
by displacing particle j by � = (�x,�y), where �x and �y
can assume values in the set {−1, 0, 1} (excluding, of course,
�x = �y = 0). The transition rate from C to C ′, denoted by
w(C ′|C), depends on the direction of the jump: letting D =
Di, w(C ′|C) = ε(1 + D · �) = ε(1 + D�x), where ε is a con-
stant with dimensions 1/(time), and D ∈ [−1, 1]. Thus, jumps
with � · D > 0(< 0) are favored (inhibited), while jumps per-
pendicular to the drive D are not affected by it. D = 0
corresponds to equilibrium, while for D �= 0 the system is
maintained out of equilibrium, leading to a particle current in
the steady state. The dynamics conserves the total number of
particles N [16].

The probability distribution over N-particle configurations,
pC|N (t ), satisfies the master equation,

d pC|N (t )

dt
=

∑
C′∈�(L,N )

[w(C|C ′)pC|N (t ) − w(C ′|C)pC|N (t )],

(2.1)

where �(L, N ) denotes the set of all N-particle configurations
on a lattice of size L. In the stationary state, d pC|N/dt = 0 ∀ C,
we denote the stationary probability distribution with a fixed
number of particles by p̃C|N [20].

In the NNE lattice gas, since interactions are due to ex-
cluded volume only, all configurations have the same energy
and the system is athermal, characterized (in equilibrium)
by a single independent intensive parameter. In the fixed-N
description, the natural choice for this parameter is the den-
sity ρ = N/Ld . When we consider a NNE lattice gas (S)
in coexistence with a particle reservoir R, it is the effective
dimensionless chemical potential, µ* (a property of R) that is

fixed, while N , of course, fluctuates. In the familiar case in
which S and R exchange a single particle in each transfer, the
properties of R discussed in Sec. I imply that the ratio of the
insertion and removal attempt rates be exp[μ∗]. In the fixed-µ*

description, the density is given by ρ(μ∗) = 〈N〉/L, which is
a nondecreasing function of µ*. We note that, since the NNE
lattice gas is athermal and the particles do not possess mo-
menta, there is no need for defining a temperature. Following
the usual custom, one may nevertheless write μ∗ ≡ μ/kBT ,
where μ is the effective chemical potential, T is a temperature,
and kB is Boltzmann’s constant.

The fixed-N description also permits definition of an ef-
fective dimensionless chemical potential μ∗(ρ): it is the value
associated with a reservoir R that would coexist with S , were
particle exchange allowed. The resulting relation, Eq. (1.1),
for virtual exchange between S and R, is familiar from
Widom’s particle insertion method [21]. In this case, µ* is a
nondecreasing function of the density ρ.

In the presence of a nonzero drive D, the NESS is gov-
erned by two independent intensive parameters: ρ and D
in the fixed-N description, and µ* and D when the sys-
tem coexists with a particle reservoir. Thus μ∗ = μ∗(ρ, D)
in the fixed-N case, while ρ = ρ(μ∗, D) in the fixed-µ*

description.
In addition to the density, ρ = N/L2, several other configu-

rational properties are relevant to our discussion. The number
of open sites, Nop(C), in configuration C is the number of sites
at which a particle can be inserted without violating the NNE
condition. The number of doubly occupied second-neighbor
pairs of sites is N (2)(C), and the doubly open second-neighbor
pairs of sites is N (2)

op (C), with associated densities ρop =
Nop(C)/L2, ρd = N (2)(C)/(2L2), and ρ (2)

op = N (2)
op (C)/(2L2).

(See Fig. 1 for examples.) Figure 2 shows estimates of these
densities obtained via Monte Carlo simulation for L = 160
and D = 1.

Given L, the number of possible densities is 1 + L2/2.
For instance, when L = 56 the number of densities is 1569,
implying a huge number of studies if one were to analyze
each case individually. Nevertheless, since ρop, ρ (2), and ρ (2)

op
are smooth functions of density in the infinite-size limit, one
can perform simulations for representative values of ρ in the
interval (0, 1/2), and fit a polynomial to these data to estimate
the properties at intermediate values. In this paper, we use data
for L = 10, 20, 28, 56, 64, 96, 128, 160. For L � 56, we
study 30 values of the density. The absolute errors associated
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FIG. 2. Stationary mean of the open-site density ρ̃op (black cir-
cles) and densities of pairs of open second neighbors ρ̃ (2)

op (blue
squares), and doubly occupied of second neighbors ρ̃ (2) (red trian-
gles), obtained via Monte Carlo simulation for L = 160 and D = 1.
Error bars are smaller than symbols.

with interpolation are ∼ 10−5, an order of magnitude smaller
than the statistical uncertainties of the simulations.

III. COEXISTENCE, EFFECTIVE INTENSIVE
PARAMETERS AND RESERVOIRS

Our definition of the dimensionless chemical potential µ*

is based on coexistence: We say that systems S and S ′, in
steady states (in or out of equilibrium), have the same value
of µ* if and only if they coexist under exchange of particles.
Temperature and other intensive parameters can be defined in
the same manner for systems that can exchange energy, or
other quantities [3].

If one of the coexisting systems is much larger than the
other, we can regard it as a particle reservoir Rζ , character-
ized only by its value of µ* and its manner ζ of exchanging
particles. An exchange scheme ζ involves all details of ex-
change dynamics including rates, the set of sites (boundaries,
bulk, etc.) through which exchange occurs, and the number
of particles (�Nζ ) exchanged in each event. In accord with
the above definition, any system S that coexists with reservoir
R has the same effective chemical potential, μ∗

S = μ∗
R. The

rates of insertion and removal satisfy detailed balance with
respect to the stationary probability distribution, as discussed
in Sec. I. Let C denote a configuration with N particles, and
C ′ a configuration resulting from inserting �Nζ particles in C.
Further, let w(C ′|C) ≡ wins(Rζ ) denote the particle insertion
attempt rate under contact with Rζ , and w(C|C ′) ≡ wrem(R)
the corresponding removal attempt rate. Then detailed balance
requires

w(C ′|C)

w(C|C ′)
= wins(Rζ )

wrem(Rζ )
= e�Nζ μ

∗
. (3.1)

In an exchange attempt, Rζ randomly selects sites in S ac-
cording to the restrictions (if any) specified in ζ . The number

of possible sets that the reservoir can select is denoted Nζ .
(For example, if �Nζ = 1, and exchange can occur at any site
in S , then Nζ = L2, the number of sites.) Thus, we choose
the insertion rate as wins(Rζ ) = εe�Nζ μ

∗
/Nζ , and the removal

rate as wrem(Rζ ) = ε/Nζ , with 1/Nζ denoting the probability
of selecting a specific set of sites.

The particle current between system and reservoir is given
by

Jζ
N (μ∗; { p̃C}) = �Nζ

∑
C

[
wins(Rζ )Πζ

ins(C) p̃C

−wrem(Rζ )Πζ
rem(C) p̃C

]
, (3.2)

where Π
ζ
ins(C) (Πζ

rem(C)) is the number of insertion (removal)
transitions possible from C. Note that Π

ζ
ins(C) and Πζ

rem(C) are
functions of the microscopic configurations of S , and depend
on the exchange mechanism ζ of the reservoir. Coexistence
obtains when the particle current JN (μ∗; { p̃C}) = 0, in which
case we have

εe�Nζ μ
∗ ∑

C
π

ζ
ins(C) p̃C − ε

∑
C

πζ
rem(C) p̃C = 0, (3.3)

where π
ζ
ins(C) ≡ Π

ζ
ins (C)
Nζ

, and πζ
rem(C) ≡ Π

ζ
rem (C)
Nζ

. Therefore,

μ∗({ p̃C}) = 1

�Nζ

ln

∑
C π

ζ
ins(C) p̃C∑

C π
ζ
rem(C) p̃C

. (3.4)

The coexistence condition relates μ∗ to macroscopic sta-
tionary means of functions defined on the configuration space
of the NNE lattice gas. If p̃C is computed for a fixed particle
number, that is, using p̃C|N , we have

π̃
ζ
ins(N ) ≡

∑
C∈�(L,N )

π
ζ
ins(C) p̃C|N (3.5)

and

π̃ ζ
rem(N ) ≡

∑
C∈�(L,N )

πζ
rem(C) p̃C|N . (3.6)

We can interpret the resulting effective chemical potential as
the μ∗

ζ value of the reservoir Rζ that coexists with S . As noted
above, this is virtual coexistence: No particles are, in fact,
exchanged, but one can associate this value of µ* with the
system S , just as in Widom’s test-particle insertion method
[21].

By contrast, if S exchanges particles with Rζ , N fluctuates,
and p̃C corresponds to the fixed-µ* description, so〈

π
ζ
ins

〉 ≡
∑
C

π
ζ
ins(C) p̃C, (3.7)

and similarly for 〈πζ
rem〉, in which all configurations C are

included, for all possible values of N . In this case, the value µ*

is imposed upon S through coexistence with the reservoir, and
the stationary means attain values such that Eq. (3.4) holds.
In the weak-exchange limit, the fixed-µ* distribution can be
written as p̃C = p̃C|N P̃N , where N is the number of occupied
sites in configuration C. Thus,

〈
π̃

ζ
ins

〉 =
∑

N

⎡
⎣ ∑

C∈�(L,N )

π
ζ
ins(C) p̃C|N

⎤
⎦P̃N , (3.8)
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and similarly for 〈πζ
rem〉, where the expression inside the

bracket in Eq. (3.8) is exactly the right-hand side of Eq. (3.5),
i.e., the stationary mean with fixed particle number.

The foregoing considerations motivate questions (i) and
(ii) raised in the Introduction, and that we address in this
paper. In this paper, we restrict our attention to two kinds
of reservoirs, although many others are possible. The first,
R1, interacts with S exchanging a single particle per event
(�N1 = 1). For R1, we have N1 = L2, wins(R1) = ε exp(μ∗),
wrem(R1) = ε, Π1

ins(C) = Nop(C) (number of open sites in C),
Π1

rem(C) = N , π1
ins(C) = ρop(C) (open-site density in C) and

π1
rem(C) = ρ (particle density in C). Using these relations in

Eq. (3.4), we obtain Eqs. (1.1) and (1.2).
The second kind of reservoir, R2, interacts with S in-

serting two particles at a pair of open second-neighbor sites
and removing two particles from a pair of occupied second-
neighbor sites (�N2 = 2). In this case, N2 = 2L2, wins(R2) =
ε exp(2μ∗), wrem(R2) = ε, Π2

ins(C) = N (2)
op (C) (number of

open second-neighbor pairs), Π2
rem(C) = N (2)(C) (number of

occupied second-neighbor pairs), π2
ins(C) = ρ (2)

op (C), and, fi-
nally, π2

rem(C) = ρ (2)(C) (the fraction of second-neighbor
pairs in which both sites are occupied).

If reservoir independence holds, as it does in equilib-
rium, it implies a series of identities between multisite
occupation/vacancy probabilities in the TL. For example,
equivalence of R1 and R2 implies that

ρ

ρ̃op
=

(
ρ̃ (2)

ρ̃
(2)
op

)1/2

. (3.9)

More generally, equivalence of reservoirs Rζ and Rξ

implies (
π̃ ξ

rem

π̃
ξ
ins

)1/�Nξ

=
(

π̃ ζ
rem

π̃
ζ
ins

)1/�Nζ

. (3.10)

Equation (3.10) provides a set of useful identities for lattice
gases and other model fluids. In Sec. V. we show that this
equivalence does not hold out of equilibrium, even in the
infinite-size limit (see Fig. 17).

IV. DESCRIPTION EQUIVALENCE

As discussed in the previous section, when S is in
contact with a particle reservoir Rζ , the parameters D,
V , ζ , µ*, and ε determine the stationary probability dis-
tribution on configuration space. This corresponds to the
fixed-(μ∗,V ; D|ζ , ε) description, which, in the WEL, (ε →
0), becomes the fixed-(μ∗,V ; D|ζ , ε → 0) description, or
simply the fixed-µ* description. The properties of a system S
with no exchange of particles with any other system are given
by the fixed-(N,V ; D|ζ , ε = 0) description, or the fixed-N
description.

A. NESS in the fixed-µ* description

We consider a particle reservoir R with dimensionless
chemical potential µ* in contact with a driven NNE lattice gas,
denoted by S . At each exchange event between S and R, a
single particle is transferred. The master equation governing

FIG. 3. Stochastic process for the random variable N , the number
of particles in S. Each circle represents a state of N . Transition rates
are denoted by w(N,�N ). The process N (t ) is subject to reflecting
boundaries at 0 and Nmax.

PN , the probability distribution of N is

dPN (t )

dt
=

∑
�N=±1

[w(N ′,�N )PN ′ (t ) − w(N,�N )PN (t )],

(4.1)

where N ′ = N − �N , and w(N,+1) [w(N,−1)] denotes the
insertion (removal) rate given N . Thus, Eq. (4.1) can be
written

dPN (t )

dt
= w(N + 1,−1)PN+1(t ) + w(N − 1,+1)PN−1(t )

− [w(N,−1) + w(N,+1)]PN (t ). (4.2)

Since S is in weak contact with R, all exchanges occur
when S is in the NESS with N particles. Therefore, the macro-
scopic insertion and removal rates are given by

w(N,+1) =
∑

C∈�(L,N )

wins(R) p̃C|N = εzρ̃op(N ) (4.3)

and

w(N,−1) =
∑

C∈�(L,N )

wrem(R) p̃C|N = ερ, (4.4)

where z ≡ eμ∗
.

Given the reflecting barriers at N = 0 and N = Nmax, as
illustrated in Fig. 3, in the stationary state of the exchange
process (not to be confused with the NESS of S), the probabil-
ity current between two successive values of N must vanish.
Thus, the exchange process satisfies a macroscopic detailed
balance relation. Denoting the stationary probability distribu-
tion of N by P̃N , we have

P̃N−1w(N − 1, 1) = P̃Nw(N,−1). (4.5)

We write P̃N as

P̃N = WN


(z)
, (4.6)

where WN is a weight associated with state N and 
(z) =∑Nmax
N=0 WN . From Eq. (4.5),

WN = z
Ñop(N − 1)

N
WN−1, (4.7)

and setting W0 = 1, we have

WN = zN �(N, D)

N!
, (4.8)

where �(N, D) ≡ ∏N−1
i=0 Ñop(i).
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This implies the equilibriumlike relations

∂ ln 


∂μ∗ = 〈N〉 (4.9)

and

∂〈N〉
∂μ∗ = 〈N2〉 − 〈N〉2, (4.10)

which reflect the fact that the exchange rates between S and
R satisfy detailed balance. It is nevertheless important to note
that �(N, D) depends on D, as does 
 = 
(z, D).

B. Macrostate, thermodynamic, and measure equivalence

There are three levels of description equivalence [13]:
macrostate, thermodynamic, and measure equivalence.
Macrostate equivalence means that averages of physical
quantities taken in the two ensembles are equal in the TL.
Thermodynamic equivalence means that the thermodynamic
quantities (i.e., free energy, intensive parameters) used
to describe system properties lead to the same physical
predictions. Since the model used has only one relevant
parameter, the dimensionless chemical potential, macrostate
equivalence implies thermodynamic equivalence. Finally,
measure equivalence means that the probability distributions
that describe each of the statistical ensembles are equivalent.
That is, although each ensemble is defined on a distinct
configuration space, a subspace of possible configurations is
selected by the shape of the probability distribution P̃N .

Recall that in the weak-exchange limit, all exchanges be-
tween S and R occur with S in its N-particle steady-state.
This implies that the fixed-N and fixed-µ* distributions are
related via

p̃μ∗ (C) = p̃C|N P̃N . (4.11)

In what follows it will be convenient write the stationary
probability P̃N as a function of particle density, i.e., P̃(ρ),
where ρ = N/L2. In the TL, ρ is a continuous variable with
probability density P̃ (ρ). If P̃ (ρ) → δ(ρ − 〈ρ〉) in the TL
and macrostate equivalence holds, then measure equivalence
also holds. Moreover, P̃ (ρ) can then be described by a
large-deviation function I (ρ), such that in the TL, P̃ (ρ) �
exp(−L2I (ρ)), where the symbol � is used to emphasize
that when L → ∞, the decaying exponential dominates the
behavior of P̃ (ρ) [22].

In equilibrium, description equivalence is well established
for the NNE model since the interactions are short-ranged
[13,23]. In the following, we compare how description equiv-
alence emerges as we increase the system size, in equilibrium
and under a drive.

C. �(z, D) and the conditions for description equivalence

The function 
(z, D) can be written as


(z, D) =
Nmax∑
N=0

WN (z, D) =
Nmax∑
N=0

zN�(N, D), (4.12)

where �(N, D) ≡ �(N, D)/N!. In the TL, L → ∞, let N =
Ldρ and Ñop(N ) = ρ̃op(ρ)Ld . Then,


(z, D) = Ld
∫

dρ exp{Ld [μ∗ρ + λ(ρ, D)]}, (4.13)

where we have defined

λ(ρ, D) ≡ 1

Ld
ln �(Ldρ, D). (4.14)

For description equivalence to hold, WN (z, D) must have a
unique maximum in the TL. Using Stirling’s approximation,
ln N! ≈ N ln N − N , we obtain

ln WN (z, D) ∼= Ld

{
ρ ln z − ρ ln ρ + ρ +

∫ ρ

0
ln ρ̃op(ρ ′)dρ ′

}
.

(4.15)

Maximizing ln WN (z) with respect to ρ yields the familiar
relation μ∗ = ln[ρ/ρ̃op(ρ)], while maximizing the integrand
of Eq. (4.13) yields

∂λ(ρ)

∂ρ
= −μ∗. (4.16)

The condition that (4.16) has a unique solution is that λ(ρ) be
concave, i.e., ∂2λ(ρ)/∂ρ2 � 0. Noting that

∂2λ(ρ)

∂ρ2
= −∂μ∗

∂ρ
= − 1

ρ
+ 1

ρ̃op(ρ)

∂ρ̃op(ρ)

∂ρ
, (4.17)

we see that a sufficient condition for the concavity of λ is that

∂ρ̃op(ρ)

∂ρ
� 0, (4.18)

that is, that the mean density of open sites be a nonincreasing
function of particle density, a relation that seems intuitively
obvious even if we lack a formal proof. Below we provide
numerical evidence for the concavity of λ(ρ).

D. Results

1. Macrostate equivalence

To test macrostate equivalence, we calculate µ* in the fixed-
N description for diverse values of ρ and D using Eq. (1.1).
Then, we compute P̃N for these µ* values using Eqs. (4.6)
and (4.8), and finally determine the stationary macroscopic
means in the fixed-µ* description. Thus, we ask whether the
relations

ρ = 〈ρ〉, (4.19)

ρ̃op(ρ) = 〈ρ̃op(ρ)〉, (4.20)

ρ̃ (2)(ρ) = 〈ρ̃ (2)(ρ)〉, (4.21)

ρ̃ (2)
op (ρ) = 〈

ρ̃ (2)
op (ρ)

〉
, (4.22)

hold to within numerical uncertainty.
Figure 4 shows the differences between stationary macro-

scopic quantities in equilibrium (D=0) for lattice sizes L =
10, 20, 28, 56, 64, 96, 128, 160. In equilibrium, as ex-
pected, the difference between corresponding quantities in
the two descriptions decreases as L grows. Figure 5, for
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FIG. 4. NNE model in equilibrium. Differences between macroscopic means computed in the fixed-N and fixed-µ* ensembles as a function
of µ* for system sizes as indicated. (a) differences in density, (b) open-site density, (c) density of second-neighbors pairs, (d) density of occupied
pairs of second neighbors. Error bars are smaller than 10−4.

D = 1, shows similar behavior in the maximum-drive case.
In both figures, the error bars are smaller than 10−4, and can
barely be seen. Figure 6 shows the global deviation �ρ ≡
max(〈ρ〉 − ρ̃ ) − min(〈ρ〉 − ρ̃ ) (top left), as well as �ρop (top
right), �ρ (2)

op (bottom left), �ρ (2) (bottom right), defined anal-
ogously, as functions of 1/L. The blue circles correspond to
D = 0 (equilibrium), green stars to maximum drive, D = 1.
The tendency to decay as L increases is clear for all four
quantities studied, in or out of equilibrium. These results are
evidence that in the TL, macrostates are identical in the two
descriptions.

2. Concavity of λ(ρ, D)

Using simulation data, we compute λ(ρ, D) [Eq. (4.14)].
Figure 7 (left panel) compares λ(ρ, D) in equilibrium (solid
line) and for D = 1 (broken line), for L = 160. Both curves
are clearly concave. The right panel of this figure shows
λ(ρ, D = 1) for diverse lattice sizes, suggesting convergence
to a limiting function as L → ∞.

Figure 8 shows ∂ρ̃op/∂ρ estimated via finite differences for
L = 160, for D = 0 (blue curve) and D = 1 (broken orange
curve); the maximum value of the derivative does not change
significantly with lattice size. These results are numerical
evidence of the concavity of λ(ρ, D), and hence, description
equivalence, for nonequilibrium steady states states as well as
in equilibrium.

3. Probability density

We turn our attention to the probability density P̃ (ρ),
which is approximated from the discrete probability distribu-
tion P̃(ρ) as follows. Since, for a square lattice of linear size
L, the maximum number of particles is Nmax = L2/2 (for even
L), and the number of possible density values is Nmax + 1, we
define δρ as

δρ ≡ ρmax − ρmin

Nmax + 1
= 0.5

Nmax + 1
, (4.23)

and then write P̃ (ρ) as

P̃ (ρ) = P̃(ρ)

δρ
. (4.24)

Figure 9 (left panel) shows P̃ (ρ) for D = 1 and μ∗ = 1.15
and various system sizes. As L increases, the probabil-
ity density accumulates around the mean. The maximum
value increases with L, suggesting a tendency toward a δ

distribution. Defining ρ̂ ≡ L(ρ − ρ∗), where ρ∗ is the value
of ρ that maximizes P̃ (ρ), and Q̂ ≡ L−1P̃ (ρ), we verify
the tendency to a δ function in Fig. 10, which shows that
the maximum of Q̂ tends to a constant when L → ∞, both
in equilibrium and under maximum drive. All curves are cen-
tered at zero, confirming that 〈ρ〉 = ρ∗.

Finally, we consider a numerical approximation for the
large-deviation function I (ρ) = − ln P̃ (ρ)/L2. Figure 9 (cen-
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FIG. 5. NNE model under maximum drive. Differences between macroscopic means computed in the fixed-N and fixed-µ* descriptions as
a function of µ* for system sizes as indicated. (a) Differences in density, (b) open-site density, (c) density of second-neighbors pairs, (d) density
of occupied pairs of second neighbors. Error bars are smaller than 10−4.

tral panel) shows I (ρ) for diverse values of L. One expects
I (ρ) to be nonnegative, with a root at ρ∗. Indeed, this property
is asymptotically approached as L increases. Figure 9 (right
panel) shows that Imin approaches zero as L increases. We find
similar results for µ* in [−4, 4], and D in [0,1].

E. Discussion

The above results lead us to conclude that description
equivalence holds in the NNE model under a drive, as well
as in equilibrium. Previously, the effective chemical potential
determined in the fixed-N case (1.1) was shown to have pre-
dictive power for systems exchanging particles [3], thereby
suggesting equivalence. The present results sustain this con-
clusion and justify the use of (1.1) to measure the chemical
potential of NESS in isolation. Our results for the NNE model
are in accord with Ref. [15] in which the grand canonical
ensemble is derived using the assumption that the systems of
interest can be described by a large-deviation principle in the
TL. The authors of Ref. [15] found that similar results hold
in general: (a) a probability distribution for N with the same
structure as the equilibrium one; (b) given that this probability
distribution is described by a large deviation function (for
them, an assumption, for us, a result) one has macroscopic
equivalence; (c) the chemical potential obtained from mini-
mizing the rate function, I (ρ), is equal to the one we obtain
using the zero-current condition.

V. RESERVOIR INDEPENDENCE

A. Two-reservoir scheme

Consider a NNE lattice gas S in a steady state, in contact
via weak global exchange with two reservoirs, R1 and R2,
with chemical potentials μ∗

1 and μ∗
2, respectively. The former

exchanges single particles with S , while the latter inserts a
pair of particles at pairs of open second-neighbor sites and
removes a pair of particles from occupied second-neighbor
sites. The insertion and removal rates for each reservoir sat-
isfy detailed balance, as discussed in Sec. III. wins(R1) and
wrem(R1) carry a factor ε1 representing the overall exchange
rate with R1; similarly, wins(R2); wrem(R2) carry a factor ε2.
In the weak-exchange limit, both ε1 and ε2 tend to zero, with
ε1/ε2 ≡ ε. Figure 11 illustrates S in contact with R1 and R2.

The macroscopic master equation describing the two-
reservoir scheme is

dPN (t )

dt
=

∑
�N=±1,±2

[w(N ′,�N )PN ′ (t ) − w(N,�N )PN (t )].

(5.1)

As before, N ′ = N − �N . The macroscopic rates for ex-
change with R2 are

w(N,+2) =
∑

C∈�(L,N )

wins(R2) p̃C|N = ε2z2
2 ρ̃ (2)

op (N ) (5.2)
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0.0 0.2 0.4
ρ

0.0

0.1

0.2

0.3

0.4

λ
(ρ

,D
=

1)

10

28

64

128

160

(a) (b)
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FIG. 8. Derivative of open-site density ρ̃op(ρ ) as function of den-
sity ρ for lattice size L = 160. The maximum value, in equilibrium
(continuous blue curve) and away from equilibrium (dashed orange
curve) is never greater than zero, so the inequality (4.18) always
holds.

and

w(N,−2) =
∑

C∈�(L,N )

wrem(R2) p̃C|N = ε2 ρ̃ (2)(N ). (5.3)

We choose the time unit such that ε2 = 1, and therefore,
ε1 = ε. Thus ε = 0 corresponds to S in contact with R2 only,
and ε → ∞ to contact with R1 only. Note that for ε = 0,
configuration space is divided into two mutually inaccessible
regions, one with N even, the other with N odd. Therefore, to
probe the small-ε regime, it is more convenient to study the
limit ε → 0, rather than setting ε to zero.

Let JN1 and JN2 denote the particle currents between S and
R1 and R2, respectively. The currents, taken as positive when
the net flux is into S , are

JN1 = ε[z1〈ρ̃op〉 − 〈ρ〉] (5.4)

and

JN2 = [
z2

2

〈
ρ̃ (2)

op

〉 − 〈ρ̃ (2)〉]. (5.5)

The total particle current JN = JN1 + JN2 must vanish in
the stationary state. Reservoir independence holds if μ∗

1 =
μ∗

2 =µ* implies JN1 = JN2 = 0 for all values of µ*.

B. Results

In this subsection, we report results based on the stationary
solution of the master equation, (V.1). This is achieved in two
steps: First, we obtain precise estimates of the transition rates,
w(N,�N ) via Monte Carlo simulation (see the last two para-
graphs of Sec. II). Then we solve the master equation using
the iterative method introduced in Ref. [24].

1. μ∗
1 = μ∗

2

We study the case of equal chemical potentials, μ∗
1 =

μ∗
2 =µ*, for ε = 0.01, 0.1, 0.5, 1, and μ∗ ∈ [−4, 2]. Remark-

ably, we find that when S is out of equilibrium (D > 0), there
is a nonzero particle current from one reservoir to the other.
Particles are transferred from R2 to R1 for small µ*, and in
the opposite sense for larger values. Figure 12 shows JN1 as
a function of µ* and D, for ε = 1. (The upper panel is for
L = 28, the bottom for L = 160.) The current increases with
D, exhibiting a maximum for μ∗ ≈ 0.9. Although the numer-
ical values for the two sizes are different, they have the same
order of magnitude and very similar behaviors. Varying ε,
the intensity of the current varies, but its qualitative behavior
remains the same.

Figure 13 shows the currents JN1 (blue line), JN2 (orange
line), and JN = JN1 + JN2 (green line) as a function of D for
μ∗ = 0.9. |JN1 | ∝ D2 near D = 0, as required by symmetry,
and approaches a linear dependence for larger drives. The
particle current between reservoirs is nonzero except for very
specific combinations of µ*, D, and ε. These results demon-
strate that, out of equilibrium, reservoir independence no
longer holds!
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FIG. 9. (a) Probability density P̃ (ρ ) [Eq. (4.24)] for lattice sizes as indicated. The maximum value of P̃ (ρ ) increases monotonically with
L. (b) Large-deviation function I (ρ ) near its minimum. I (ρ ) is expected to have a single root exactly at ρ∗, the value of ρ that maximizes
P̃ (ρ ). (c) Imin versus 1/L2 for L = 64, 96, 128, 160. Symbols are data and lines linear fits. Blue circles and broken line: D = 0; green stars
and continuous line: D = 1.
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ρ̂ ≡ L(ρ − ρ∗) for μ∗ = 1.15; the collapse of the curves is almost
perfect. The insets show details near the maximum. (a) Equilibrium.
(b) Maximum drive.

2. μ∗
1 �= μ∗

2

Given that, under a nonzero drive, there is a particle current
from one reservoir to the other for μ∗

1 = μ∗
2, we ask if it is

possible, given μ∗
1 and D, to adjust μ∗

2 such that the parti-
cle current between reservoirs vanishes. For example, when
μ∗

1 = μ∗
2 = 0.9, particles flow from R1 to R2. One naturally

expects this flux to decrease as one increases μ∗
2 and to vanish

FIG. 11. Two-reservoir scheme. Reservoir Ri with dimension-
less chemical potential μ∗

i exchanges particles with S at rate εi

(i = 1, 2).
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FIG. 12. Stationary particle current from R1 to S versus dimen-
sionless chemical potential µ* for ε = 1, and L = 28 (a) and L = 160
(b) for drives D indicated in the key. (Note that this is the same
current delivered to R2.) In general, there is a particle current from
one reservoir to the other, unless D = 0 (equilibrium).

for some μ∗
2 = μ∗

2, at which point JN1 = JN2 = 0 and the two
reservoirs coexist simultaneously with S .
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FIG. 13. Particle currents to S, JN1 from R1 (upper) to S, and JN2

from R2 to S (lower) versus drive D for μ∗ = 0.9, ε = 1 and L =
160. The green horizontal curve denotes JN1 + JN2 , which is always
zero in the stationary state.
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FIG. 14. Current JN2 from R2 to S versus μ∗
2, for R1 at fixed

chemical potential μ∗
1 = 0.9. Each line is for a distinct value of ε as

indicated. Negative values of JN2 mean that R2 receives particles, and
vice versa. The value of μ∗

2 such that JN2 = 0 is independent of ε.

We study the particle flux between reservoirs for μ∗
1 =

0.7, 0.8, 0.9, and 1.0, (i.e., values exhibiting relatively strong
violations of reservoir equivalence) and diverse values of ε.
We use JN2 to measure of flux between R1 and R2: If JN2 < 0,
R2 receives particles from R1, and vice versa. For each μ∗

1,
we evaluate the current JN2 for μ∗

2 = μ∗
1 + �µ*, for a series

of positive �µ* values. Figure 14 shows JN2 versus μ∗
2 for

L = 160 and μ∗
1 = 0.9; JN2 increases linearly with �µ*. Using

linear interpolation, we estimate μ∗
2 ≈ 0.9117. A remarkable

fact is μ∗
2 has nearly the same value, independent of ε: All

curves appear to cross zero at the same point. Finally, μ∗
2

depends on L in a manner suggesting convergence as L in-
creases, as expected since the stationary means depend weakly
on L.

If S is in equilibrium (D = 0), it coexists simultaneously
with R1 and R2 when they share the same value of µ*. In this
case, the stationary probability distribution P̃N is the same,
whether S is in contact with both reservoirs, or only with R1.
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FIG. 16. Relative entropy versus dimensionless chemical poten-
tial μ∗

2, between P1
N , the probability distribution when only R1 is

connected to S, and P2
N , the distribution when both reservoirs are

connected, for μ∗
1 = 0.9. Each line corresponds to a rate ε (from

darkest to lightest, ε = 0.01, 0.1, 0.5, 1.0). (a) equilibrium (D = 0);
(b) nonequilibrium (D = 1). In both cases, the minimum in relative
entropy is independent of ε.

For D > 0, this is no longer the case. Figure 15 compares,
for D = 1, the probability distribution P1

N when S is only in
contact with R1, with P2

N , the probability distribution when
S is in contact with both reservoirs. The left panel shows
P1

N and P2
N for μ∗

1 = μ∗
2 = 0.9, the center panel for μ∗

1 = 0.9
and μ∗

2 = 0.9117, all with ε = 1. The right panel shows the
difference P2

N − P1
N for the two situations, showing that for

μ∗
2 = μ∗

2, P2
N = P1

N . Thus, to obtain equal distributions under
a drive, the chemical potentials must differ by �µ*, whose
value depends on D, μ∗

1, and L. (Since the two reservoirs
now coexist with S , it is not surprising that the value of μ∗

2
is independent of the relative coupling strength ε).

For a quantitative comparison between P1
N and P2

N , we
analyze the Kullback-Leibler divergence or relative entropy,

Hrel
(
P1

N

∣∣P2
N

) =
Nmax∑
N=0

P1
N ln

P1
N

P2
N

, (5.6)
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FIG. 15. Panels (a) and (b) show the probability distribution PN for μ∗
1 = 0.9, D = 1 and ε = 1. The broken black line is P1

N , the probability
distribution when only R1 is connected to S. The continuous blue line is P2

N , the probability distribution when both R1 and R2 are connected
to S. (a) μ∗

2 = 0.9, (b) μ∗
2 = 0.91172. Panel (c) shows the difference P2

N − P1
N in the two situations. The continuous black line is for μ∗

2 = 0.9,
the broken red line is for μ∗

2 = 0.91172.
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FIG. 17. Dimensionless effective chemical potentials, μ∗
1 and μ∗

2 computed by virtual coexistence as functions of density, respectively
for R1 and R2. Panels (a) and (c) are for equilibrium (D = 0), with the lower panel highlighting the region of greatest difference; (b) and
(d) are for maximum drive (D = 1). Out of equilibrium the virtual coexistence method yields |μ∗

1 − μ∗
2| converging to a nonzero limit as L

increases.

as a function of μ∗
2. The left panel in Fig. 16 shows that

for D = 0 (equilibrium), P1
N = P2

N when μ∗
1 = μ∗

2 = 0.9. Any
deviation of μ∗

2 from μ∗
1 leads to Hrel(P1

N |P2
N ) > 0. Moreover,

Hrel has a clear dependence on ε. The right panel, for D = 1
and μ∗

1 = 0.9, demonstrates that independence of ε and Hrel �
0 are observed for μ∗

2 ≈ 0.9117. Similar behaviors are found
for other values of μ∗

1. Inspection of Eqs. (5.4) and (5.5),
shows that one can determine μ∗

2 directly from stationary
means computed using P1

N . The condition JN2 = 0 implies

μ∗
2 = 1

2
ln

〈ρ̃ (2)〉〈
ρ̃

(2)
op

〉 , (5.7)

where 〈ρ̃ (2)〉 and 〈ρ̃ (2)
op 〉 are computed using P1

N . Thus, for L =
160, μ∗

1 = 0.9 and D = 1, we find μ∗
2 = 0.911718.

We can use description equivalence and the expressions
obtained using virtual exchange to understand these results in
the TL. Applying Eq. (3.2) to the two-reservoir setup and the

fixed-N probability distribution, and isolating μ∗
2 we find

μ∗
2 = 1

2
ln

ε(ρ − ρ̃opz1) + ρ̃ (2)

ρ̃
(2)
op

. (5.8)

For μ∗
2 to be independent of ε, it is necessary that

μ∗
1 = ln

ρ

ρ̃op
(5.9)

and, hence,

μ∗
2 = 1

2
ln

ρ̃ (2)

ρ̃
(2)
op

. (5.10)

These are the same as the expressions obtained applying vir-
tual exchange to each reservoir independently. Thus, we can
understand the value given by Eq. (5.10) as μ∗

2. Figure 17
shows |μ∗

1 − μ∗
2| as a function of density computed via virtual

exchange directly in fixed-N simulations for system sizes L =
10, 20, 28, 56, 64, 96, and 128. The left panel corresponds
to equilibrium (D = 0) and the right to D = 1. The lower
graphs in each column show detailed plots of |μ∗

1 − μ∗
2| in
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the range of densities for which nonequilibrium effects are
strongest. As L increases, the difference between the two
chemical potentials vanishes in equilibrium, while for D = 1
it converges to a well defined nonzero value.

C. Discussion

To understand why the coexistence value of µ* depends on
the exchange scheme ζ when S is out of equilibrium, we recall
the definition of particle current, Eq. (3.2). One can rearrange
this expression to yield

Jζ
N (μ∗) = |�N |

2

∑
C,C′

[w(C ′|C) p̃C − w(C|C ′) p̃C′]. (5.11)

It is clear that if p̃C = peq
C (D = 0), the current is zero, in-

dependent of ζ , because microscopic detailed balance holds,
guaranteeing that each contribution to the particle current due
to insertion is compensated by removal. Out of equilibrium,
however, microscopic detailed balance no longer holds, and
zero particle current is the net result of many contributions
which individually are unbalanced. Thus there is no reason to
expect Eq. (3.10) to hold for arbitrary ζ , and the choice of
the exchange scheme determines the value of μ∗

ζ ; the schemes
employed here for R1 and R2 provide an example. Neverthe-
less, if p̃C = peq

C , as is true for certain nonequilibrium models
(e.g., the zero range process [14]), reservoir independence
should hold.

VI. CONCLUSIONS

We investigate an aspect of the definition of an effective
chemical potential µ* for NESS that has been overlooked
until now. Starting from the concept of coexistence, we de-
fine a fixed-µ* description for a stochastic lattice gas with
NNE, a simple model with nontrivial NESS properties. We
ask whether the two thermodynamic descriptions, one with
fixed particle number [fixed-(N,V ; D|ζ1, 0)], the other with
fluctuating particle number [fixed-(μ∗,V ; D|ζ1, ε → 0)], are
equivalent in the TL. We find the two descriptions to be equiv-
alent at three levels: macroscopic, thermodynamic, and in
distribution. A important consequence is that the probability
density of the (particle) density can be described in terms of a
large-deviation function.

In addition, we show that in the fluctuating particle number
framework, two particle reservoirs with distinct mechanisms
of particle exchange (ζ ) lead to distinct values of the intensive
parameter. Thus, reservoir independence does not hold out of
equilibrium. The value of µ* attributed to a NESS depends on
how it exchanges particles with the reservoir. This makes it

possible for a driven system to transfer particles from a reser-
voir at a chemical potential to another at a higher chemical
potential.

Since this paper is part of an attempt to define intensive
parameters for NESS via coexistence with a reservoir, depen-
dence of µ* on the exchange mechanism is an unwelcome
complication. The fundamental criterion of consistency (i.e.,
the zeroth law) can only be expected to hold for each specific
exchange scheme, not for all simultaneously. It is nevertheless
possible to establish equivalences between two distinct ex-
change mechanisms using the properties of fixed-N systems,
as shown here using results from fixed-particle-number sim-
ulations. Thus, intensive parameters defined via coexistence
retain their predictive power.

Although our results are obtained for a specific sys-
tem (the NNE lattice gas), we expect them to hold for
other models in NESS. An interesting example for future
study is the KLS-driven lattice gas [11], since it possesses
two intensive parameters, effective chemical potential and
temperature. In the KLS model, the relation between
macrostate and thermodynamic equivalence still holds. We
believe that the probability distribution over the number of
particles will satisfy a large deviation principle in the TL,
since the macroscopic particle removal rate is a monotocically
increasing function of density and the particle insertion rate is
monotonically decreasing function of density.

Description equivalence appears to be a general prop-
erty of stochastic particle processes with reflecting barriers
at N = 0 and N = Nmax. For nonathermal systems such as
the KLS model, one may also ask whether the fixed- and
variable-energy descriptions are equivalent in the thermody-
namics limit. Since the stationary distribution (of energy)
under stochastic energy exchange is again characterized by
a vanishing probability current, it seems reasonable to expect
that description equivalence will hold in this case as well.

We intend to address these questions in future work.
Finally, a further challenge is the definition of intensive pa-
rameters for systems in contact with reservoirs away from the
weak-exchange-limit. We believe that understanding coexis-
tence away from the WEL may hold the key to a problem that
has resisted analysis until now: How to predict the density
profile in nonuniform NESS involving walls or a spatially
varying drive.
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