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Computer simulations and mode-coupling theory of glass-forming confined hard-sphere fluids
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We present mode-coupling theory (MCT) results for densely packed hard-sphere fluids confined between
two parallel walls and compare them quantitatively to computer simulations. The numerical solution of MCT
is calculated using the full system of matrix-valued integro-differential equations. We investigate several dy-
namical properties of supercooled liquids including scattering functions, frequency-dependent susceptibilities,
and mean-square displacements. Close to the glass transition, we find quantitative agreement between the
coherent scattering function predicted from theory and that evaluated from simulations, which enables us to
make quantitative statements on caging and relaxation dynamics of the confined hard-sphere fluid.
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I. INTRODUCTION

Physical confinement fundamentally changes the prop-
erties of simple liquids, including their structure [1–3],
mechanical properties [4,5], and phase behavior [6–10].
Studying the impact of physical confinement on atomic,
molecular, or colloidal fluids is therefore of fundamental in-
terest for science and technology. Systems of interest are, for
example, crowded motion in living cells, liquids in porous
media, or micro- and nanofluidics.

Arguably the simplest models for confined liquids are
hard spheres or colloids, confined between two parallel walls.
Within the fields of statistical and soft matter physics this
system has been intensively studied via experiments [11–22],
computer simulations [1,5,23–40], and theory [7,8,10,21,41–
44]. Important findings are that the confinement leads to inho-
mogeneous density profiles and anisotropic particle packing
[3]. It also hinders or accelerates the dynamics depending on
the wall-particle potential [35] and the wall roughness [24,34].
Additionally, confinement leads to a reentrant crystallization
transition [7], and confined hard disks have been shown to
feature a fragile to strong liquid crossover [45].

Of particular interest in the field of soft-matter physics is
the impact of confinement on the structural relaxation of dense
liquids. It is well known that close to the glass transition, such
dense liquids exhibit a drastic slowing down of transport upon
compression or cooling. Since confinement has a significant
impact on the packing and density of liquids it is therefore
expected that it also strongly affects the glass transition itself.
In a series of papers the effect of physical confinement on
the glass transition of a confined hard-sphere fluid has been
investigated using mode-coupling theory [10,41,42,44,46]. In
particular, an intriguing multiple-reentrant glass transition has
been observed [10,46], in which a liquid can be vitrified and
melted multiple times just by systematic reduction of the wall
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separation. The recently developed cMCT [41,46,47], an ex-
tension of mode-coupling theory (MCT) [48–50] to confined
liquids, accounts for the broken translational invariance and
the existence of multiple relaxation channels. Providing a
numerical solution for the full time-dependent dynamics for
this first-principles theory enabled us to qualitatively explain
the multiple-reentrant scenario [42,44]. We have also found
that all dynamical quantities connected to the glass transition,
including structural relaxation time, diffusion coefficients, and
stretching coefficients, also exhibit a nonmonotonous depen-
dence on the wall separation.

The theoretical analysis described in the above series of
papers was, however, based on a technical numerical approx-
imation. While this “diagonal approximation” was required
to obtain stable solutions of the cMCT equations, it prevents
quantitative comparison between theory and simulations. In
this paper we therefore present a methodology to overcome
this technical approximation and provide time-dependent so-
lutions for the full matrix-valued integro-differential cMCT
equations. The methodology is based on mixing different dis-
cretization schemes to stabilize the numerical integration. To
validate the theoretical results we perform event-driven com-
puter simulations of hard spheres in confinement close to the
glass transition [10,51–53]. We find quantitative agreement
between the cMCT results and the simulations for several
important dynamical properties, including stretching coeffi-
cients and nonergodicity parameters. This paper therefore not
only validates the results obtained in previous papers using the
diagonal approximation for cMCT, but also presents nontrivial
results from theory and simulations on particle caging and
relaxation dynamics.

Our paper is organized as follows. In Sec. II we recapitu-
late the important cMCT equations and present the different
algorithms used to solve these equations numerically. Then
we introduce the simulation model in Sec. III. In Sec. IV the
results for the structural relaxation at the critical packing frac-
tion obtained from both cMCT and event-driven molecular
dynamics simulations are presented. In the subsequent sec-
tions these results are then quantitatively compared with each
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FIG. 1. Schematic of the hard-sphere fluid in confinement in-
cluding the important length scales: the wall separation H , the
accessible slit width L = H − σ , and the particle diameter σ . The
confinement direction is the z axis. Adapted from Ref. [40].

other focusing on the nonergodicity parameter (see Sec. V)
and the critical exponent (see Sec. VI). We summarize and
conclude in Sec. VII.

II. MODE-COUPLING THEORY

In this paper we will consider a system of hard spheres
of diameter σ confined between two parallel, hard and neutral
walls at a distance H (see Fig. 1). Due to the boundary regions,
the particles can access only a reduced region in the slit of
length L = H − σ , which will be the confinement length scale
or accessible slit width reported in this paper. For this system,
the packing fraction is defined as ϕ = Nπσ 3/6V , with parti-
cle diameter σ , volume V = AH , and wall area A.

The original cMCT has been developed for Newtonian
dynamics in Ref. [46] and extended to Brownian dynamics
in Ref. [54]. In the following section we will recapitulate
the most important steps of the derivation and the integro-
differential equations for Brownian dynamics. In Sec. II C
we will then provide a detailed discussion of how to solve
these equations numerically. Readers already familiar with
these concepts or not interested in the technical details may
immediately jump to Sec. III.

A. cMCT equations of motion

To characterize the relaxation dynamics of the system we
study the fluctuating density of N particles in confinement (as
sketched in Fig. 1),

ρ(r, z, t ) :=
N∑

n=1

δ[r − rn(t )]δ[z − zn(t )], (1)

with the particle positions at time t in the lateral rn(t ) =
(xn(t ), yn(t )) and transverse direction zn(t ). Our theoretical
approach is then to derive the equations of motion for the
incoherent scattering function,

Sμν (q, t ) = 1

N
〈ρμ(q, t )∗ρν (q, 0)〉, (2)

which is defined from the fluctuating density modes,

ρμ(q, t ) =
N∑

n=1

exp[iQμzn(t )]eiq·rn(t ). (3)

Here we have introduced the wave vectors q = (qx, qy) and
discrete wave numbers Qμ = 2πμ/L, μ ∈ Z. In the fol-
lowing, the indices μ will be referred to as mode indices.
The modes naturally emerge due to the missing translational

invariance in z direction and the finite confinement length L.

The missing invariance also implies the emergence of an in-
homogeneous density profile n(z) = 〈ρ(r, z, t )〉. We therefore
also introduce the density Fourier amplitudes,

nμ =
∫ L/2

−L/2
n(z) exp(iQμz)dz, (4)

and corresponding Fourier amplitudes vμ for the local volume
v(z) = 1/n(z).

Based on the assumption of overdamped, colloidal dy-
namics without hydrodynamic interactions, the underlying
microscopic equations of motion is described by the Smolu-
chowski equation [54,55]. Using the Zwanzig-Mori projection
operator formalism [49,56,57] and projecting on the density
modes {ρμ(q, t )} as a set of distinguished variables, one finds

Ṡ(t ) + DS−1S(t ) +
∫ t

0
δK(t − t ′)S−1S(t ′) dt ′ = 0, (5)

with the diffusion matrix [D]μν = D0(n∗
μ−ν/n0)(q2 + QμQν ),

the short-time diffusion coefficient D0, and the contracted
force kernels δK(t ). Here and in the following, the explicit
dependence on the wave number q is occasionally suppressed
in the notation to improve readability.

Due to the decomposition of the density modes in the di-
rections parallel and perpendicular to the walls, the relaxation
also splits naturally into multiple channels [54]. We therefore
introduce the contraction

Aμν (q, t ) = C
{
Aαβ

μν (q, t )
}

:=
∑

α,β=‖,⊥
bα (q, Qμ)Aαβ

μν (q, t )bβ (q, Qν ), (6)

using the selector bα (x, z) = xδα,‖ + zδα,⊥. This allows intro-
ducing the force kernels δK as δKμν (q, t ) = C{δKαβ

μν (q, t )}.
The indices α, β will be referred to as channel indices, and
the matrix notation with calligraphic symbols δK based on the
superindex (α,μ) will be employed. Having introduced the
contraction, the equations of motion for the force kernel δK
can be formally rewritten in terms of an irreducible memory
kernel M [54],

δK(t ) = −DM(t )D −
∫ t

0
DM(t − t ′)δK(t ′) dt ′. (7)

Here the channel diffusion matrices [D]αβ
μν = D0δαβn∗

μ−ν/n0

has been introduced.
The equations of motion that have been derived so far

are exact. To make theoretical progress, however, a closure
relation between the irreducible memory kernel M(q, t ) and
the coherent scattering function S(q, t ) has to be invoked.
For this purpose an approximate mode-coupling functional
Fαβ

μν [S(t ); q] = Mαβ
μν (q, t ) has been derived [54],

Fαβ
μν [S(t ); q]

= 1

2N

∑
q1,

q2=q−q1

∑
μ1,μ2
ν1,ν2

Yα
μμ1μ2

(q, q1, q2)

× Sμ1ν1 (q1, t )Sμ2ν2 (q2, t )Yβ
νν1ν2

(q, q1, q2)∗, (8)
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where the vertices Yα
μμ1μ2

(q, q1, q2) are smooth functions of
the control parameters,

Yα
μμ1μ2

(q, q1, q2) = n2
0

L4

∑
κ

v∗
μ−κ [bα (q1 · q/q, Qκ−μ2 )

× cμ1,κ−μ2 (q1) + (1 ↔ 2)]. (9)

Conceptually the equations of motion for the incoherent
intermediate scattering function S(s)(q, t ) are identical to the
ones for the coherent scattering function (q, t ) as introduced
above. For details we refer to Refs. [44,54,58]. The superscript
(s) will always refer in the following to incoherent dynamics.
In Ref. [44] we have also described how to calculate the in-
plane mean-square displacement δr2

‖ (t ), which we will also
analyze in this work.

cMCT is purely based on three static input functions,
the inhomogeneous density profile n(z) in the transverse
direction, the generalized structure factor Sμν (q), and the
generalized direct correlation functions cμν (q), which can all
be determined numerically from first-principles theories. The
former is calculated via fundamental measure theory [59,60]
and the latter two via the generalized Ornstein-Zernike equa-
tion [57] with Percus-Yevick closure. Details can be found
in Refs. [61,62]. Throughout this paper we use the same
parameters as in Ref. [42].

B. Nonergodicity parameter

The nonergodicity parameter is defined as the plateau value
in the intermediate scattering function Fμν = limt→∞ Sμν ,
which becomes nonzero above the mode-coupling glass-
transition point. The nonergodicity parameter can be deter-
mined based on the self-consistent equations [41,46],

F(q) = [S−1(q) + S−1(q)K[F(q)]S−1(q)]−1 = I[F(q)],

(10)

[K[F(q)]]μν =
∑

α,β=‖,⊥
bα (q, Qμ)[F−1[F(q); q]]αβ

μνbβ (q, Qν ),

(11)

without solving the MCT equations of motion for the full
time dependence. It has been proven that Eqs. (10) and
(11) yield an iterative procedure, F (n+1) = I[F (n)], which
has a unique maximal solution F̄(q) starting from an initial
condition F (0) = S(q). This maximal solution F̄(q) can be
identified as the nonergodicity parameter. The critical point of
the glass transition is then determined by solving this iteration
for various packing fractions and identifying the critical point
with the discontinuous jump in the nonergodicity parameter
[46]. We will report in Sec. IV the confinement-dependent
critical packing fraction ϕc(L), and in Sec. V the nonergodic-
ity parameters for the coherent and incoherent scattering, F(q)
and F(s)(q), at the critical point.

C. Numerical time integration

The mode-coupling-theory equations for the structural re-
laxation of confined colloids have been presented in Eqs. (5)
and (7). In principle, these equations could be discretized in
time and then numerically integrated. The numerical solution

is, however, with reasonable computational effort stable only
up to times t � 0.1τ , where τ = σ 2/D0 is the time needed for
a free particle to diffuse its own diameter.

In previous publications we have therefore introduced an
effective memory kernel, M(t ), via the implicit definition

K̂(z) = −[iD−1 + M̂(z)]−1. (12)

Here we have introduced K̂(z) = δK̂(z) + iD(q) with the
high-frequency limit K̂(z) → iD(q) as z → ∞ as in Ref. [54].
Using this memory kernel, the final equation of motion for the
structure factor can be rewritten as

D−1Ṡ(t ) + S−1S(t ) +
∫ t

0
M(t − t ′)Ṡ(t ′) dt ′ = 0, (13)

which could be discretized and integrated accurately for arbi-
trarily long timescales (up to t � 1020τ ) in Refs. [42,44] using
the diagonal approximation.

1. Diagonal approximation (DA)

The idea of the diagonal approximation is to simplify the
equations of motion by neglecting all off-diagonal terms of
all matrices, Mαβ

μν (q, t ) = Mα
μ(q, t )δαβδμν , and Sμν (q, t ) =

Sμ(q, t )δμν . This not only significantly reduces the complexity
of the equations and avoids large matrix multiplications, but
it also enables the determination of the effective memory
kernel directly from the mode-coupling functional in the time
domain from Eq. (12) [44,54]. Using this DA we were able
to make theoretical predictions for the structural relaxation of
hard-sphere fluids in confinement which qualitatively agree
with simulation results [10,42].

The DA has the character of a technical approximation and
cannot be systematically lifted to investigate convergence or
error estimates. It is therefore highly desirable to also solve the
full matrix-valued system of equations, even if it is possible
only on smaller time scales, to validate the results obtained
using the diagonal approximation.

2. Full solution (F)

The problem for the solution of the full matrix-valued
mode-coupling-theory equations is that the definition Eq. (12)
combined with Eq. (7) cannot be converted into a closed
differential equation in the temporal domain for the effective
memory kernel. The reason for this is that the matrix multipli-
cation is not commutative.

An alternative route (in the following called route A)
would then be to evaluate δK(t ) via Eq. (7), use this solution
to determine the effective memory kernel via the definition
Eq. (12) in the time domain, and finally integrate Eq. (13).
This improves the stability but still restricts the stable solution
to a timescale t � 10τ, which is not sufficient to study the
structural-relaxation process close to the glass transition.

Here we propose an algorithm which enables stable so-
lutions up to times t ≈ 105τ. The fundamental idea for
this algorithm is based on the observation described in
Ref. [44], Appendix A3, that the numerical solution of the
velocity-autocorrelation function (VACF) is more stable if
it is determined as the second time derivative of the mean-
square displacement than it is if being integrated directly.
Since the VACF is equivalent to the μ = ν = 0 mode of the
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current kernel, Z (t ) = δK‖‖
00(t ), it is a natural idea to introduce

a generalized mean-square displacement δR̈αβ
μν (t ) = δKαβ

μν (t )
for which we can derive the equation of motion,

δR(t ) + D
∫ t

0
M(t − t ′)δR(t ′) dt ′ = Dt . (14)

The proposed “route B” is to replace the evaluation of
Eq. (7) in route A with the integration of Eq. (14), fol-
lowed by the determination of the effective memory kernel
using the generalized mean-square displacement. Details on
the integration and discretization scheme of the coupled
integro-differential equations introduced above are described
in Appendix A. The numerical evaluation of the MCT equa-
tions also requires a discretization of the wave numbers q and
the introduction of a mode cutoff |μ| � M. Technical details
on these numerical requirements are given in Appendix B.

The MCT results reported in Sec. IV will be extracted at
packing fractions just below the critical point, which has been
determined in Sec. II B. We will discuss the coherent scat-
tering function Sc(q, t ) and the incoherent scattering function
Ss(q, t ) as well as the mean-square displacement δR‖‖

00(t ).

III. SIMULATION MODEL

We perform event-driven molecular dynamics (EDMD)
simulations of hard spheres confined between parallel,
hard, and neutral walls in the NVT ensemble [51–53].
We choose five different confinement lengths L/σ =
1.0, 1.25, 1.5, 1.75, 2.0 and as packing fraction the critical
packing fraction ϕc(L) determined in Ref. [10]. The total num-
ber of particles varies slightly with L but is roughly N = 5000.
To prevent crystallization, we introduce polydispersity and
draw radii from a Gaussian distribution of mean σ and vari-
ance 0.15σ . It should be noted that the polydispersity leads
to additional small deviations between simulations and cMCT
(monodisperse), which have been discussed in Ref. [10].

Using event-driven simulations implies that the micro-
scopic dynamics is Newtonian. This stands in contrast to
the microscopic Brownian dynamics used for cMCT. We
made this choice because cMCT is numerically less stable for
inertial dynamics in the density fluctuations, and including
Brownian motion in event-driven systems is very peculiar.
The above discrepancy is, however, not problematic since we
are interested only in the slow, structural relaxation, and the
results are thus expected to be independent of the microscopic
dynamics (as has been shown in 3D bulk systems [63] and in
confinement using cMCT with DA [44]).

IV. STRUCTURAL RELAXATION IN CONFINED
SUPERCOOLED LIQUIDS

Mode-coupling theory predicts a transition from an ergodic
liquid phase, in which the coherent scattering functions decays
to 0 for t → ∞ to a nonergodic glass phase upon compression
[48,49]. We report the critical packing fraction ϕc predicted
by cMCT in Fig. 2. As has been reported in Refs. [10,46],
cMCT predicts a reentrant glass transition, in which ϕc de-
pends nonmonotonically on L. Here we show that the same
scenario is found when using the full cMCT without diagonal
approximation which predicts a slightly larger critical value,

FIG. 2. Critical packing fractions ϕc of the glass transition for
different accessible slit widths L as determined from theory (MCT)
and computer simulations (EDMD [10]). Results are shown for MCT
using the full model (F) and the diagonal approximation (DA [42])
as well as for the freezing transition as calculated in Ref. [43]. The
arrows indicate the results in the bulk limit, and the inset visualizes a
zoomed section of the plot.

likely due to the inclusion of additional relaxation channels
that were neglected within DA.

As is commonly known, hard-sphere glasses studied by
computer simulations avoid the ergodicity-breaking transition
predicted by MCT [64]. Nevertheless, a drastic slowing of
transport can be observed which can be described over several
orders of magnitude by a power-law divergence. In this way
it is possible to extract a “critical” packing fraction ϕc for
the glass transition, as has been done in Ref. [10]. Compar-
ing simulations and cMCT it can be observed that cMCT
significantly underestimates the critical packing fraction, but
that both show qualitatively the same reentrant scenario (see
Fig. 2). This reentrant scenario is mainly induced by struc-
tural rearrangements. At confinement lengths corresponding
to integer multiples of the particle diameter, L ≈ nσ, n ∈ N,
particles are packed into n pronounced layers (commensurate
packing) which allows for relatively unhindered in-plane dif-
fusion and thus leads to larger critical packing fractions. For
intermediate L particles between the layers hinder diffusion
(incommensurate packing), thus increasing the coupling be-
tween the layers and restricting the particle motion [22]. The
logical consequence are smaller critical packing fractions ϕc

[10]. The amplitude of the oscillations visible in the critical
packing fraction is significantly stronger for cMCT compared
to EDMD. This is likely due to the difference in disper-
sity (monodisperse vs polydisperse), which correspondingly
reduces the impact of the nonmonotonous particle packing
described above [10].
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FIG. 3. Normalized coherent intermediate scattering function
S00(qmax, t ) for different accessible wall widths L for the wave num-
ber qmaxσ ≈ 2π which corresponds to the first peak in the structure
factor. The structural relaxation is fitted with a KWW law, Eq. (16),
to extract the structural relaxation time τ (plotted in thin lines).

In the following, we will perform cMCT calculations and
event-driven simulations for the five different values of L
slightly below their respective critical point ϕ(L) = ϕc(L) −
0.005. Despite the introduction of polydispersity it has been
shown in Ref. [43] using an enhanced equilibration SWAP
Monte Carlo algorithm that confined systems are prone to
crystallization. Here we therefore intentionally do not use
SWAP to equilibrate the simulations implying that the systems
are slightly supercooled. We find some early signs of crystal-
lization such as the emergence of small peaks in the structure
factor S00(q) visible in Ref. [39] Fig. 1(c). However, the effect
should be small enough to ensure only a marginal impact on
the relaxation dynamics analyzed below [39,43].

The coherent scattering function characterizing the decay
of density correlations slightly below ϕc shows the typical
two-step relaxation known for supercooled liquids [49,64,65]
(see Fig. 3); a short-time relaxation due to thermal mo-
tion is followed by a plateau which decays on much longer
timescales. The short-time relaxation depends on the micro-
scopic dynamics and is thus different for EDMD and cMCT.
The height of the plateau then contains information on the
length scale and strength of the cages in which the particles
are trapped before structural relaxation sets in. It can be iden-
tified with the nonergodicity parameters introduced above in
Sec. II B. Here we observe that the nonergodicity parameters
change nonmonotonically with the confinement length scale
L. Importantly, we find nearly quantitative agreement for the
plateau height and the long-time structural relaxation between
the full cMCT solution and computer simulations. This is a
rather nontrivial result for a first-principles theory without
fitting parameters and the most important result of this paper.
Figure 3 also highlights that the diagonal approximation is
not able to predict the correct values for the nonergodicity
parameters.

FIG. 4. Incoherent intermediate scattering function S(s)
00 (qmax, t )

for different accessible wall widths L for the wave number qmaxσ ≈
2π . The structural relaxation is fitted with a KWW law, Eq. (16), to
extract the structural relaxation time τ (plotted in thin lines).

To further characterize structural relaxation, we also calcu-
late the incoherent intermediate scattering function describing
the decay of the single-particle density,

S(s)
μν (q, t ) = 1

N

〈
N∑

n=1

exp[iQμ(zn(t ) − zn(0)]eiq·(rn(t )−rn(0)

〉
.

(15)

Importantly, it can be observed that the incoherent scatter-
ing function features the same two-step decay discussed for
S00(q, t ) only with different values of the nonergodicity pa-
rameters (see Fig. 4). The same statement actually holds for
all higher-order modes, Sμν (q, t ) and S(s)

μν (q, t ). This finding
is consistent with previous results for structural relaxation
in bulk [66] and in confinement [44] and consistent with
our scaling analysis of mode-coupling theories with multiple
relaxation channels close to criticality in Ref. [67]. The agree-
ment between simulations and cMCT is not as good as for
the coherent intermediate scattering function, in particular, for
L = 1.0σ. However, for the other confinement lengths L the
result is significantly better. Also in this case the full cMCT
solution improves the prediction from the DA.

To extract the nonergodicity parameters, all incoherent
and coherent scattering functions calculated for different
confinement lengths L and wave numbers q are fitted by
the phenomenological Kohlrauch-William-Watts (KWW) law
[68]

Sμν (q, t ) = Fμν (q) exp[−(t/τ )βkww ] (16)

to extract the structural relaxation time τ (L), which is used to
unify the timescales between the cMCT solutions and the sim-
ulations throughout the paper. It also enables us to determine
important properties of the structural-relaxation process. We
will analyze the nonergodicity parameters Fμν (q), F (s)

μν (q) and
stretching coefficients βkww in Secs. V and VI, respectively.
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FIG. 5. Frequency-dependent susceptibility χ ′′
00(qmax, ω) calcu-

lated from the in-plane ISF, Eq. (17), for L = 1.0σ at wave number
qmaxσ ≈ 2π . The results are based on the Fourier transform of the
incoherent ISF due to improved statistics for the EDMD simulations.

The two-step relaxation scenario is also known from scat-
tering experiments extracting frequency-dependent suscepti-
bilities of glassy materials [65,69]. Based on the calculated
scattering functions, we can identify the susceptibility,

χ ′′
00(q, ω) = ωŜ00(q, ω), (17)

using the Fourier cosine transform, Ŝ00(ω) =∫ ∞
0 dt cos(ωt )S(s)

00 (q, t ) [69]. The results clearly show
two distinct peaks in the susceptibility, which correspond
to the two-relaxation processes (see Fig. 5). From the
high-frequency flank of the low-frequency peak it is possible
to extract the exponent b of the von Schweidler law, also
know as the late β relaxation [49],

Sμν (q, t ) = Fμν (q) − A(t/τ )b. (18)

The von Schweidler law has been known from scattering
experiments [70] and can be predicted using the celebrated
β-scaling equation, which can be derived from first principles
using MCT [71,72]. For the actual fitting in this work we use
the late β relaxation to higher order [69],

Sμν (q, t ) = Fμν (q) − A(t/τ )b + B(t/τ )2b. (19)

We find that the von Schweidler exponent b coincides with the
stretching exponent βkww at wave number qmaxσ ≈ 2π within
the accuracy of the fitting procedure [73–75].

In previous work based on the DA we have found an inter-
esting kink on the right flank of the low-frequency peak [42],
which can be explained by the multiple relaxation channels
in the lateral and the transverse direction. Having performed
additional computer simulations and after solving the full
cMCT equations we can conclude that this observation may be
a numerical artifact of the DA. It is likely that the mode mixing
introduced by including the off-diagonal components leads
to additional couplings between the relaxation channels and

FIG. 6. In-plane mean-square displacement δr2
‖ (t ) for different

accessible wall widths L. The long-time diffusion coefficient DL is
fitted to the curves to adjust the timescales (20).

thus removes the multistep relaxation induced by the multiple
relaxation channels.

Another fundamental dynamical observable to character-
ize structural relaxation is the mean-square displacement
(MSD), δr2

‖ (t ) = 〈∑N
n=1[rn(t ) − rn(0)]2〉. here taken only for

the 2D lateral motion. It is easily accessible in simula-
tions and the extracted long-time diffusion coefficient DL :=
(1/4) limt→∞ dδr2

‖/dt is a popular measure to characterize
the glass transition [10,49,64]. Unsurprisingly, the MSD also
shows a two-step behavior. At short times, the motion is
inertial for the EDMD simulations (and diffusive for cMCT),
followed by a slower increase at microscopic length scales,
characterized by a “cage size” or localization length l‖. At
long times, the motion becomes diffusive again (see Fig. 6).
This behavior is qualitatively the same for simulations and
theory. Combining cMCT with the DA one, however, observes
a systematic underestimation of the localization length. There-
fore, we extract the important properties of the relaxation
dynamics using an interpolating equation to fit the MSD on
intermediate and long times,

δr2
‖ (t ) = 4l2

‖ − A(t/τ )b + B(t/τ )2b + 4DLt . (20)

Here the factors of 4 account for the two-dimensional lat-
eral motion. The equation thus connects the late β relaxation
[69] with the long-time diffusive regime. We will analyze
l‖ = l‖(L) as a function of the confinement length L in the
following section.

V. NONERGODICITY PARAMETERS

In the previous section we have discussed the time-
dependent structural relaxation displaying a very similar
two-step relaxation behavior with a characteristic plateau
across different confinement lengths L, wave numbers q, and
mode indices μ. In the following, we will analyze and discuss
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the nonergodicity parameter (NEP) and localization length
characterizing the plateau height.

The normalized NEP Fμν (q)/Sμν (q) shows a very similar
q dependence as the structure factor, with a pronounced peak
at roughly qσ ≈ 2π (see Fig. 7). It should be emphasized that
this is a nontrivial result, since the normalization removes any
direct impact of the structure factor. In fact, a similar NEP
is known from bulk liquids [see orange (light gray) line and
downward-pointing triangles in Fig. 7, top panel]. The peaks
in the NEP highlight the importance of the cages, formed by
nearest neighbors, for the dynamical particle trapping. We
conclude that this observation remains valid in confinement,
which only quantitatively modifies the NEPs. Consistent with
Ref. [39] we find that the nonergodicity parameters vary
nonmonotonically with confinement length L and that the
diagonal approximation significantly overestimates the struc-
tural arrest. The latter has been attributed to the effect of
polydispersity in Ref. [39]. Using the full solution of the
cMCT equations we can clearly draw a different conclusion
in this paper and account this to the diagonal approximation
itself. When using the matrix-valued equations we observe
good quantitative agreement between simulations and cMCT
over all confinement lengths L and wave numbers. The dis-
crepancy at small wave numbers qσ � 4 can be explained by
the differences in polydispersity, as shown for bulk fluids in
Fig. 5 of Ref. [76]. We further find that the NEPs in confine-
ment are consistently smaller than in bulk fluids. We interpret
these results by additional and anisotropic constraints due to
the walls in the z direction, which restrict the motion even
stronger than what we observe here in the in-plane direction
and thus induce the dynamical arrest.

Analyzing the nonergodicity parameters in the off-
diagonal, F01(q), and the higher-order modes, F11(q) we can
characterize some of the anisotropic effects on the cages. We
observe that also these terms are dominated by the peak at
qσ ≈ 2π , highlighting the importance of the particle cages.
Interestingly, the peak for incommensurate packing L = 1.5σ

is broader and slightly shifted to smaller q. We explain this
with anisotropic cages and larger fluctuations of cages sizes
at incommensurate packing. This effect could be induced by
the reduced overall packing fraction, while some particles are
being locked between the two pronounced layers, thus signif-
icantly slowing down the dynamics. In F11(q) also a second
peak at smaller qσ < 4 is emerging for L = 1.0σ indicating
the effect of the boundary itself. These effects are quantita-
tively reproduced by both simulations and cMCT, showing
that the first-principles theory is indeed able to predict the
complex shape of the cages and the trapped motion of the
particles in confinement.

Different from the normalized coherent nonergodicity
parameter, its incoherent counterpart, F s

μν (q)/Ss
μν , decays

monotonically with the wave number q; see Fig. 8. This
reflects the localization and strong caging of the particle.
Consistent with the observations discussed above we find that
the incoherent NEPs are smaller in confinement than they are
in bulk. The agreement between cMCT and simulations is not
as good as for the case of the coherent NEPs, but the important
qualitative features are very well reproduced and only small

FIG. 7. Normalized critical nonergodicity parameter
F crit

μν (q)/Sμν (q) for different accessible slit widths L for the
in-plane mode μ = 0, ν = 0 (top panel), the first off-diagonal
mode μ = 0, ν = 1 (middle panel), and the first diagonal mode
μ = 1, ν = 1 (bottom panel). Results are shown for MCT using
the full model (F) and the diagonal approximation (DA) and for
event-driven molecular dynamics simulations (EDMD) using a
KWW fit of the coherent intermediate scattering function Sμν (q, t ).
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FIG. 8. Normalized critical incoherent nonergodicity parameter
F (s)

μν (q) for different accessible slit widths L for the in-plane mode
μ = 0, ν = 0 (top panel), the first off-diagonal mode μ = 0, ν = 1
(middle panel), and the first diagonal mode μ = 1, ν = 1 (bottom
panel). Results are shown for MCT using the full model (F) and
the diagonal approximation (DA) and for even-driven molecular
dynamics simulations (EDMD) using a KWW fit of the incoherent
intermediate scattering function S(s)

μν (q, t ). Middle panel shows the

normalized quantity normalization S(s)
01 as an inset, and it holds gen-

erally S(s)
00 = S(s)

11 = 1 [58].

FIG. 9. Localization length l‖ for different accessible wall sepa-
rations L as determined from the von Schweidler fit, Eq. (20), of the
mean-square displacement δr2

‖ (t ) shown in Fig. 6. Results are shown
for MCT using the full model (F) and the diagonal approximation
(DA) and for even-driven molecular dynamics simulations (EDMD).
Arrows indicate the bulk limit.

quantitative deviations can be observed. Importantly, we find
that the full matrix-valued solution outperforms the diagonal
approximation. The off-diagonal component F s

10(q) and first
mode F s

11(q) are nearly indistinguishable from the zero mode
F s

00(q).
Based on the in-plane mean-square displacement we have

also extracted the localization length l‖, which can be in-
terpreted as the in-plane cage size. It shows an intricate
nonmonotonic behavior highlighting the changes in local
packing upon changing the wall separation (see Fig. 9). The
most pronounced change is the increase of l‖ when reducing
L ↓ σ . This change is induced by the structural reformation
from two layers with particle in between (L = 1.3σ ) to two
separate layers (L � 1.2σ ) [39]. As discussed above, com-
mensurate packing induces more free space for motion within
the cages. This behavior is qualitatively predicted by the full
solution of cMCT. The overestimation at L = 1.0σ is likely
to be explained by polydispersity which reduces the effect of
nonmonotonic structural changes. It is noteworthy that in the
case of the localization length l‖ the diagonal approximation
is not even qualitatively predicting the correct behavior. The
DA also systematically underestimates the localization length
which is directly related to the overestimation of the noner-
godocity parameters observed in Figs. 7 and 8.

VI. VON SCHWEIDLER EXPONENT

So far we have discussed one important feature of glassy
dynamics: the formation of a plateau indicating structural
arrest. However, also the decay from this plateau shows im-
portant properties specific for supercooled liquids. One of
these features is the nonexponential decay. As has been dis-
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FIG. 10. Von Schweidler exponent b for various accessible slit
widths L. Results are shown for MCT using the full model (F)
and the diagonal approximation (DA) and for even-driven molecular
dynamics simulations (EDMD). The results are based on fitting the
coherent ISF with Eq. (19) with fixed nonergodicity parameters.

cussed in Sec. IV and shown in Fig. 5 the right flank of the
low-frequency peak is described by the von Schweidler law,
or late β relaxation, with power exponent b [49]. In fact,
this power-law exponent is related to the stretching exponent
βkww in the KWW law (16) [74]. Both are nearly identical in
our case and show the same nonmonotonic behavior with the
confinement length L (see Fig. 10). The simulations clearly
indicate that the stretching is strongest for commensurate
packing. This behavior is quantitatively predicted by the full
solution of cMCT.

VII. CONCLUSIONS

While our previous theoretical results were based on an
uncontrolled technical approximation we have introduced in
this work a numerical procedure to solve the full matrix-
valued system of integro-differential cMCT equations. We
observe that the off-diagonal components, which introduce
mode mixing, have an important impact on structural re-
laxation. Incorporating them into the numerical procedure
is therefore crucial to obtain quantitative agreement with
computer simulations. Nevertheless, the “diagonal approxi-
mation” is able to qualitatively predict most of the important
features of confined dynamics. At least for the case of cMCT
it can thus be concluded that the “diagonal approximation”
is an appropriate numerical approximation to find stable so-
lutions for MCT. This conclusion might be of relevance for
other mode-coupling theories including active microrheology
[77,78], active particles [79,80], or molecules [81–83]. Con-
ceptually, the same formalism could also be used to study
confined hard disks as in Ref. [45], where we would expect
to observe similar phenomenology. However, the intrinsic
mean-field nature of the mode-coupling approximation will
become questionable in such strongly confined systems in low
dimensions.

Our work demonstrates that confinement entails nontrivial
effects for the dynamical properties of glass-forming liquids.

We have shown that mode-coupling theory in confinement can
be used to make quantitative predictions for several important
dynamical observables including the intermediate scattering
function, nonergodidcity parameters, and von Schweidler ex-
ponents. The results can be rationalized using the violation
of translational and rotational symmetries, leading to inho-
mogeneous and anisotropic dynamical response. We have
also introduced the important concepts of commensurate and
incommensurate packing which relate to nonmonotonic struc-
tural reformation upon changing the confinement length L
and thus strongly impact the critical packing fractions and
localization lengths. In future work it would be interesting to
compare these detailed simulation and numerical results to the
structural relaxation of colloidal liquids observed in confocal
microscopy [22].
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APPENDIX A: TIME INTEGRATION OF THE FULL
MCT EQUATIONS OF MOTION

Our algorithm, which is visualized in the flow chart in
Fig. 11 and described in more detail in Algorithm 1, is a
combination of a short-time integration via route A, followed
by a long-time integration via route B. The algorithm features
five different discretizations of differential equations, D1–D5,
which will be presented in the following.

Algorithm 1. Time integration of the mode-coupling theory
equations of motion, as sketched in Fig. 11. The discretizations
D1–D5 are described in the main text.

1: Input
Time step size �t , decimation step d , tolerance tol = 10−6,
discretized time dependence for the quantities, Si ← S(i�t ),
M(i�t ), K(i�t ), δK(i�t ), δR(i�t ) and M(i�t ).

2: Output
Updated time dependence Si+1, M i+1, K i+1, δKi+1, δRi+1

and Mi+1

3: Set Si+1 = Si, � = 1, Sold = Si+1

4: while � > tol do
5: Mi+1 = F [Si+1, Si+1] using Eq. (8).
6: if d � Dswap then
7: Calculate δKi+1 using Eq. (7) discretized with D3.
8: Calculate Ki+1 using the contraction Eq. (6).
9: Calculate M i+1 using Eq. (A3) with D4.

10: else
11: Calculate δRi+1 using Eq. (A1) with D1.
12: Calculate δRi+1 using the contraction Eq. (6).
13: Calculate M i+1 using Eq. (A2) with D2.
14: end if
15: Calculate Si+1 using Eq. (13) and M i+1 discretized with D5.
16: � = maxμ,ν (|Sμν,i+1 − Sold

μν |)
17: Sold = Si+1

18: end while
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FIG. 11. Flow chart for the time integration of the MCT equations of motion. The flow chart visualizes Algorithm 1.

(D1) describes the discretization in time of the equa-
tion of motion for the generalized mean-square displacement
Eq. (14). To integrate it we take the first time derivative,

δṘ(t ) + D d

dt

∫ t

0
M(t − t ′)δR(t ′) dt ′ = D. (A1)

This equation is then discretized in the same way as the
mean-square displacement described in Ref. [44] Eq. (A4)
and Eq. (A2) using the algorithm “Integro-differential method
with moments” presented in Chapter 3.5.1. of Ref. [77].

(D2) denotes the direct calculation of the force kernel
δKi+1 via Eq. (7) for route A. This equation has the same
form as Eq. (14) and thus the algorithm described in D1 can be
applied. [Including the discretization of the additional external
driving term DM(t )D as described in Chapter 3.5.1. of
Ref. [77].]

(D3) describes the calculation of the effective mem-
ory kernel via “route B,” using the contracted generalized
mean-square displacement δR̈μν (t ) = δKμν (t ), which in time
domain can be derived from Eq. (12). We find

δṘ(t ) + D
d

dt

∫ t

0
ds M(s)δR(t − s) = D, (A2)

using the relations δṘ(0) = C{Ṙ(0)} = D and δR(0) =
C{δR(0)} = 0.

Equation (A2) can be discretized in the same way as
described in D1 above. In this special case, the discretized
equation of motion is then solved for the effective memory
kernel Mi+1 = M((t + 1)�t ), where �t describes the time
step size.

(D4) describes the evaluation of the effective memory
kernel in route A and is given in the time domain by the

equation

M(t ) + D−1δK(t )D−1 +
∫ t

0
ds M(s)δK(t − s)D−1 = 0.

(A3)

This equation also has the same form as Eq. (14), and thus the
algorithm described in D1 can be applied. Also in this case
the final discritized equation is solved for Mi+1.

(D5) describes the final integration to obtain Si+1 in
Eq. (13). This equation is equivalent to Eq. (42) in Ref. [44],
and its discretization is given in Eq. (A1) of Ref. [44].

To enable the numerical integration of these equations over
several orders of magnitude in time, we employ the decima-
tion procedure discussed extensively in the literature [77,84].
The idea is to use an adaptive time step �t which is doubled
every Nt/2 discretization steps. In our specific implementa-
tion we start with Nt = 1024, but skip a decimation at d =
22, 24, 31, and 36, meaning that the number of discretiza-
tion steps Nt/2 per decimation is doubled and peaks at Nt =
16 385 after 36 decimations. This enables a stable integration
up to times t � 105τ , starting from �t = 10−9τ. The deci-
mation step at which “route B” replaces “route A” is set to
Dswap = 18.

APPENDIX B: FINITE DIMENSIONALITY
AND NUMERICAL EVALUATION

The evaluation of the mode-coupling functional requires
a discretization into a finite set of wave numbers q =
q0, . . . , qN−1 and the mode indices need to be restricted |μ| �
M. Similarly to Refs. [42,44] we found empirically N =
30 and M = 5 for converging solutions. This discretization,
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however, leads to an inconsistency in the model. Generally
the direct correlation function and the structure factor are
connected via the Ornstein-Zernike (OZ) equation,

S−1(q) = n0

L2
[v − c(q)], (B1)

with [v]μν = vμ−ν . Upon introducing the cutoff |μ| � M one
has to decide whether the quantity S−1(q) should be calculated
using the OZ equation with the finite dimensional c(q) or by
inverting the finite dimensional S(q). In general both choices
will yield different results. Here we have chosen the second
variant, since otherwise the solution from the iteration for the
nonergodicity parameter and the full time integration might
yield slightly different values. We have indeed checked the
consistency and validated that our choice indeed implies that
both solutions are consistent. It should be emphasized that
these discretization errors in the full model can be systemati-
cally reduced by increasing M, which stands in stark contrast
to the above introduced diagonal approximation which is
uncontrolled.

The algorithm to calculate the nonergodicity parameter
described in Sec. II B allows locating the critical packing
fraction ϕc in a numerical procedure with an accuracy of
roughly ε = (ϕ − ϕc)/ϕc ≈ ±10−5. When attempting to ap-
proach the critical point even closer we observe the emergence
of nonmonotonicities and instabilities in the iteration algo-
rithm which have to be caused by the cutoff M for the
mode indices, because they violate the theorems derived in
Ref. [41]. Despite these small instabilities induced by the
finite-dimensional matrices and their inversion, the accuracy
is sufficient to determine reliable values for the critical pack-
ing fraction ϕc and the nonergodicity parameter Fμν .

To achieve stable solutions for the full time dependence of
the incoherent and coherent intermediate scattering function
as introduced in Sec. II C up to times t ≈ 105τ a fine dis-
cretization is required. Therefore, a full run consists of over
105 individual time steps, each requiring several times the
evaluation of the mode-coupling functional defined in Eqs. (8)
and (9), which is clearly the bottleneck of the integration
algorithm.

The time integration described above scales as O(Nt NM3),
where Nt denotes the number of time steps, N defines the total
amount of wave numbers considered (“q discretization”), and
M is the highest mode, |μ| � M. The scaling M3 originates
from the matrix-matrix multiplications which have to be eval-
uated to solve these equations.

The evaluation of the mode-coupling functional from the
scattering functions as defined in Eqs. (8) and (9) scales as
O(N3M7) and is thus clearly the bottleneck of the evaluation.
In the following we show how to precalculate the inner sums
to reduce the scaling to O(N3M4), which effectively speeds
up the numerics by a factor of 1000 for M = 5, which is the
value used in this work.

First, the sum over κ in the vertices in Eq. (9) can be
separated from the rest of the calculation since they are inde-
pendent of q. When the final kernel is evaluated, the inclusion
of these sums requires just a matrix-matrix multiplication
scaling as O(NM3). Second, when inserting the vertices in
Eq. (9) into the functional, the inner sum in the vertices
can be expanded. The most complex term that arises in this

decomposition is given by

1T ⊥⊥
μν (q) = n2

0

2NL4

∑
q1 ,

q2=q−q1

∑
μ1,ν1

×
⎛
⎝∑

μ1

Qμ−μ1 cμ2,μ−μ1 (q2)Sμ1ν1 (q1, t )

⎞
⎠

×
⎛
⎝∑

ν2

Qν−ν2 cν1,ν−ν2 (q1)Sμ2ν2 (q2, t )

⎞
⎠. (B2)

The inner sums can be calculated with a time complexity
of O(N2M5). The above restructuring of the total sum is
possible for all different terms of the decomposition and all
combinations of α = (‖,⊥) and β = (‖,⊥). When calculat-
ing the MCT functional for the incoherent scattering function
the same decomposition applies, only that some of the sums
have to be specifically evaluated including the incoherent
intermediate scattering function. In conclusion, precalcula-
tion of these inner sums allows evaluating the mode-coupling
functional in O(N3M4). The final algorithm was additionally
parallelized using OpenMP, enabling the full integration of the
equations of motion up to times t ≈ 105τ on eight cores on a
standard CPU in roughly 1–2 wk.

APPENDIX C: VON SCHWEIDLER EXPONENT
AND ASYMPTOTIC EXPANSION

In this paper we have calculated the von Schweidler expo-
nent b by fitting the β scaling equation defined in Eq. (18) for
every value of the wave number q and mode indices μ, ν to the
coherent scattering function Sμν (q, t ). The values for Fμν (q)
were fixed using the solution from the iteration described in
Sec. II B.

The von Schweidler exponent could, in principle, also be
directly determined from the nonergodicity parameters using
the asymptotic expansion derived in Ref. [67]. The asymptotic
expansion is based on the assumption that the glass transition
in mode-coupling theory arises as a bifurcation transition.
This allows determining numerically a characteristic eigen-
vector from an eigenvalue equation, which can be evaluated to
finally calculate the von Schweidler exponent b [67,69]. The
validity of these asymptotic formulas has been confirmed in
Ref. [42] for the diagonal approximation.

When applying this expansion to the results obtained in
this paper for the full model we observe that the predicted
exponents from the asymptotic theory deviate by roughly 5%–
10% from the ones determined using the fitting procedure
described above. We believe that this deviation arises from
the numerical instabilities in the iteration procedure when
approaching the critical packing fraction ϕc as described in
Appendix B. Our hypothesis is based on the observation that
the eigenvalue corresponding to the characteristic eigenvec-
tor is not precisely 1 as would be assumed directly at the
bifurcation transition. We attempted to systematically cor-
rect the nonergodicity parameters and observed that marginal
changes, corresponding to less than 0.1% of the absolute
values, induced significant changes in the von Schweidler
exponent b although the eigenvalue only barely changed. This
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shows that the expansion critically depends on very precise
values for the nonergodicity parameter. Based on this analysis
we decided to report only the exponents calculated by the

fitting procedure of the full time dependence of the coherent
scattering function. We have therefore decided to not report
results of the asymptotic expansion.
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