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Atomistic simulation model on a diffusive timescale based on the extension
of the cluster-activation method to continuous space
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Recently the phase-field crystal method has attracted considerable attention because it can simulate the atomic
behavior of a system on a diffusive timescale. In this study an atomistic simulation model is proposed, which is
an extension of the cluster-activation method (CAM) from discrete to continuous space. This approach, called
the continuous CAM, can simulate various physical phenomena of atomistic systems on diffusive timescales and
employs well-defined atomistic properties, such as interatomic interaction energies, as the main input parameters.
The versatility of the continuous CAM was investigated by performing simulations of crystal growth in an
undercooled melt, homogeneous nucleation during solidification, and formation of grain boundaries in pure
metal.
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I. INTRODUCTION

Molecular dynamics (MD) and kinetic Monte Carlo (kMC)
methods have been used to investigate the atomistic behavior
of materials. The rapid increase in computational power and
the development of efficient numerical schemes have gradu-
ally increased the range of applications for these approaches;
however, their applicability is limited to extremely small time
and space scales. For instance, it is challenging to deal with
the time evolution of atomistic states on a diffusive timescale
using MD simulation. Although kMC can be applied to diffu-
sive timescales, accurate determination of the statistical nature
of dynamics, for instance, in multicomponent alloys, entails
massive computational work. Continuum models, such as
the phase-field method (PFM), have been broadly employed
to describe the microstructural phenomenon. However, the
atomic information is not explicitly considered, and the phe-
nomenological nature of such models inevitably restricts their
ability to discover unexpected dynamics and/or mechanisms
behind the phenomena of interest. Therefore, it is important
to develop an approach for describing the evolution of the
atomistic states on a diffusive timescale.

The use of MD and kMC models for atomistic sim-
ulations generally includes “nonproductive” back-and-forth
atomic movements, such as atomic vibrations, where “pro-
ductive” movements are rare events. This is the main reason
why these methods cannot simulate phenomena on a diffu-
sive timescale: the “nonproductive” events result in a waste
of computational resources [1]. Unlike the MD and kMC
models, there are several methods that capture only “produc-
tive” events, such as the phase-field crystal (PFC) method
[2,3] and atomic density functional theory (ADFT) [1]. The
PFC method and ADFT have attracted considerable attention
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because they can simulate atomistic behaviors on a diffusive
timescale. In particular, the PFC method is versatile and has
been used to simulate a variety of phenomena, such as solidifi-
cation, nucleation, phase separation, and dislocation dynamics
[2–8]. Quantitative PFC modeling has been conducted by
linking it with the classical density functional theory of freez-
ing using certain approximations [9–11]. The PFC models
developed in the early works are the one-mode models, in
which the dynamics are disregarded except near the first
critical peak of density waves [10,12]. The accuracy can be
improved using two-mode [11,13] and multimode [14] PFC
models, but since these models require high computational
costs, they have been employed in very few studies [15].

The cluster-activation method (CAM) is an atomistic sim-
ulation based on a microscopic master equation and concerns
itself with diffusive time phenomena on an atomistic space
scale [16]. Phase separation and/or ordering phenomena in
alloys have been successfully described using the CAM
[16–19]. In addition, the CAM has a significant advantage
over PFC methods, as its input parameters are atomic inter-
action energy, attempt frequency, and activation energy for
atomic jumps. The physical meanings of these terms are clear
and, in principle, can be determined using other computational
approaches, such as density functional theory (DFT) and MD
simulations. However, the theoretical framework of CAM is
entirely based on a rigid lattice system, and it cannot describe
atomic displacement from Bravais lattice points. Therefore,
the CAM cannot describe phase transitions that involve a
change of Bravais lattice symmetry, such as face-centered
cubic (fcc) to body-centered cubic (bcc) transitions, solidifi-
cation, and the grain growth and formation of lattice defects
in crystals. This study aims to address this limitation by ex-
tending the CAM to a continuous space.

The cluster variation method (CVM) [20] is one of the most
reliable methods for calculating the configurational entropy of
the metallic alloy systems. Although the original framework
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of the CVM is based on a rigid lattice (or Bravais lattice)
as in the CAM, atomic displacements have been incorporated
into the CVM by introducing quasilattice points around each
Bravais lattice points; such a model is called the continuous-
displacement CVM (CDCVM) [21]. In this study, the CAM is
extended to a continuous space by employing an idea similar
to that used in the CDCVM. This model, called the continuous
CAM, enables atomistic simulations on a diffusive timescale
from the input parameters of well-defined atomistic proper-
ties. This paper is organized as follows: First, the essential
points of the CAM and its extension to a continuous space
are described in Sec. II. A phase diagram and the microstruc-
tural evolution during solidification are calculated using the
continuous CAM, and these results are compared with those
using the PFC method, in Sec. III. Additionally, several ap-
plications of the continuous CAM are demonstrated, such as
solidification, nucleation-growth behaviors, and grain bound-
ary energies at various misorientations in pure metal. Finally,
the results and methodology developed here are summarized
in Sec. IV.

II. METHOD

Let us consider a multicomponent alloy consisting of m
species (including the vacancies) in a crystal with a total
number of sizes, N . For the original CAM, a rigid lattice is
assumed. The spatial distribution of species i can be described
by the single-site occupation probability Pi(r), where r is the
position of a lattice point. This satisfies the normalization con-
dition given by

∑m
i Pi(r) = 1. When the vacancy-mediated

mechanism is considered, the time evolution of Pi(r) is de-
scribed by the mean-field kinetic equation [17,22]:

dPi(r)

dt
=

∑
δ

∑
{X }

Pvi{X }(r + δ, r, {x})Rvi({X })

−
∑

δ

∑
{X }

Piv{X }(r, r + δ, {x})Riv ({X }), (1)

where t is the time, and v in the subscript represents the
vacancy, the position of which is represented by r + δ.
Pi j{X }(r, r′, {x}) is the joint probability of finding species i
at r, species j at r′ and a set of atomic configurations {X } at
the other sites {x}. Ri j ({X }) is the rate at which i and j species
interchange their positions under the influence of {X } and can
be approximated using [16]

Ri j ({X }) = ν exp

(
− U0

kBT

)
exp

(
−�E (i j, {X })

kBT

)
, (2)

where ν is the attempt frequency, U0 is the activation en-
ergy, kB is the Boltzmann constant, T is the temperature, and
�E (i j, {X }) is the change in energy when i and j species
interchange their positions for a given {X }. The calculation
of the time evolution of Pi(r) requires the N-site occupation
probability, Pvi{X }(r, r + δ, {x}), and it must be approximated
using the occupation probabilities of smaller sites, that is,
small clusters to make the calculation feasible. The maximum
size of the cluster considered in the calculation determines the
level of approximation of this method in a manner similar
to that of the CVM. In general, it is reasonable to restrict
δ to the nearest-neighbor sites of r [17]. In addition, when

FIG. 1. Schematic depicting an i-v pair cluster, where the first
and second nearest-neighboring atoms are numbered from 1 to 10
[16].

{x} is limited to the nearest-neighbor sites of r and r + δ, as
shown in Fig. 1, the time evolution of the cluster probability
of the nearest-neighbor pair is coupled to Eq. (1) using the su-
perposition approximation of the cluster probability of triplet
clusters, as detailed by Geng and Chen [17]. This corresponds
to the pair approximation. The simplest approximation for
Pi j{X }(r, r + δ, {x}) is given by [16]

Pi j{X }(r, r + δ, x) = Pi(r)Pj (r + δ)PX1 (x1)PX2 (x2)

· · · PXn (xn), (3)

which corresponds to the point approximation in the CVM.
Note that Eq. (1) is completely based on the atomistic master
equation, and it does not rely on the free energy.

In the conventional CAM described above, a rigid lattice
(Bravais lattice) is assumed. Quasilattice points are intro-
duced around each Bravais lattice point to describe the atomic
displacement in the CDCVM. The Bravais lattice is not con-
sidered for continuous CAM developed in this study; instead,
a system composed only of quasilattice points is considered
(see Fig. 2). The main difference between the conventional
and continuous CAMs is that the nearest-neighbor sites δ in
Eq. (1) become quasilattice sites instead of Bravais lattice
sites in continuous CAM. This allows the liquid phase to be
characterized by the uniform distribution of Pi(r), where r
indicates the quasilattice sites, and the crystalline materials
to be described by the spatial distribution of Pi(r), with peaks
according to the symmetry of the crystal. The atomic config-
uration is fully described by the spatial distribution of Pi(r)
in an approach similar to that of the PFC method. Therefore,
this strategy can deal with a wide range of phase transition
phenomena, including the formation of lattice defects, such as
dislocations and grain boundaries.

In this study, we employed the point approximation given
in Eq. (3). Furthermore, although ν and U0 are, in principle,
dependent on the type of i- j pair and the atomic configura-
tions of its surroundings, they are assumed to be constant in
accordance with the early work [17]. Importantly, it remains
unclear if an exponential term is required in the theoretical
framework with the quasilattice. The point will be investigated
in a future work. In this study, timescale is normalized by
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FIG. 2. Lattice systems for the (a) CDCVM and (b) continuous CAM. The system in the CDCVM is composed of Bravais lattice points,
each of which is surrounded by quasilattice points, whereas the system in the continuous CAM is composed of only quasilattice points.

ν ′ ≡ ν exp(− U0
kBT ) for the sake of simplicity. In this case, the

atomic interaction energy in Eq. (2) is the only input parame-
ter, and although a reliable atomic potential energy, such as the
embedded atom method (EAM), can be used, the following
Lennard-Jones potential is utilized in this work for simplicity:

ei j = e0
i j

⎡
⎣(

r0
i j

ri j

)12

− 2

(
r0

i j

ri j

)6⎤⎦, (4)

where ei j and ri j are the pair interaction energy and inter-
atomic distance between i and j atoms, respectively, and e0

i j

and r0
i j are those at the minimum pair interaction energy. Here

a model system is considered using the normalization of ei j

and ri j by e0
i j and r0

i j , respectively.
In addition, a two-dimensional simulation system is

adopted. A first-order Euler scheme is employed to
solve Eq. (1), and a periodic boundary condition is applied.
The energy cutoff radius is set to rcutoff/r0

i j ≈ 1.414, and the
following grid size is used: dx/r0

i j = dy/r0
i j = 0.1. The sim-

ulation does not work well for small interatomic distances,
because the exponential term in Eq. (2) becomes infinite,
which is ascribed to the self-interaction energy. To avoid this
issue, the screening energy is defined as escreening/e0

i j = 10.0.
When the interatomic energy is higher than escreening, it is
treated as ei j = escreening .

Although this is the simplest approximation, Eq. (3) is
acceptable for the continuous CAM and is used in the
present study. Within the theoretical framework of conven-
tional CAM, it is well known that short-range correlations

play an important role in alloy systems [16], and information
on larger clusters compared to point clusters (or atomic con-
centrations) is necessary to reliably estimate phase equilibria
[23]. However, the effect of short-range correlations becomes
insignificant in the continuous CAM because most sites are
not occupied by atoms (as seen in the following results),
which is compatible with the calculations for dilute alloy
systems in the conventional CAM where configurational en-
tropy can be adequately estimated using only the point cluster
probability.

III. RESULTS AND DISCUSSION

A. Equilibrium states

First, the solidus line between liquid and solid (or triangu-
lar phase) in pure metal A is determined by identifying the
final microstructure for a given set of initial atomic densities,
or probabilities, P0

A , and temperatures, kBT/e0
AA. To determine

the solidus line, a small system (the grid number: 200 × 200)
was used. It was found that the triangular phase is a sta-
ble structure when the atomic density P0

A is relatively small:
P0

A ≈ 0.01. The physical interpretation of the atomic density is
that there are, for example, one, two, and three A-type atoms
in 10 × 10 grids for P0

A = 1.0, 2.0, and 3.0, respectively. To
avoid forming a metastable configuration, such as a square
lattice, a small amount of noise was incorporated throughout
the entire system during the time evolution process, where the
nucleus of a triangular phase was placed in the initial state at
the center of the system.
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FIG. 3. Calculated solidus line between the liquid and triangular
phases using the continuous CAM, where escreening/e0

AA is set to 10.0.

Figure 3 shows that the solidus line, or melting tem-
perature, linearly increases with atomic density, which is
consistent with the phase diagram determined from the exper-
iments and MC simulations [24], as well as the PFC method
[3]. It was not easy to identify a liquidus line using the present
approach, and it is not shown here. To determine a liquidus
line, an approach based on free energy should be required, as
is done in the PFC method [3], but it is beyond the scope of
the present work.

It was found that the phase boundary depends on escreening;
a smaller escreening results in a solidus line that lies in the lower
temperature region. This dependency can be avoided by using
the different pair interaction energies, such as those proposed
by Jin and Khachaturyan [1] (see Appendix A 1). In this
study, Eq. (4) with escreening is used throughout the following
calculations in Secs. III B and III A.

B. Comparison with the PFC method

Next, the two-dimensional solidified microstructures cal-
culated using the continuous CAM are compared with those
obtained using the PFC method. The calculated microstruc-
tures of the continuous CAM for pure metal A at kBT/e0

AA =
3.0 are shown in Fig. 4. Here various initial atomic densities,
P0

A = 1.0, 2.0, and 3.0, were assumed, and a small amount
of noise was introduced at the center of the system in the

initial states. As seen in the figure, the system takes various
states by changing P0

A : the triangular phase, coexisting phases
of triangular and stripe phases, and strip phase. These results
correspond to those obtained using the PFC method.

The solidified microstructures calculated using the PFC
method for φ0 = −0.30, −0.15, and −0.05 at ε = −0.5,
where φ0 represents the initial density of the system and ε

corresponds to the supercooling temperature, are shown in
Fig. 5 (see the Appendix A 2 for the calculation details). A
small amount of noise was introduced in the initial states, as
was done in the microstructure in Fig. 4. The atomic densities
at each site are plotted in the figure, where each panel rep-
resents the triangular phase, coexisting phases of triangular
and stripe phases, and stripe phase, respectively, all of which
correspond to the expected atomic configurations from the
calculated phase diagram (Fig. 5 in Ref. [3]).

Although there is a slight difference between the solidi-
fied microstructures obtained using the continuous CAM and
those using the PFC method, the same atomic configurations
are produced, such as the triangular phase, stripe phase, and
their coexisting phases. This result suggests that a phase dia-
gram similar to that obtained from the PFC method exists in
the case of the continuous CAM. Notably, the results show
that the continuous CAM can simulate a solidification pro-
cess using only the pair interaction energy except for the
time-related parameters, such as the attempt frequency and
activation energy.

C. Applications of the continuous CAM

The analysis of solidification, nucleation and growth, and
grain boundary energy at various misorientation angles in pure
metal A are explored here to understand the versatility of the
continuous CAM. The initial atomic density was set to P0

A =
1.0 in all calculations shown here.

The calculated growth process of a solid nucleus in the
liquid phase is shown in Fig. 6, where the nucleus of the
triangular phase is placed at the center of the system in
the initial state. The temperature was set to kBT/e0

AA =
4.0 (T/Tm = 0.976), and the grids number used is 3000 ×
3000. An anisotropic morphology is observed in the solidified
microstructure, and a similar morphology has been produced
in pure metal using the PFM (see Ref. [25]). Note that the
equilibrium symmetry of a triangular lattice should be sixfold

FIG. 4. Calculated two-dimensional solidified microstructures using the continuous CAM for P0
A = 1.0, 2.0, and 3.0 at kBT/e0

AA = 3.0.
The color bar represents the local atomic density, P0

A . Here 200 × 200 grids are used for the calculations.
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FIG. 5. Calculated two-dimensional solidified microstructures using the PFC method for φ0 = −0.30, −0.15, and −0.05 at ε = −0.5 [28].
The color bar represents the phase-field parameter φ. Here 200 × 200 grids are used for the calculations.

in a “single” crystal, but the one obtained here is fourfold. This
is due to the formation of nucleus next to the initial nucleus as
seen in Fig. 6(c). Thus, the calculated solid microstructure in-
cludes grain boundaries as well as dislocations. It is expected
that a sixfold symmetry can be obtained by adjusting atomic
density and degree of undercooling. It is also noteworthy that
it was confirmed that the solidified morphology is rotated
with the rotation of the initial nucleus. This suggests that
the fourfold symmetry is inherent of the system, not caused
by the computational procedure employed here (i.e., finite
difference calculation).

Although a solid nucleus was placed in the initial state
in the previous application (Fig. 6), it can spontaneously
form, i.e., homogeneous nucleation, within the theoretical
framework of the continuous CAM. The solidification pro-
cess from a liquid phase is shown in Fig. 7, where a small
amount of noise is introduced throughout the system, and the
temperature is set to kBT/e0

AA = 4.0 (T/Tm = 0.976). First,
a squarelike configuration is formed from the liquid phase,
and subsequently, triangular phases are nucleated. Grain
coarsening of the triangular phase then can be observed. It
is considered that a squarelike configuration is formed before

FIG. 6. Calculated two-dimensional solidified microstructure in pure metal using the continuous CAM at (a) t ′ = 0.0, (b) t ′ = 20.0, (c)
t ′ = 30.0, (d) t ′ = 40.0, and (e) t ′ = 60.0, where a nucleus of triangular phase nucleus is placed at the center of the system in the initial state.

045307-5



RYO YAMADA AND MUNEKAZU OHNO PHYSICAL REVIEW E 107, 045307 (2023)

FIG. 7. Temporal change of solidified microstructures in pure metal at (a) t ′ = 30.0, (b) t ′ = 33.0, (c) t ′ = 35.0, and (d) t ′ = 37.0, where
a small amount of noise is incorporated throughout the system. Here 3000 × 3000 grids are used for the calculation.

a stable triangular phase, because of its low density compared
with that of the triangular phase. This precursor phenomenon,
i.e., the formation of a squarelike configuration before the
triangular phase, is similar to the appearance of a bcc-like
configuration before a stable fcc phase from an undercooled
melt [26].

Finally, grain boundary configurations and their energies
at various misorientation angles were calculated, as shown
in Fig. 8. Here a rectangular system with 1000 × 4000 grid
points was used, and two solids with different crystal ori-
entations were aligned along the y axis with a liquid phase
filled between them. By running simulations at kBT/e0

AA =
3.5 (T/Tm = 0.854), the grain boundaries with various mis-

orientation angles were formed (see Fig. 9). The grain
boundary energy was determined by comparing the free en-
ergy of the systems with and without grain boundaries. The

free energy, F , of a system is computed as follows:

F = 1

2

∑
r, r′

∑
i, j

ei j (r − r′)Pi(r)Pj (r′)

+ kBT
∑

r

∑
i

Pi(r)lnPi(r) . (5)

To remove strain effects, the area without the edge of the
system was considered here: the area from Ny/5 to 4 ×Ny/5,
where Ny is the number of grid points along the y axis. As
can be seen in Fig. 8, the grain boundary energy monoton-
ically increases with the misorientation angle, and different
increasing tendencies can be observed for small and large
misorientation angles (below and above 15◦). This difference
originates from the grain boundary changing from coherent to

FIG. 8. Grain boundary energies at various misorientation angles. The energies at small misorientation angles are fitted to the Read-
Shockley relation (γ 0

GB = 3.30 and C = 0.00239).

045307-6



ATOMISTIC SIMULATION MODEL ON A DIFFUSIVE … PHYSICAL REVIEW E 107, 045307 (2023)

FIG. 9. Simulated grain boundaries (a) the whole system at θ =
5◦ and (b) the magnified ones at θ = 5◦ and 20◦. Here the area used
for the calculation of the grain boundary is represented by the broken
line.

incoherent at around 15◦ (see Fig. 9). Furthermore, the grain
boundary energies at low misorientation angles (less than 10◦)
were fitted to the following Read-Shockley relation [27]:

γGB = γ 0
GBθ (C − lnθ ), (6)

where γ 0
GB and C are constants. From the figure, it can be

observed that the calculated grain boundary energies follow
the Read-Shockley relation at low misorientation angles. This
suggests that the continuous CAM developed in this study is
reliable.

IV. CONCLUSION

The continuous CAM was developed by incorporating
the idea of the CDCVM into the conventional CAM: i.e.,
the incorporation of quasilattice points into a system. The
calculated solidified microstructures of pure metal were com-
pared with those obtained using the PFC method, and it
was found that similar atomic configurations were obtained.
Furthermore, the continuous CAM was demonstrated in sev-
eral applications, including the analysis of solidification,
nucleation-growth processes, and grain boundary energies
at various misorientation angles in pure metal. Interesting
behavior was observed for each application. In the solidifica-
tion process, the anisotropic morphology of the solid phase
was generated naturally, and it was found that a solidified
crystal contains grain boundaries and dislocations. In the
nucleation-growth process, a square lattice was formed just
before a stable triangular lattice was nucleated. The nuclei
of the triangular lattice grew and developed grain boundaries;
subsequently, grain-coarsening behavior was observed. In the
calculation of grain boundary energies, it was found that

the energy monotonically increased with the misorientation
angles. The rate of increase changed between coherent and
incoherent grain boundaries, and the grain boundary energies
followed the Read-Shockley relation at low misorientation
angles.

Note that the continuous CAM developed in this study
uses well-defined atomistic properties, such as interatomic
interaction energies, as its main input parameters. Further-
more, the theoretical framework does not rely on free energy,
indicating that it has the potential to explore the dynam-
ics of various phenomena far from the equilibrium states.
It is also noteworthy that although time was normalized
in the present calculations, a real-time scale can be in-
corporated as in the kMC simulations when the attempt
frequency and activation energy for an atomic jump are
given.

It is noteworthy, however, that the liquidus line calculated
using MC simulations is not quantitatively reproduced when
the potential form of Eq. (A1) was used within the present
model, as seen in Fig. 11 in the Appendix. Searching for an
appropriate form of potential suited for the present model is
an important issue and remains as a future work.

The data supporting the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX

1. Revised pair interaction energy

The deficiency of the pair interaction energy discussed in
Sec. III A may be avoided using the following pair interaction

FIG. 10. Graph of the pair interaction energy, wi j , shown in
Eq. (A1) at different interatomic distances, where the Lennard-Jones
potential [Eq. (4)] is used for ei j .
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FIG. 11. Calculated liquidus line between the liquid and trian-
gular phases in three dimensions using the continuous CAM, where
Eq. (A1) is used for the pair interaction energy. Here the liquidus and
solidus lines determined from MC simulations are shown together
[24].

energy, wi j , proposed by Jin and Khachaturyan [1]:

wi j = kBT

[
1 − exp

(
− ei j

kBT

)]
. (A1)

This potential energy equation substituted with Eq. (4)
yields a constant energy for a small interatomic distance, as
was assumed in the presented calculations (see Fig. 10). The
liquidus line between the liquid and triangular phases was
calculated using Eq. (A1) in three dimensions, and it is shown
in Fig. 11, where the liquidus and solidus lines determined by
MC simulations are shown together [24]. The liquidus line

increases with atomic density, which is consistent with the
result of MC simulation. However, there is some discrepancy
in the calculated liquidus lines using the present model and
MC simulations. The main reason for this discrepancy is due
to the use of Eq. (A1). Although there is no need to set a
screening energy in this potential and the estimated liquidus
line is uniquely determined, the physical origin of this poten-
tial is still unclear. It is expected that an appropriate form of
potential will improve the calculated results.

2. PFC method

The PFC method originates from the PFM and uses a
phase-field parameter to describe the atomic configuration.
In the simplest approximation, the free energy of a system is
given by [2,3]

F̃ =
∫

V

{
φ̃

2

[
α�T + λ

(
q2

0 + ∇2)2
]
φ̃ + 1

4
uφ̃4

}
dV, (A2)

where φ̃ is the phase-field parameter, V is the volume, q0 is
the wave number, �T is the supercooling temperature, and
α, λ, and u are material-specific constants. Equation (A2) is
normalized as [2,3]

F =
∫

V

[
1

2
(ε + 1)φ2 + 1

4
φ4 + φ∇2φ + 1

2
φ∇4φ

]
dV, (A3)

where F ≡ uF̃/λ2q5
0, x ≡ x̃q0, φ ≡ φ̃

√
u/λq4

0, and ε ≡
α�T/λq4

0. Following the Cahn-Hilliard equation, the time
evolution of φ is given by [2,3]

∂φ

∂t
= ∇2 {[ε + (1 + ∇2)

2
]φ + φ3}. (A4)

In order to solve Eq. (A4), a first-order Euler scheme was
used for the time derivative, and the spherical Laplacian ap-
proximation was used to compute all Laplacians [3].
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